Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of ligand–receptor pairs that drive human astrocyte development

Abstract

Extrinsic signaling between diverse cell types is crucial for nervous system development. Ligand binding is a key driver of developmental processes. Nevertheless, it remains a significant challenge to disentangle which and how extrinsic signals act cooperatively to affect changes in recipient cells. In the developing human brain, cortical progenitors transition from neurogenesis to gliogenesis in a stereotyped sequence that is in part influenced by extrinsic ligands. Here we used published transcriptomic data to identify and functionally test five ligand–receptor pairs that synergistically drive human astrogenesis. We validate the synergistic contributions of TGFβ2, NLGN1, TSLP, DKK1 and BMP4 ligands on astrocyte development in both hCOs and primary fetal tissue. We confirm that the cooperative capabilities of these five ligands are greater than their individual capacities. Additionally, we discovered that their combinatorial effects converge in part on the mTORC1 signaling pathway, resulting in transcriptomic and morphological features of astrocyte development. Our data-driven framework can leverage single-cell and bulk genomic data to generate and test functional hypotheses surrounding cell–cell communication regulating neurodevelopmental processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational identification of candidate gliogenic signals.
Fig. 2: Exposure to five ligand cocktails induces astrocyte gene expression.
Fig. 3: Ligand activity depends on the hCO developmental stage.
Fig. 4: Synergistic and individual contributions of ligands.
Fig. 5: Impact of candidate ligand exposures on human fetal cells.
Fig. 6: Impact of candidate ligand exposures on neural stem cell fate.
Fig. 7: Phosphoproteomic changes in ligand-treated hCOs.

Similar content being viewed by others

Data availability

All data generated in this work are available through GEO accession number (GSE213245). All scripts generated are available without restrictions upon request and at GitHub site below. Source data are provided with this paper.

Code availability

https://github.com/sloanlab-emory/voss-and-lanjewar-et-al-2023

References

  1. Holguera, I. & Desplan, C. Neuronal specification in space and time. Science 362, 176–180 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kohwi, M. & Doe, C. Q. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Cooper, J. A. Mechanisms of cell migration in the nervous system. J. Cell Biol. 202, 725–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity glia. Nature 468, 223–231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chung, W.-S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Sancho, L., Contreras, M. & Allen, N. J. Glia as sculptors of synaptic plasticity. Neurosci. Res. 167, 17–29 (2021).

    CAS  PubMed  Google Scholar 

  7. Allen, N. J. & Barres, B. A. Neuroscience: glia—more than just brain glue. Nature 457, 675–677 (2009).

    CAS  PubMed  Google Scholar 

  8. Freeman, M. R. & Rowitch, D. H. Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80, 613–623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller, F. D. & Gauthier, A. S. Timing is everything: making neurons versus glia in the developing cortex. Neuron 54, 357–369 (2007).

    CAS  PubMed  Google Scholar 

  11. Howard, B. M. et al. Radial glia cells in the developing human brain. Neuroscientist 14, 459–473 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Nakashima, K. et al. Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J. Neurosci. 19, 5429–5434 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Namihira, M. & Nakashima, K. Mechanisms of astrocytogenesis in the mammalian brain.Curr. Opin. Neurobiol. 23, 921–927 (2013).

    CAS  PubMed  Google Scholar 

  14. Namihira, M. et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell 16, 245–255 (2009).

    CAS  PubMed  Google Scholar 

  15. Nakashima, K. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284, 479–482 (1999).

    CAS  PubMed  Google Scholar 

  16. Urayama, S. et al. Chromatin accessibility at a STAT3 target site is altered prior to astrocyte differentiation. Cell Struct. Funct. 38, 55–66 (2013).

    CAS  PubMed  Google Scholar 

  17. Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).

    CAS  PubMed  Google Scholar 

  18. Kang, P. et al. Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74, 79–94 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Freeman, M. R. Specification and morphogenesis of astrocytes. Science 330, 774–778 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tchieu, J. et al. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nat. Biotechnol. 37, 267–275 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Neyrinck, K. et al. SOX9-induced generation of functional astrocytes supporting neuronal maturation in an all-human system. Stem Cell Rev. Rep. 17, 1855–1873 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X. et al. Fast generation of functional subtype astrocytes from human pluripotent stem cells. Stem Cell Rep. 11, 998–1008 (2018).

    CAS  Google Scholar 

  23. Tiwari, N. et al. Stage-specific transcription factors drive astrogliogenesis by remodeling gene regulatory landscapes. Cell Stem Cell 23, 557–571 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong, S. & Song, M.-R. STAT3 but not STAT1 is required for astrocyte differentiation. PLoS ONE 9, e86851 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Lattke, M. et al. Extensive transcriptional and chromatin changes underlie astrocyte maturation in vivo and in culture. Nat. Commun. 12, 4335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwon, I.-S. et al. Expression of disabled 1 suppresses astroglial differentiation in neural stem cells. Mol. Cell. Neurosci. 40, 50–61 (2009).

    CAS  PubMed  Google Scholar 

  27. Sun, Y. et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376 (2001).

    CAS  PubMed  Google Scholar 

  28. Morrow, T., Song, M. R. & Ghosh, A. Sequential specification of neurons and glia by developmentally regulated extracellular factors. Development 128, 3585–3594 (2001).

    CAS  PubMed  Google Scholar 

  29. Molofsky, A. V. et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 26, 891–907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Barnabé-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    PubMed  Google Scholar 

  31. Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840–855 (2011).

    CAS  PubMed  Google Scholar 

  32. Caja, L. et al. Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells. Oncogene 37, 2515–2531 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gomes, W. A., Mehler, M. F. & Kessler, J. A. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev. Biol. 255, 164–177 (2003).

    CAS  PubMed  Google Scholar 

  34. Nakashima, K., Yanagisawa, M., Arakawa, H. & Taga, T. Astrocyte differentiation mediated by LIF in cooperation with BMP2. FEBS Lett. 457, 43–46 (1999).

    CAS  PubMed  Google Scholar 

  35. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    CAS  PubMed  Google Scholar 

  36. Bonaguidi, M. A. et al. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 132, 5503–5514 (2005).

    CAS  PubMed  Google Scholar 

  37. Stipursky, J. & Gomes, F. C. A. TGF-β1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia 55, 1023–1033 (2007).

    PubMed  Google Scholar 

  38. Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758 (2001).

    CAS  PubMed  Google Scholar 

  39. Derouet, D. et al. Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc. Natl Acad. Sci. USA 101, 4827–4832 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fukuda, S. et al. Potentiation of astrogliogenesis by STAT3-mediated activation of bone morphogenetic protein-Smad signaling in neural stem cells. Mol. Cell. Biol. 27, 4931–4937 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sloan, S. A. & Barres, B. A. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr. Opin. Neurobiol. 27, 75–81 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Polioudakis, D. et al. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron 103, 785–801 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fan, X. et al. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Res. 28, 730–745 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods, https://doi.org/10.1038/s41592-019-0667-5 (2019).

    Article  PubMed  Google Scholar 

  46. Li, J. et al. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia 67, 1571–1597 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Barbar, L. et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron 107, 436–453 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, B., Zuo, Y. & Jiang, R. Astrocyte morphology: diversity, plasticity, and role in neurological diseases. CNS Neurosci. Ther. 25, 665–673 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pruszak, J., Ludwig, W., Blak, A., Alavian, K. & Isacson, O. CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 27, 2928–2940 (2009).

    CAS  PubMed  Google Scholar 

  53. Blair, J. D., Hockemeyer, D. & Bateup, H. S. Genetically engineered human cortical spheroid models of tuberous sclerosis. Nat. Med. 24, 1568–1578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Banerjee, S., Crouse, N. R., Emnett, R. J., Gianino, S. M. & Gutmann, D. H. Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc. Natl Acad. Sci. USA 108, 15996–16001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Methot, L. et al. Nuclear factor-kappaB regulates multiple steps of gliogenesis in the developing murine cerebral cortex. Glia 66, 2659–2672 (2018).

    PubMed  Google Scholar 

  56. Magri, L. et al. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9, 447–462 (2011).

    CAS  PubMed  Google Scholar 

  57. Grabole, N. et al. Genomic analysis of the molecular neuropathology of tuberous sclerosis using a human stem cell model. Genome Med. 8, 94 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Weiss, A. & Attisano, L. The TGFβ superfamily signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2, 47–63 (2013).

    CAS  PubMed  Google Scholar 

  59. Guo, X. & Wang, X.-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res 19, 71–88 (2009).

    CAS  PubMed  Google Scholar 

  60. Niida, A. et al. DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway. Oncogene 23, 8520–8526 (2004).

    CAS  PubMed  Google Scholar 

  61. Yu, X. et al. The autoimmune encephalitis-related cytokine TSLP in the brain primes neuroinflammation by activating the JAK2-NLRP3 axis. Clin. Exp. Immunol. 207, 113–122 (2021).

    PubMed Central  Google Scholar 

  62. Südhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54, 1698–1714 (2021).

    CAS  PubMed  Google Scholar 

  64. Peng, Q. et al. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging (Albany NY) 11, 11520–11540 (2019).

    CAS  PubMed  Google Scholar 

  65. Kim, B.-R. et al. Dickkopf-1 (DKK-1) interrupts FAK/PI3K/mTOR pathway by interaction of carbonic anhydrase IX (CA9) in tumorigenesis. Cell. Signal. 24, 1406–1413 (2012).

    CAS  PubMed  Google Scholar 

  66. Xing, X. et al. Suppression of Akt-mTOR pathway rescued the social behavior in Cntnap2-deficient mice. Sci. Rep. 9, 3041 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Khoutorsky, A. et al. Translational control of nociception via 4E-binding protein 1. eLife 4, e12002 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    CAS  PubMed  Google Scholar 

  70. Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Sloan Laboratory for helpful discussion and A. Erwood (Emory Department of Neurosurgery) for his contributions to early ligand identification. We would also like to thank J. Lee for his support with AWS management and usage. This study was supported by the National Institute of Health under grants R01MH125956 and R01NS123562 (to S.A.S.), and Brain and Behavior NARSAD Young Investigator Award. A.V. is supported by the Barry Goldwater Scholarship and the Emory IMSD program.

Author information

Authors and Affiliations

Authors

Contributions

A.J.V. and S.A.S. designed all experiments and performed NicheNet analysis. A.J.V. and S.N.L. performed ligand exposures. A.J.V., S.N.L., A.K. and A.S. performed hiPSC cultures, organoid formation and maintenance. A.J.V., S.N.L., M.M.S., E.H. and C.S. assisted with fetal tissue preparations and experimental procedures. S.N.L. designed and performed immunoblotting assays with input from T.N.B. and J.M.S. Bioinformatic processing was performed by A.J.V. and S.N.L. A.J.V., S.N.L. and S.A.S. wrote the manuscript with input from all contributing authors.

Corresponding author

Correspondence to Steven A. Sloan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Omer Ali Bayraktar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Note.

Reporting Summary

Supplementary Tables

Supplementary Table 1: List of human astrocyte genes. Supplementary Table 2: List of candidate ligands. Supplementary Table 3: Concentration of candidate ligands. Supplementary Table 4: Targeted RNA-seq gene panel. Supplementary Table 5: List of neuronal and astrocyte signature genes.

Supplementary Data 1

Statistical supporting data for Supplementary Fig. 5.

Supplementary Data 2

Statistical supporting data for Supplementary Fig. 6.

Supplementary Data 3

Statistical supporting data for Supplementary Fig. 7.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, A.J., Lanjewar, S.N., Sampson, M.M. et al. Identification of ligand–receptor pairs that drive human astrocyte development. Nat Neurosci 26, 1339–1351 (2023). https://doi.org/10.1038/s41593-023-01375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01375-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing