Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structures of the ATP release channel pannexin 1

Abstract

The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrophysiology and cryo-EM reconstruction of xPANX1.
Fig. 2: Structure of xPANX1.
Fig. 3: Pore architecture and electrostatic properties.
Fig. 4: Comparison of cryo-EM reconstructions of human and frog PANX1.
Fig. 5: Inter-subunit interface.
Fig. 6: Structural comparison of the extended 4-TM family of channels.

Similar content being viewed by others

Data availability

The cryo-EM maps of hPANX1 and xPANX1 have been deposited in the Electron Microscopy Data Bank with accession codes EMD-21071 and EMD-20964. Atomic coordinates for hPANX1 and xPANX1 structures have been deposited in the Protein Data Bank with accession codes 6V6D and 6UZY. Source data for Fig. 1a–d and Extended Data Figs. 2a, 4a and 5 are available with the paper online.

References

  1. Chiu, Y. H., Schappe, M. S., Desai, B. N. & Bayliss, D. A. Revisiting multimodal activation and channel properties of pannexin 1. J. Gen. Physiol. 150, 19–39 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dahl, G. The pannexin1 membrane channel: distinct conformations and functions. FEBS Lett. 592, 3201–3209 (2018).

    CAS  PubMed  Google Scholar 

  3. Chekeni, F. B. et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Qu, Y. et al. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186, 6553–6561 (2011).

    CAS  PubMed  Google Scholar 

  5. Billaud, M. et al. Pannexin1 regulates α1-adrenergic receptor-mediated vasoconstriction. Circ. Res. 109, 80–85 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Billaud, M. et al. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci. Signal. 8, ra17 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Penuela, S. et al. Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J. Biol. Chem. 287, 29184–29193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Furlow, P. W. et al. Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival. Nat. Cell Biol. 17, 943–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mousseau, M. et al. Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Sci. Adv. 4, eaas9846 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dossi, E. et al. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci. Transl. Med. 10, eaar3796 (2018).

    PubMed  Google Scholar 

  11. Thompson, R. J. et al. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322, 1555–1559 (2008).

    CAS  PubMed  Google Scholar 

  12. Gulbransen, B. D. et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat. Med. 18, 600–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Karatas, H. et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339, 1092–1095 (2013).

    CAS  PubMed  Google Scholar 

  14. Weaver, J. L. et al. Hematopoietic pannexin 1 function is critical for neuropathic pain. Sci. Rep. 7, 42550 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sang, Q. et al. A pannexin 1 channelopathy causes human oocyte death. Sci. Transl. Med. 11, eaav8731 (2019).

    PubMed  Google Scholar 

  16. Sandilos, J. K. & Bayliss, D. A. Physiological mechanisms for the modulation of pannexin 1 channel activity. J. Physiol. 590, 6257–6266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Locovei, S., Wang, J. & Dahl, G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580, 239–244 (2006).

    CAS  PubMed  Google Scholar 

  18. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Iglesias, R. et al. P2X7 receptor-pannexin1 complex: pharmacology and signaling. Am. J. Physiol. - Cell Physiol. 295, C752–C760 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lohman, A. W. et al. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nat. Commun. 6, 7965 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Weilinger, N. L., Tang, P. L. & Thompson, R. J. Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J. Neurosci. 32, 12579–12588 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Silverman, W. R. et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J. Biol. Chem. 284, 18143–18151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, J. et al. The membrane protein pannexin1 forms two open-channel conformations depending on the mode of activation. Sci. Signal. 7, ra69 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Qiu, F., Wang, J., Spray, D. C., Scemes, E. & Dahl, G. Two non-vesicular ATP release pathways in the mouse erythrocyte membrane. FEBS Lett. 585, 3430–3435 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandilos, J. K. et al. Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J. Biol. Chem. 287, 11303–11311 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiu, Y. H. et al. A quantized mechanism for activation of pannexin channels. Nat. Commun. 8, 14324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sridharan, M. et al. Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am. J. Physiol. Heart Circ. Physiol. 299, H1146–H1152 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bao, L., Locovei, S. & Dahl, G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett. 572, 65–68 (2004).

    CAS  PubMed  Google Scholar 

  29. Locovei, S., Bao, L. & Dahl, G. Pannexin 1 in erythrocytes: function without a gap. Proc. Natl Acad. Sci. USA 103, 7655–7659 (2006).

    CAS  PubMed  Google Scholar 

  30. Bruzzone, R., Hormuzdi, S. G., Barbe, M. T., Herb, A. & Monyer, H. Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl Acad. Sci. USA 100, 13644–13649 (2003).

    CAS  PubMed  Google Scholar 

  31. Michalski, K., Henze, E., Nguyen, P., Lynch, P. & Kawate, T. The weak voltage dependence of pannexin 1 channels can be tuned by N-terminal modifications. J. Gen. Physiol. 150, 1758–1768 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson, R. J., Zhou, N. & MacVicar, B. A. Ischemia opens neuronal gap junction hemichannels. Science 312, 924–927 (2006).

    CAS  PubMed  Google Scholar 

  33. Ma, W. et al. Pannexin 1 forms an anion-selective channel. Pflugers Arch. 463, 585–592 (2012).

    CAS  PubMed  Google Scholar 

  34. Romanov, R. A. et al. The ATP permeability of pannexin 1 channels in a heterologous system and in mammalian taste cells is dispensable. J. Cell Sci. 125, 5514–5523 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiu, Y. H., Ravichandran, K. S. & Bayliss, D. A. Intrinsic properties and regulation of pannexin 1 channel. Channels 8, 103–109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nielsen, B. S. et al. Pannexin 1 activation and inhibition is permeant-selective. J. Physiol. 598, 361–379 (2019).

  37. Boassa, D. et al. Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J. Biol. Chem. 282, 31733–31743 (2007).

    CAS  PubMed  Google Scholar 

  38. Epp, A. L. et al. A novel motif in the proximal C-terminus of pannexin 1 regulates cell surface localization. Sci. Rep. 9, 9721 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Michalski, K. & Kawate, T. Carbenoxolone inhibits pannexin1 channels through interactions in the first extracellular loop. J. Gen. Physiol. 147, 165–174 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Qiu, F. & Dahl, G. A permeant regulating its permeation pore: Inhibition of pannexin 1 channels by ATP. Am. J. Physiol. Cell Physiol. 296, C250–C255 (2009).

    CAS  PubMed  Google Scholar 

  41. Boyce, A. K. J. & Swayne, L. A. P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization. Biochem. J. 474, 2133–2144 (2017).

    CAS  PubMed  Google Scholar 

  42. Michalski, K. et al. The cryo-EM structure of a pannexin 1 reveals unique motifs for ion selection and inhibition. eLife 9, e54670 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Maeda, S. et al. Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458, 597–602 (2009).

    CAS  PubMed  Google Scholar 

  44. Oshima, A., Tani, K. & Fujiyoshi, Y. Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat. Commun. 7, 13681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Deneka, D., Sawicka, M., Lam, A. K. M., Paulino, C. & Dutzler, R. Structure of a volume-regulated anion channel of the LRRC8 family. Nature 558, 254–259 (2018).

    CAS  PubMed  Google Scholar 

  46. Wang, J. & Dahl, G. SCAM analysis of Panx1 suggests a peculiar pore structure. J. Gen. Physiol. 136, 515–527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

  50. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  51. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  53. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  56. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996). 376.

    CAS  PubMed  Google Scholar 

  57. Schnorf, M., Potrykus, I. & Neuhaus, G. Microinjection technique: routine system for characterization of microcapillaries by bubble pressure measurement. Exp. Cell. Res. 210, 260–267 (1994).

    CAS  PubMed  Google Scholar 

  58. Lee, S. Y., Letts, J. A. & MacKinnon, R. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc. Natl Acad. Sci. USA 105, 7692–7695 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by startup funds from the Washington University School of Medicine (to P.Y.). M.J.R and J.A.J.F are supported by the Washington University Center for Cellular Imaging, which is funded in part by the Washington University School of Medicine through the Precision Medicine Initiative, the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813) and the Foundation for Barnes-Jewish Hospital (3770).

Author information

Authors and Affiliations

Authors

Contributions

Z.D., Z.H. and R.M.B. performed biochemical preparations, cryo-EM data processing, structural determination and analysis. G.M. conducted electrophysiology experiments. M.R., J.A.J.F., Z.D. and Z.H. collected cryo-EM data. Z.H. performed the crosslinking experiments. P.Y. designed and supervised the project. Z.D., Z.H., G.M. and P.Y. analyzed the results and prepared the manuscript with input from all authors. Correspondence and requests for materials should be addressed to P.Y.

Corresponding author

Correspondence to Peng Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer reviewer reports are available. Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CBX inhibition of the wild-type xPANX1 and mutants in excised inside-out membrane patches.

a,b, Current-voltage relationship of wild-type xPANX1 in symmetrical NaCl (a) and KCl (b) in the absence (black) and presence (gray) of 100 µM CBX. c-e, Current-voltage relationship of the W74A (c), R75A (d), and D81A (e) mutants in symmetrical NaCl in the absence (black) and presence (gray) of 100 µM CBX.

Extended Data Fig. 2 Cryo-EM reconstruction of xPANX1.

a, Purification of xPANX1 on size-exclusion chromatography. Fractions of the monodisperse channel peak were shown in SDS-PAGE (inset). The uncropped gel image is available as source data. b, Flowchart of cryo-EM image processing. c, Fourier shell correlation before and after post-processing in RELION3. d, Fourier shell correlation between the refined model and the full map. e, Cryo-EM density map colored by local resolution in the range of 3.0-4.0 Å. f, Angular distribution plot of particles used in the final reconstruction. Only one-seventh of the sphere is shown owing to applied C7 symmetry.

Source data

Extended Data Fig. 3 Cryo-EM density map of xPANX1.

Cryo-EM density for an entire channel subunit as well as for selected regions is shown as blue mesh. Residues forming disulfide bonds are highlighted.

Extended Data Fig. 4 Cryo-EM reconstruction of human PANX1.

a, Purification of hPANX1 on size-exclusion chromatography. Fractions of the monodisperse channel peak were shown in SDS-PAGE (inset) and protein samples used for cryo-EM were indicated. The uncropped gel image is available as source data. b, Flowchart of cryo-EM image processing. c, Fourier shell correlation before and after post-processing in RELION3. d, Fourier shell correlation between the refined model and the full map. e, Cryo-EM density map colored by local resolution in the range of 3.5-6.0 Å. f, Angular distribution plot of particles used in the final reconstruction.

Source data

Extended Data Fig. 5 Crosslinking of PANX1 channels.

a, SDS-PAGE showing crosslinking of purified hPANX1 and xPANX1 proteins expressed in yeast P. pastoris. A ladder of seven distinct oligomers was detected at a medium concentration of crosslinking reagent disuccinimidyl suberate (DSS, 250 μM). At high concentrations of DSS, both xPANX1 and hPANX1 were primarily crosslinked to heptamers. Numbers on the right indicate numbers of crosslinked subunits. b, Western blots showing crosslinking of hPANX1 in the plasma membranes of mammalian cells (HEK293S). With 75 μM DSS, a ladder of crosslinked oligomers up to heptamer was observed. At high concentrations of DSS, hPANX1 protein is crosslinked to heptamers and even larger size assemblies. Uncropped images are available as source data.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical source data

Source Data Extended Data Fig. 2

Full-length unprocessed SDS-PAGE gel

Source Data Extended Data Fig. 4

Full-length unprocessed SDS-PAGE gel

Source Data Extended Data Fig. 5

Full-length unprocessed SDS-PAGE gel and western blots

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., He, Z., Maksaev, G. et al. Cryo-EM structures of the ATP release channel pannexin 1. Nat Struct Mol Biol 27, 373–381 (2020). https://doi.org/10.1038/s41594-020-0401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0401-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing