Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of DNA methylation on CTCF-mediated 3D genome organization

Abstract

Cytosine DNA methylation is a highly conserved epigenetic mark in eukaryotes. Although the role of DNA methylation at gene promoters and repetitive elements has been extensively studied, the function of DNA methylation in other genomic contexts remains less clear. In the nucleus of mammalian cells, the genome is spatially organized at different levels, and strongly influences myriad genomic processes. There are a number of factors that regulate the three-dimensional (3D) organization of the genome, with the CTCF insulator protein being among the most well-characterized. Pertinently, CTCF binding has been reported as being DNA methylation-sensitive in certain contexts, perhaps most notably in the process of genomic imprinting. Therefore, it stands to reason that DNA methylation may play a broader role in the regulation of chromatin architecture. Here we summarize the current understanding that is relevant to both the mammalian DNA methylation and chromatin architecture fields and attempt to assess the extent to which DNA methylation impacts the folding of the genome. The focus is in early embryonic development and cellular transitions when the epigenome is in flux, but we also describe insights from pathological contexts, such as cancer, in which the epigenome and 3D genome organization are misregulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hierarchical layers of 3D genome organization.
Fig. 2: CTCF, its DNA-binding motif and the impact of 5meC.
Fig. 3: CTCF-mediated regulation of genomic imprints.
Fig. 4: Global DNA methylation and 3D genome dynamics in early mammalian development.
Fig. 5: Methyl-sensitive CTCF site misregulation in cancer.

Similar content being viewed by others

References

  1. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, 1–22 (2010).

    Article  Google Scholar 

  2. Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, 780–788 (2006).

    Article  CAS  Google Scholar 

  3. Lieberman-Aide, E. et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 236, 289–293 (2009).

    Article  ADS  Google Scholar 

  4. Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Briand, N. & Collas, P. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol. 21, 1–25 (2020).

    Article  Google Scholar 

  6. Van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735–3748 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA 112, 4672–4677 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang, C. et al. CTCF binding facilitates oncogenic transcriptional dysregulation. Genome Biol. 21, 1–30 (2020).

    Article  Google Scholar 

  16. Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    Article  PubMed  Google Scholar 

  18. Kim, Y. et al. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2020).

    Article  ADS  Google Scholar 

  19. Li, Y. et al. The structural basis for cohesin–CTCF-anchored loops. Nature 578, 472–476 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arzate-Mejía, R. G., Recillas-Targa, F. & Corces, V. G. Developing in 3D: the role of CTCF in cell differentiation. Development 145, dev137729 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kubo, N. et al. Promoter–proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat. Struct. Mol. Biol. 28, 152–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore, J. M. et al. Loss of maternal CTCF is associated with peri-implantation lethality of CtCf null embryos. PLoS ONE 7, e34915 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kemp, C. J. et al. CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep. 7, 1020–1029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Barisic, D., Stadler, M. B., Iurlaro, M. & Schübeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto, H. et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol. Cell 66, 711–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakahashi, H. et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 3, 1678–1689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng, R. K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Auclair, G., Guibert, S., Bender, A. & Weber, M. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 15, 545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oda, M. et al. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation. PLoS Genet. 9, 1–17 (2013).

    Article  Google Scholar 

  35. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 1–11 (1999).

    Article  Google Scholar 

  37. Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 174, 1–20 (2023).

    Google Scholar 

  41. Chang, L. H. et al. Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and topologically associating domain boundaries. Nat. Commun. 14, 5615 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kreibich, E., Kleinendorst, R., Barzaghi, G., Kaspar, S. & Krebs, A. R. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol. Cell 83, 787–802 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Huang, H. et al. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat. Genet. 53, 1064–1074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sahu, B. et al. Sequence determinants of human gene regulatory elements. Nat. Genet. 54, 283–294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiehle, L. et al. DNA (de)methylation in embryonic stem cells controls CTCF-dependent chromatin boundaries. Genome Res. 29, 750–761 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 2–5 (2000).

    Article  Google Scholar 

  48. Babak, T. et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat. Genet. 47, 544–549 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Llères, D. et al. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol. 20, 1–17 (2019).

    Article  Google Scholar 

  50. Yoon, Y. S. et al. Analysis of the H19ICR insulator. Mol. Cell. Biol. 27, 3499–3510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Court, F. et al. The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus. Epigenetics Chromatin 7, 1–13 (2014).

    Article  Google Scholar 

  53. Battistelli, C., Busanello, A. & Maione, R. Functional interplay between MyoD and CTCF in regulating long-range chromatin interactions during differentiation. J. Cell Sci. 127, 3757–3767 (2014).

    CAS  PubMed  Google Scholar 

  54. Tarjan, D. R., Flavahan, W. A. & Bernstein, B. E. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun. 10, 1–8 (2019).

    Article  CAS  Google Scholar 

  55. Maurano, M. T. et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 12, 1184–1195 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Feldmann, A. et al. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet. 9, e1003994 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Soochit, W. et al. CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells. Nat. Cell Biol. 23, 881–893 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Teif, V. B. et al. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 24, 1285–1295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun, Z. et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep. 3, 567–576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nanan, K. K. et al. TET-catalyzed 5-carboxylcytosine promotes CTCF binding to suboptimal sequences genome-wide. iScience 19, 326–339 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dehingia, B., Milewska, M., Janowski, M. & Pękowska, A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep. 23, 1–22 (2022).

    Article  Google Scholar 

  63. Zhang, Y. et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat. Genet. 50, 96–105 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Chen, X. et al. Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306–310 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Wike, C. L. et al. Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Res. 31, 981–994 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Skvortsova, K. et al. Retention of paternal DNA methylome in the developing zebrafish germline. Nat. Commun. 10, 1–13 (2019).

    Article  CAS  Google Scholar 

  67. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells Jing. Nat. Genet. 47, 469–478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hassan-Zadeh, V., Rugg-Gunn, P. & Bazett-Jones, D. P. DNA methylation is dispensable for changes in global chromatin architecture but required for chromocentre formation in early stem cell differentiation. Chromosoma 126, 605–614 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat. Commun. 8, 1667 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 8, 1–35 (2016).

    Article  CAS  Google Scholar 

  72. Fiorentino, F. P. & Giordano, A. The tumor suppressor role of CTCF. J. Cell. Physiol. 227, 479–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Fang, C. et al. Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation. Genome Biol. 21, 1–30 (2020).

    Article  Google Scholar 

  74. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575, 229–233 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Steinhäuser, S. et al. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia 37, 134–142 (2023).

    Article  PubMed  Google Scholar 

  77. Rodriguez, C. et al. CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem. Biophys. Res. Commun. 392, 129–134 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Cui, H. et al. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 62, 6442–6446 (2002).

    CAS  PubMed  Google Scholar 

  79. Tian, F. et al. Loss of imprinting of IGF2 correlates with hypomethylation of the H19 differentially methylated region in the tumor tissue of colorectal cancer patients. Mol. Med. Rep. 5, 1536–1540 (2012).

    CAS  PubMed  Google Scholar 

  80. Takai, D., Gonzales, F. A., Tsai, Y. C., Thayer, M. J. & Jones, P. A. Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum. Mol. Genet. 10, 2619–2626 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Ulaner, G. A. et al. Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum. Mol. Genet. 12, 535–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47, 1179–1186 (2016).

    Article  Google Scholar 

  83. Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and Polycomb proteins in genome organization. Cell Stem Cell 13, 602–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Blackledge, N. P. et al. PRC1 catalytic activity is central to polycomb system function. Mol. Cell 77, 857–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, X. et al. Large DNA methylation nadirs anchor chromatin loops maintaining hematopoietic stem cell identity. Mol. Cell 78, 506–521 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rhodes, J. D. P. et al. Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells. Cell Rep. 30, 820–835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kraft, K. et al. Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proc. Natl Acad. Sci. USA 119, 1–10 (2022).

    Article  Google Scholar 

  88. Li, Y. et al. Genome-wide analyses reveal a role of polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 19, 1–16 (2018).

    Article  CAS  Google Scholar 

  89. Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Statham, A. L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Buitrago, D. et al. Impact of DNA methylation on 3D genome structure. Nat. Commun. 12, 3243 (2021).

  93. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains. Nat. Genet. 44, 40–46 (2015).

    Article  Google Scholar 

  95. Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Y, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj22239 (2017).

    Google Scholar 

  97. Kaluscha, S., Domcke, S., Wirbelauer, C., Burger, L. & Schübeler, D. Direct inhibition of transcription factor binding is the dominant mode of gene and repeat repression by DNA methylation. Nat. Genet. 54, 1895–1906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Monteagudo-Sánchez, A., Albert, J. R., Scarpa, M., Noordermeer, D. & Greenberg, M. V. C. The embryonic DNA methylation program modulates the cis-regulatory landscape via CTCF antagonism. Preprint at biorXiv https://doi.org/10.1101/2023.11.16.567349 (2023).

    Article  Google Scholar 

  99. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schoenfelder, S., Javierre, B. M., Furlan-Magaril, M., Wingett, S. W. & Fraser, P. Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. J. Vis. Exp. 2018, 1–17 (2018).

    Google Scholar 

  101. Davies, J. O. J. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hsieh, T. H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Luan, J. et al. Distinct properties and functions of CTCF revealed by a rapidly inducible degron system. Cell Rep. 34, 108783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Policarpi, C., Dabin, J. & Hackett, J. A. Epigenetic editing: dissecting chromatin function in context. BioEssays 43, 1–16 (2021).

    Article  Google Scholar 

  108. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Policarpi, C., Munafò, M., Tsagkris, S., Carlini, V. & Hackett, J. A. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat. Genet. (in the press).

Download references

Acknowledgements

Work in the Greenberg group is supported by the European Research Council (ERC-StG-2019 DyNAmecs), a Laboratoire d’excellence Who Am I? (Labex 11-LABX-0071) Emerging Teams Grant and funds from the Agence National de Recherche (ANR, project ANR-21-CE12-0015-03). A.M.S. is supported by FRM (SPF202004011789) and ARC (ARCPDF12020070002563) postdoctoral fellowships. Work in the Noordermeer group is supported by funds from the ANR (projects ANR-21-CE12-0034-01, ANR-22-CE12-0016-03 and ANR-22-CE14-0021-02) and PlanCancer (19CS145-00).

Author information

Authors and Affiliations

Authors

Contributions

A.M.-S., D.N. and M.V.C.G. jointly conceived, wrote and edited this Review.

Corresponding author

Correspondence to Maxim V. C. Greenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Ozren Bogdanović and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Carolina Perdigoto, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteagudo-Sánchez, A., Noordermeer, D. & Greenberg, M.V.C. The impact of DNA methylation on CTCF-mediated 3D genome organization. Nat Struct Mol Biol 31, 404–412 (2024). https://doi.org/10.1038/s41594-024-01241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-024-01241-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing