Chromatin structure

Definition

Chromatin structure describes the physical structure of chromatin within the eukaryotic nucleus and how structure affects chromatin processes such as transcription. The repeating unit of chromatin, the nucleosome, consists of approximately 147 base pairs of DNA wrapped around eight histone protein cores. Linker DNA, upwards of 80 base pairs long, connects two histones between each nucleosome core unit.

Featured

Latest Research and Reviews

  • Research | | open

    Heat Shock Factor 1 (HSF1) is a regulator of stress-induced transcription. Here, the authors investigate changes to transcription and chromatin organization upon stress and find that activated HSF1 binds to transcription-primed promoters and enhancers, and to CTCF occupied, untranscribed chromatin.

    • Anniina Vihervaara
    • , Dig Bijay Mahat
    • , Michael J. Guertin
    • , Tinyi Chu
    • , Charles G. Danko
    • , John T. Lis
    •  & Lea Sistonen
  • Research |

    Hanssen et al. show that CTCF–cohesin binding sites at the α-globin gene cluster function as boundaries to restrict the interaction of enhancers with the flanking chromatin, thus preventing abnormal gene expression.

    • Lars L. P. Hanssen
    • , Mira T. Kassouf
    • , A. Marieke Oudelaar
    • , Daniel Biggs
    • , Chris Preece
    • , Damien J. Downes
    • , Matthew Gosden
    • , Jacqueline A. Sharpe
    • , Jacqueline A. Sloane-Stanley
    • , Jim R. Hughes
    • , Benjamin Davies
    •  & Douglas R. Higgs
    Nature Cell Biology 19, 952–961
  • Research | | open

    Chromatin neighbourhoods, formed by CTCF, have been proposed to isolate enhancers and their target genes from other regulatory elements. Here, the authors provide evidence that while CTCF binding does regulates mammary-specific super-enhancers, CTCF sites are relatively porous borders.

    • M. Willi
    • , K. H. Yoo
    • , F. Reinisch
    • , T. M. Kuhns
    • , H. K. Lee
    • , C. Wang
    •  & L. Hennighausen
  • Research |

    A low-input Hi-C method is used to show that chromatin organization is markedly relaxed in pre-implantation mouse embryos after fertilization and that the subsequent maturation of 3D chromatin architecture is surprisingly slow.

    • Zhenhai Du
    • , Hui Zheng
    • , Bo Huang
    • , Rui Ma
    • , Jingyi Wu
    • , Xianglin Zhang
    • , Jing He
    • , Yunlong Xiang
    • , Qiujun Wang
    • , Yuanyuan Li
    • , Jing Ma
    • , Xu Zhang
    • , Ke Zhang
    • , Yang Wang
    • , Michael Q. Zhang
    • , Juntao Gao
    • , Jesse R. Dixon
    • , Xiaowo Wang
    • , Jianyang Zeng
    •  & Wei Xie
    Nature 547, 232–235
  • Research | | open

    Chromatin looping plays an important role in gene regulation and the ability to manipulate loops would aid in understanding how this occurs. Here the authors present CLOuD9, a system that uses dimerized Cas9 complexes to selectively and reversibly establish chromatin loops.

    • Stefanie L. Morgan
    • , Natasha C. Mariano
    • , Abel Bermudez
    • , Nicole L. Arruda
    • , Fangting Wu
    • , Yunhai Luo
    • , Gautam Shankar
    • , Lin Jia
    • , Huiling Chen
    • , Ji-Fan Hu
    • , Andrew R. Hoffman
    • , Chiao-Chain Huang
    • , Sharon J. Pitteri
    •  & Kevin C. Wang
  • Research |

    HP1a can nucleate into foci that display liquid properties during the early stages of heterochromatin domain formation in Drosophila embryos, suggesting that the repressive action of heterochromatin may be mediated in part by emergent properties of phase separation.

    • Amy R. Strom
    • , Alexander V. Emelyanov
    • , Mustafa Mir
    • , Dmitry V. Fyodorov
    • , Xavier Darzacq
    •  & Gary H. Karpen
    Nature 547, 241–245

News and Comment