Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Real-time visualization of mutations and their fitness effects in single bacteria

Abstract

Mutations are the driving force of evolution and the source of important pathologies. The characterization of the dynamics and effects of mutations on fitness is therefore central to our understanding of evolution and to human health. This protocol describes how to implement two methods that we recently developed: mutation visualization (MV) and microfluidic mutation accumulation (µMA), which allow the occurrence of mutations created by DNA replication errors (MV) and the evolution of cell fitness during MA (µMA) to be followed directly in individual cells of Escherichia coli. MV provides a quantitative characterization of the dynamics of mutation occurrences, and µMA allows precise estimation of the distribution of fitness effects (DFEs) of mutations. Both methods use microfluidics and time-lapse microscopy, and a fluorescent mismatch repair (MMR) MutL protein is used as a marker for nascent mutations. Here, we present a single protocol describing how to implement the MV and µMA methods, including detailed procedures for microfluidic setup installation, data acquisition and data analysis and interpretation. Using this procedure, the microfluidic setup installation can be completed within 1 d, and automated data acquisition takes 2–4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of MV and μMA experiments in E. coli.
Fig. 2: MV and μMA experiments in E. coli.
Fig. 3: Fabrication and use of the mother machine microfluidic chip.
Fig. 4: Replication errors and mutation fixation.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study. Datasets from a related study are archived at Dryad (https://doi.org/10.5061/dryad.75625).

References

  1. Robert, L. et al. Mutation dynamics and fitness effects followed in single cells. Science 359, 1283–1286 (2018).

    Article  CAS  Google Scholar 

  2. Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Foster, P. L. Methods for determining spontaneous mutation rates. Methods Enzymol. 409, 195–213 (2006).

    Article  CAS  Google Scholar 

  4. Frenoy, A. & Bonhoeffer, S. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria. PLoS Biol. 16, e2005056 (2018).

    Article  Google Scholar 

  5. Nishant, K. T., Singh, N. D. & Alani, E. Genomic mutation rates: what high-throughput methods can tell us. Bioessays 31, 912–920 (2009).

    Article  CAS  Google Scholar 

  6. Mukai, T. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50, 1–19 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    Article  CAS  Google Scholar 

  8. Halligan, D. L. & Keightley, P. D. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40, 151–172 (2009).

    Article  Google Scholar 

  9. Heilbron, K., Toll-Riera, M., Kojadinovic, M. & MacLean, R. C. Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment. Genetics 197, 981–990 (2014).

    Article  CAS  Google Scholar 

  10. Elez, M. et al. Seeing mutations in living cells. Curr. Biol. 20, 1432–1437 (2010).

    Article  CAS  Google Scholar 

  11. Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).

    Article  CAS  Google Scholar 

  12. Ollion, J., Elez, M. & Robert, L. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments. Nat. Protoc. https://doi.org/10.1038/s41596-019-0216-9 (2019).

  13. Uphoff, S. Real-time dynamics of mutagenesis reveal the chronology of DNA repair and damage tolerance responses in single cells. Proc. Natl. Acad. Sci. USA 115, E6516–E6525 (2018).

    Article  CAS  Google Scholar 

  14. Elez, M., Radman, M. & Matic, I. Stoichiometry of MutS and MutL at unrepaired mismatches in vivo suggests a mechanism of repair. Nucleic Acids Res. 40, 3929–3938 (2012).

    Article  CAS  Google Scholar 

  15. Woo, A. C., Faure, L., Dapa, T. & Matic, I. Heterogeneity of spontaneous DNA replication errors in single isogenic Escherichia coli cells. Sci. Adv. 4, eaat1608 (2018).

    Article  Google Scholar 

  16. Kaiser, M. et al. Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nat. Commun. 9, 212 (2018).

    Article  Google Scholar 

  17. Dormeyer, M. et al. Visualization of tandem repeat mutagenesis in Bacillus subtilis. DNA Repair 63, 10–15 (2018).

    Article  CAS  Google Scholar 

  18. Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Memory and modularity in cell-fate decision making. Nature 503, 481–486 (2013).

    Article  CAS  Google Scholar 

  19. Nakaoka, H. & Wakamoto, Y. Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe. PLoS Biol. 15, e2001109 (2017).

    Article  Google Scholar 

  20. Foster, P. L., Lee, H., Popodi, E., Townes, J. P. & Tang, H. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc. Natl. Acad. Sci. USA 112, E5990–E5999 (2015).

    Article  CAS  Google Scholar 

  21. Schaaper, R. M. Escherichia coli mutator mutD5 is defective in the mutHLS pathway of DNA mismatch repair. Genetics 121, 205–212 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Elez, M., Radman, M. & Matic, I. The frequency and structure of recombinant products is determined by the cellular level of MutL. Proc. Natl. Acad. Sci. USA 104, 8935–8940 (2007).

    Article  CAS  Google Scholar 

  23. Negishi, K., Loakes, D. & Schaaper, R. M. Saturation of DNA mismatch repair and error catastrophe by a base analogue in Escherichia coli. Genetics 161, 1363–1371 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gutierrez, A. et al. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun. 4, 1610 (2013).

    Article  CAS  Google Scholar 

  25. Harris, R. S. et al. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev. 11, 2426–2437 (1997).

    Article  CAS  Google Scholar 

  26. Maas, W. K., Wang, C., Lima, T., Hach, A. & Lim, D. Multicopy single-stranded DNA of Escherichia coli enhances mutation and recombination frequencies by titrating MutS protein. Mol. Microbiol. 19, 505–509 (1996).

    Article  CAS  Google Scholar 

  27. Taheri-Araghi, S. & Jun, S. in Hydrocarbon and Lipid Microbiology Protocols: Single-Cell and Single-Molecule Methods (eds McGenity, T. J. et al.) 5–16 (Springer, 2015).

  28. Ghigo, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445 (2001).

    Article  CAS  Google Scholar 

  29. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  30. Cooper, S. & Helmstetter, C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 31, 519–540 (1968).

    Article  CAS  Google Scholar 

  31. Zaritsky, A., Wang, P. & Vischer, N. O. Instructive simulation of the bacterial cell division cycle. Microbiology 157, 1876–1885 (2011).

    Article  CAS  Google Scholar 

  32. Reyes-Lamothe, R., Possoz, C., Danilova, O. & Sherratt, D. J. Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133, 90–102 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Agence Nationale de Recherche (grant ANR-14-CE09-0015-01 to M.E.) and by the city of Paris (program Emergences 2018 to M.E.).

Author information

Authors and Affiliations

Authors

Contributions

L.R. and M.E. developed the protocol. J.O. developed the image analysis software. L.R., M.E. and J.O. wrote the manuscript.

Corresponding authors

Correspondence to Lydia Robert or Marina Elez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Hanna Salman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Robert, L. et al. Science 359, 1283–1286 (2018): http://science.sciencemag.org/content/359/6381/

Key data used in this protocol

Robert, L. et al. Science 359, 1283–1286 (2018): http://science.sciencemag.org/content/359/6381/1283

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert, L., Ollion, J. & Elez, M. Real-time visualization of mutations and their fitness effects in single bacteria. Nat Protoc 14, 3126–3143 (2019). https://doi.org/10.1038/s41596-019-0215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0215-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing