Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy

Abstract

The goal of mechanobiology is to understand the links between changes in the physical properties of living cells and normal physiology and disease. This requires mechanical measurements that have appropriate spatial and temporal resolution within a single cell. Conventional atomic force microscopy (AFM) methods that acquire force curves pointwise are used to map the heterogeneous mechanical properties of cells. However, the resulting map acquisition time is much longer than that required to study many dynamic cellular processes. Dynamic AFM (dAFM) methods using resonant microcantilevers are compatible with higher-speed, high-resolution scanning; however, they do not directly acquire force curves and they require the conversion of a limited number of instrument observables to local mechanical property maps. We have recently developed a technique that allows commercial AFM systems equipped with direct cantilever excitation to quantitatively map the viscoelastic properties of live cells. The properties can be obtained at several widely spaced frequencies with nanometer–range spatial resolution and with fast image acquisition times (tens of seconds). Here, we describe detailed procedures for quantitative mapping, including sample preparation, AFM calibration, and data analysis. The protocol can be applied to different biological samples, including cells and viruses. The transition from dAFM imaging to quantitative mapping should be easily achievable for experienced AFM users, who will be able to set up the protocol in <30 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the protocol.
Fig. 2: Typical dynamic approach curve obtained in the central region of a fibroblast cell (nuclear area) with a Lorentz excited cantilever.
Fig. 3: Bimodal AFM on a rat fibroblast.
Fig. 4: Comparison of AFM nanomechanical with fluorescence data in a growth cone developed by an Aplysia bag cell neuron.
Fig. 5: Tracking the fast temporal changes in nanomechanical heterogeneities of MDA-MB-231 breast cancer cells upon inhibition of Syk-AQL-EGFP protein tyrosine kinase with 1-NM-PP1.
Fig. 6: Property maps of ϕ29 bacteriophage mature virions.

Similar content being viewed by others

References

  1. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. USA 102, 11594–11599 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Rotsch, C., Jacobson, K. & Radmacher, M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 921–926 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lange, J. R. & Fabry, B. Cell and tissue mechanics in cell migration. Exp. Cell Res. 319, 2418–2423 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Franze, K., Janmey, P. A. & Guck, J. Mechanics in neuronal development and repair. Annu. Rev. Biomed. Eng. 15, 227–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 55, 3989–4014 (2007).

    Article  CAS  Google Scholar 

  10. Rotsch, C. & Radmacher, M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78, 520–535 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Efremov, Y. M. et al. Distinct impact of targeted actin cytoskeleton reorganization on mechanical properties of normal and malignant cells. Biochim. Biophys. Acta 1853, 3117–3125 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Grady, M. E., Composto, R. J. & Eckmann, D. M. in Mechanics of Biological Systems and Materials (eds. Barthelat, F., Zavattieri, P., Korach, C. S., Prorok, B. C. & Grande-Allen, K. J.) 6, 169–177 (Springer, New York, 2017).

  13. Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Lekka, M. et al. Cancer cell recognition–mechanical phenotype. Micron 43, 1259–1266 (2012).

    Article  PubMed  Google Scholar 

  15. van Zwieten, R. W. et al. Assessing dystrophies and other muscle diseases at the nanometer scale by atomic force microscopy. Nanomedicine 9, 393–406 (2014).

    Article  PubMed  Google Scholar 

  16. Burridge, K. & Guilluy, C. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Ingber, D. E., Wang, N. & Stamenovic, D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 046603 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Park, C. Y. et al. Mapping the cytoskeletal prestress. Am. J. Physiol. Cell Physiol. 298, C1245–C1252 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Desprat, N., Richert, A., Simeon, J. & Asnacios, A. Creep function of a single living cell. Biophys. J. 88, 2224–2233 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Caille, N., Thoumine, O., Tardy, Y. & Meister, J. J. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002).

    Article  PubMed  Google Scholar 

  23. Ayala, Y. A. et al. Rheological properties of cells measured by optical tweezers. BMC Biophys. 9, 5 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wei, M.-T. et al. A comparative study of living cell micromechanical properties by oscillatory optical tweezers. Opt. Express 16, 8594–8603 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Hu, S. et al. Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am. J. Physiol. Cell Physiol. 287, C1184–C1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman, B. D., Massiera, G., Van Citters, K. M. & Crocker, J. C. The consensus mechanics of cultured mammalian cells. Proc. Natl. Acad. Sci. USA 103, 10259–10264 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Haga, H. et al. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Cartagena-Rivera, A. X., Wang, W.-H., Geahlen, R. L. & Raman, A. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Sci. Rep. 5, 11692 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. A-Hassan, E. et al. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A. & Zhdanov, R. I. Atomic force microscopy probing of cell elasticity. Micron 38, 824–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gavara, N. A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc. Res. Tech. 1–10 (2016).

  32. Efremov, Y. M., Wang, W.-H., Hardy, S. D., Geahlen, R. L. & Raman, A. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Sci. Rep. 7, 1541 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Rico, F. et al. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E 72, 21914 (2005).

    Article  Google Scholar 

  34. Radmacher, M. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol. 68, 67–90 (2002).

    Article  PubMed  Google Scholar 

  35. Garcia, P. D., Guerrero, C. R. & Garcia, R. Time-resolved nanomechanics of a single cell under the depolymerization of the cytoskeleton. Nanoscale 9, 12051–12059 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Brückner, B. R., Nöding, H. & Janshoff, A. Viscoelastic properties of confluent MDCK II cells obtained from force cycle experiments. Biophys. J. 112, 724–735 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  37. Raman, A. et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat. Nanotechnol. 6, 809–814 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Sahin, O. et al. High-resolution imaging of elastic properties using harmonic cantilevers. Sens. Actuators A Phys. 114, 183–190 (2004).

    Article  CAS  Google Scholar 

  39. van Noort, S. J. T., Willemsen, O. H., van der Werf, K. O., de Grooth, B. G. & Greve, J. Mapping electrostatic forces using higher harmonics tapping mode atomic force microscopy in liquid. Langmuir 15, 7101–7107 (1999).

    Article  Google Scholar 

  40. Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).

    Article  PubMed  Google Scholar 

  41. Chyasnavichyus, M., Young, S. L. & Tsukruk, V. V. Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy. Jpn. J. Appl. Phys. 54, 08LA02 (2015).

    Article  Google Scholar 

  42. Tung, R. C., Jana, A. & Raman, A. Hydrodynamic loading of microcantilevers oscillating near rigid walls. J. Appl. Phys. 104, 114905 (2008).

    Article  Google Scholar 

  43. Cartagena, A. & Raman, A. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods. Biophys. J. 106, 1033–1043 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cartagena, A., Hernando-Pérez, M., Carrascosa, J. L., de Pablo, P. J. & Raman, A. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy. Nanoscale 5, 4729–4736 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Melcher, J. et al. Origins of phase contrast in the atomic force microscope in liquids. Proc. Natl. Acad. Sci. USA 106, 13655–13660 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Xu, X., Melcher, J., Basak, S., Reifenberger, R. & Raman, A. Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. Phys. Rev. Lett. 102, 060801 (2009).

    Article  PubMed  Google Scholar 

  47. Hertz, H. Über die Berührung Fester Elastischer Körper. J. reine u. angew. Math. 92, 156–171 (1881).

    Google Scholar 

  48. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    Article  Google Scholar 

  49. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gavara, N. & Chadwick, R. S. Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat. Nanotechnol. 7, 733–736 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Krisenko, M. O., Cartagena, A., Raman, A. & Geahlen, R. L. Nanomechanical property maps of breast cancer cells as determined by multiharmonic atomic force microscopy reveal Syk-dependent changes in microtubule stability mediated by MAP1B. Biochemistry 54, 60–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Kronlage, C., Schäfer-Herte, M., Böning, D., Oberleithner, H. & Fels, J. Feeling for filaments: quantification of the cortical actin web in live vascular endothelium. Biophys. J. 109, 687–698 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Smolyakov, G., Formosa-Dague, C., Severac, C., Duval, R. E. & Dague, E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 85, 8–14 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Schillers, H., Medalsy, I., Hu, S., Slade, A. L. & Shaw, J. E. PeakForce tapping resolves individual microvilli on living cells. J. Mol. Recognit. 29, 95–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Calzado-Martín, A., Encinar, M., Tamayo, J., Calleja, M. & San Paulo, A. Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy. ACS Nano (2016). https://doi.org/10.1021/acsnano.5b07162.

    Article  PubMed  Google Scholar 

  56. Ando, T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys. Rev. 9, 421–429 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Vogel, V. & Sheetz, M. P. Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr. Opin. Cell Biol. 21, 38–46 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Xu, X. & Raman, A. Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids. J. Appl. Phys. 102, 034303 (2007).

    Article  Google Scholar 

  59. Enders, O., Korte, F. & Kolb, H.-A. Lorentz-force-induced excitation of cantilevers for oscillation-mode scanning probe microscopy. Surf. Interface Anal. 36, 119–123 (2004).

    Article  CAS  Google Scholar 

  60. Kiracofe, D., Kobayashi, K., Labuda, A., Raman, A. & Yamada, H. High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids. Rev. Sci. Instrum. 82, 013702 (2011).

    Article  PubMed  Google Scholar 

  61. Labuda, A. et al. Comparison of photothermal and piezoacoustic excitation methods for frequency and phase modulation atomic force microscopy in liquid environments. AIP Adv. 1, 022136 (2011).

    Article  Google Scholar 

  62. Rabe, U. & Arnold, W. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 64, 1493–1495 (1994).

    Article  Google Scholar 

  63. Schäffer, T. E., Cleveland, J. P., Ohnesorge, F., Walters, D. A. & Hansma, P. K. Studies of vibrating atomic force microscope cantilevers in liquid. J. Applied Physics 80, 3622 (2012).

    Article  Google Scholar 

  64. Kiracofe, D. & Raman, A. Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory. Nanotechnology 22, 485502 (2011).

    Article  PubMed  Google Scholar 

  65. Florin, E.-L., Radmacher, M., Fleck, B. & Gaub, H. E. Atomic force microscope with magnetic force modulation. Rev. Sci. Instrum. 65, 639 (1994).

    Article  CAS  Google Scholar 

  66. Han, W., Lindsay, S. M. & Jing, T. A magnetically driven oscillating probe microscope for operation in liquids. Appl. Phys. Lett. 69, 4111–4113 (1996).

    Article  CAS  Google Scholar 

  67. Ge, G. et al. MAC mode atomic force microscopy studies of living samples, ranging from cells to fresh tissue. Ultramicroscopy 107, 299–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, A., Butte, M. J., Wang, A. & Butte, M. J. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer. Appl. Phys. Lett. 105, 053101 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  69. Nagao, E. & Dvorak, J. A. An integrated approach to the study of living cells by atomic force microscopy. J. Microsc. 191, 8–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Garcia, R. & Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Garcia, R. & Proksch, R. Nanomechanical mapping of soft matter by bimodal force microscopy. Eur. Polym. J. 49, 1897–1906 (2013).

    Article  CAS  Google Scholar 

  72. Solares, S. D. & Chawla, G. Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy. Meas. Sci. Technol. 21, 125502 (2010).

    Article  Google Scholar 

  73. Balland, M. et al. Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys. Rev. E 74, 021911 (2006).

    Article  Google Scholar 

  74. Alcaraz, J. et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071–2079 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Rigato, A., Miyagi, A., Scheuring, S. & Rico, F. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat. Phys. (2017). https://doi.org/10.1038/nphys4104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Kollmannsberger, P. & Fabry, B. Linear and nonlinear rheology of living cells. Annu. Rev. Mater. Res. 41, 75–97 (2011).

    Article  CAS  Google Scholar 

  77. Jonas, O. & Duschl, C. Force propagation and force generation in cells. Cytoskeleton 67, 555–563 (2010).

    Article  PubMed  Google Scholar 

  78. Silberberg, Y. R. et al. Mitochondrial displacements in response to nanomechanical forces. J. Mol. Recognit. 21, 30–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Krause, M., te Riet, J. & Wolf, K. Probing the compressibility of tumor cell nuclei by combined atomic force–confocal microscopy. Phys. Biol. 10, 065002 (2013).

    Article  PubMed  Google Scholar 

  80. Rosenbluth, M. J., Crow, A., Shaevitz, J. W. & Fletcher, D. A. Slow stress propagation in adherent cells. Biophys. J. 95, 6052–6059 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Lim, S.-M., Trzeciakowski, J. P., Sreenivasappa, H., Dangott, L. J. & Trache, A. RhoA-induced cytoskeletal tension controls adaptive cellular remodeling to mechanical signaling. Integr. Biol. 4, 615 (2012).

    Article  CAS  Google Scholar 

  82. Melzak, Ka & Toca-Herrera, J. L. Atomic force microscopy and cells: indentation profiles around the AFM tip, cell shape changes, and other examples of experimental factors affecting modeling. Microsc. Res. Tech. 78, 626–632 (2015).

    Article  PubMed  Google Scholar 

  83. Trache, A. & Lim, S.-M. Integrated microscopy for real-time imaging of mechanotransduction studies in live cells. J. Biomed. Opt. 14, 034024 (2009).

    Article  PubMed  Google Scholar 

  84. Staunton, J. R., Doss, B. L., Lindsay, S. & Ros, R. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci. Rep. 6, 19686 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Cascione, M., de Matteis, V., Rinaldi, R. & Leporatti, S. Atomic force microscopy combined with optical microscopy for cells investigation. Microsc. Res. Tech. 80, 109–123 (2017).

    Article  PubMed  Google Scholar 

  86. Charras, G. T. & Horton, M. A. Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J. 83, 858–879 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Jonkman, J. & Brown, C. M. Any way you slice it-a comparison of confocal microscopy techniques. J. Biomol. Tech. 26, 54–65 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Lulevich, V., Shih, Y. P., Lo, S. H. & Liu, G. Cell tracing dyes significantly change single cell mechanics. J. Phys. Chem. B 113, 6511–6519 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Sliogeryte, K. et al. Differential effects of LifeAct-GFP and actin-GFP on cell mechanics assessed using micropipette aspiration. J. Biomech. 49, 310–317 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  90. Lee, A. C., Decourt, B. & Suter, D. Neuronal cell cultures from Aplysia for high-resolution imaging of growth cones. J. Vis. Exp. (2008). https://doi.org/10.3791/662.

  91. Suter, D. M. in Cell Migration. Methods in Molecular Biology (Methods and Protocols) (eds. Wells, C. & Parsons, M.) 65–86 (Humana Press, New York, 2011).

  92. Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–3 (2014).

    Article  PubMed  Google Scholar 

  93. Sader, J. E. et al. A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 87, 093711 (2016).

  94. Schillers, H. et al. Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples. Sci. Rep. 7, 5117 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  95. Hernando-Pérez, M. et al. Quantitative nanoscale electrostatics of viruses. Nanoscale 7, 17289–17298 (2015).

    Article  PubMed  Google Scholar 

  96. Xiong, Y., Lee, A. C., Suter, D. M. & Lee, G. U. Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy. Biophys. J. 96, 5060–5072 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Gallet, C. et al. Tyrosine phosphorylation of cortactin associated with Syk accompanies thromboxane analogue-induced platelet shape change. J. Biol. Chem. 274, 23610–23616 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Le Roux, D. et al. Syk-dependent actin dynamics regulate endocytic trafficking and processing of antigens internalized through the B-cell receptor. Mol. Biol. Cell 18, 3451–3462 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  99. Braet, F., Rotsch, C., Wisse, E. & Radmacher, M. Comparison of fixed and living liver endothelial cells by atomic force microscopy. Appl. Phys. A Mater. Sci. Process. 66, 575–578 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Incentive Grant Program of the Office of the Executive Vice President for Research and Partnerships – Purdue University (D.M.S. and A.R.) and by NSF 1146944-IOS (D.M.S.). A.X.C.-R. was supported by intramural funding from the Division of Intramural Research Program at the National Institute on Deafness and Other Communication Disorders.

Author information

Authors and Affiliations

Authors

Contributions

A.X.C.-R., Y.M.E., D.M.S., and A.R. conceived and designed the experiments. Y.M.E., A.X.C.-R., A.I.M.A., D.M.S., and A.R. developed experimental protocols for sample preparation. Y.M.E. and A.X.C.-R. performed all the research experiments, analyzed the data, and prepared the figures. Y.M.E., A.X.C.-R., D.M.S., and A.R. co-wrote the paper. All authors discussed the results and reviewed the paper.

Corresponding author

Correspondence to Arvind Raman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Raman, A. et al. Nat. Nanotechnol. 6, 809–814 (2011) https://doi.org/10.1038/nnano.2011.186

Cartagena, A., Hernando-Pérez, M., Carrascosa, J. L., de Pablo, P. J. & Raman, A. Nanoscale 5, 4729–4736 (2013) https://doi.org/10.1039/C3NR34088K

Cartagena-Rivera, A. X., Wang, W.-H., Geahlen, R. L. & Raman, A. Sci. Rep. 5, 11692 (2015) https://doi.org/10.1038/srep11692

Integrated supplementary information

Supplementary Figure 1 Topography and maps of the multi-harmonic observables (amplitudes A0, A1, and phase φ1) for the growth cone presented in Fig. 4.

Scale bars are 5 µm, acquisition time of maps 5 min, 256X256 pixels.

Supplementary Figure 2 Tracking the fast temporal changes in nanomechanical heterogeneities of MDA-MB-231 breast cancer cells upon inhibition of Syk-AQL-EGFP protein tyrosine kinase with 1-NM-PP1.

The rapid loss of Syk activity was correlated with dramatic rearrangements in the cortical actin cytoskeleton observed as a retraction of the leading edge. Only the deflection channel is shown here. The acquisition time was 1 min 30 s (256X256 pixels), every second image in the series is shown. Scale bar is 5 µm, common for all the images.

Supplementary information

Supplementary Text and Figures and Theory

Supplementary Figs. 1 and 2 and the Supplementary Theory

Reporting Summary

Supplementary Data

MATLAB scripts for data processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, Y.M., Cartagena-Rivera, A.X., Athamneh, A.I.M. et al. Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy. Nat Protoc 13, 2200–2216 (2018). https://doi.org/10.1038/s41596-018-0031-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0031-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing