Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders

Abstract

The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential interactions between neurological and immunological phenotypes in MIA offspring.

Similar content being viewed by others

References

  1. Parenti, I., Rabaneda, L. G., Schoen, H. & Novarino, G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 43, 608–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Chess, S. Autism in children with congenital rubella. J. Autism Child Schizophr. 1, 33–47 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, A. S. et al. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol. Psychiatry 49, 473–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, A. S. & Susser, E. S. In utero infection and adult schizophrenia. Ment. Retard Dev. Disabil. Res. Rev. 8, 51–57 (2002).

    Article  PubMed  Google Scholar 

  5. Brown, A. S. et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch. Gen. Psychiatry 61, 774–780 (2004).

    Article  PubMed  Google Scholar 

  6. Brown, A. S. Prenatal infection as a risk factor for schizophrenia. Schizophr. Bull. 32, 200–202 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee, B. K. et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav. Immun. 44, 100–105 (2015).

    Article  PubMed  Google Scholar 

  8. Kwon, H. K., Choi, G. B. & Huh, J. R. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol. 43, 230–244 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Firestein, M. R. et al. Assessment of neurodevelopment in infants with and without exposure to asymptomatic or mild maternal SARS-CoV-2 infection during pregnancy. JAMA Netw. Open 6, e237396 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Edlow, A. G., Castro, V. M., Shook, L. L., Kaimal, A. J. & Perlis, R. H. Neurodevelopmental outcomes at 1 year in infants of mothers who tested positive for SARS-CoV-2 during pregnancy. JAMA Netw. Open 5, e2215787 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shook, L. L., Sullivan, E. L., Lo, J. O., Perlis, R. H. & Edlow, A. G. COVID-19 in pregnancy: implications for fetal brain development. Trends Mol. Med. 28, 319–330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, S. E., Li, J., Garbett, K., Mirnics, K. & Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer, U. et al. Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology 33, 441–456 (2008).

    Article  PubMed  Google Scholar 

  14. Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26, 146–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rieger, N. S., Ng, A. J., Lee, S., Brady, B. H. & Christianson, J. P. Maternal immune activation alters social affective behavior and sensitivity to corticotropin releasing factor in male but not female rats. Horm. Behav. 149, 105313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalish, B. T. et al. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat. Neurosci. 24, 204–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsiao, E. Y. & Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 25, 604–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Ben-Yehuda, H. et al. Maternal type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol. Psychiatry 25, 1050–1067 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Mirabella, F. et al. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 54, 2611–2631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rudolph, M. D. et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci. 21, 765–772 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

    Article  PubMed  Google Scholar 

  23. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lammert, C. R. et al. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol. 201, 845–850 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Bauman, M. D. et al. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol. Psychiatry 75, 332–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Machado, C. J., Whitaker, A. M., Smith, S. E., Patterson, P. H. & Bauman, M. D. Maternal immune activation in nonhuman primates alters social attention in juvenile offspring. Biol. Psychiatry 77, 823–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ramirez-Celis, A. et al. Maternal autoantibody profiles as biomarkers for ASD and ASD with co-occurring intellectual disability. Mol. Psychiatry 27, 3760–3767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leach, J. L. et al. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J. Immunol. 157, 3317–3322 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Braunschweig, D. et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl. Psychiatry 3, e277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brimberg, L. et al. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol. Psychiatry 21, 1663–1671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramaekers, V. T., Quadros, E. V. & Sequeira, J. M. Role of folate receptor autoantibodies in infantile autism. Mol. Psychiatry 18, 270–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Mazon-Cabrera, R., Liesenborgs, J., Brone, B., Vandormael, P. & Somers, V. Novel maternal autoantibodies in autism spectrum disorder: Implications for screening and diagnosis. Front Neurosci. 17, 1067833 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Money, J., Bobrow, N. A. & Clarke, F. C. Autism and autoimmune disease: a family study. J. Autism Child Schizophr. 1, 146–160 (1971).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, S. et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 55, 322–332 (2015).

    Article  PubMed  Google Scholar 

  35. Comi, A. M., Zimmerman, A. W., Frye, V. H., Law, P. A. & Peeden, J. N. Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J. Child Neurol. 14, 388–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen, T. C. et al. Association of maternal autoimmune disease with attention-deficit/hyperactivity disorder in children. JAMA Pediatr. 175, e205487 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Croen, L. A. et al. Family history of immune conditions and autism spectrum and developmental disorders: findings from the study to explore early development. Autism Res. 12, 123–135 (2019).

    Article  PubMed  Google Scholar 

  38. Zerbo, O. et al. Immune mediated conditions in autism spectrum disorders. Brain Behav. Immun. 46, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brembilla, N. C., Senra, L. & Boehncke, W. H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front. Immunol. 9, 1682 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rendon, A. & Schakel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 20, 1475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sadik, A. et al. Parental inflammatory bowel disease and autism in children. Nat. Med. 28, 1406–1411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel, S. et al. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl. Psychiatry 10, 286 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gong, T. et al. Parental asthma and risk of autism spectrum disorder in offspring: a population and family-based case–control study. Clin. Exp. Allergy 49, 883–891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwartzer, J. J., Careaga, M., Chang, C., Onore, C. E. & Ashwood, P. Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice. Transl. Psychiatry 5, e543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siniscalco, D., Schultz, S., Brigida, A. L. & Antonucci, N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals 11, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. DiStasio, M. M., Nagakura, I., Nadler, M. J. & Anderson, M. P. T lymphocytes and cytotoxic astrocyte blebs correlate across autism brains. Ann. Neurol. 86, 885–898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Kesteren, C. F. et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl. Psychiatry 7, e1075 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ashwood, P. et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 25, 40–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Croonenberghs, J., Bosmans, E., Deboutte, D., Kenis, G. & Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology 45, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Molloy, C. A. et al. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol. 172, 198–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Li, X. et al. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 207, 111–116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, L. J. et al. Gut microbiota and plasma cytokine levels in patients with attention-deficit/hyperactivity disorder. Transl. Psychiatry 12, 76 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Oades, R. D., Myint, A. M., Dauvermann, M. R., Schimmelmann, B. G. & Schwarz, M. J. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: an exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav. Brain Funct. 6, 32 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ermakov, E. A., Melamud, M. M., Buneva, V. N. & Ivanova, S. A. Immune system abnormalities in schizophrenia: an integrative view and translational perspectives. Front. Psychiatry 13, 880568 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Frydecka, D. et al. Interleukin-6: the missing element of the neurocognitive deterioration in schizophrenia? The focus on genetic underpinnings, cognitive impairment and clinical manifestation. Eur. Arch. Psychiatry Clin. Neurosci. 265, 449–459 (2015).

    PubMed  Google Scholar 

  56. Al-Ayadhi, L. Y. & Mostafa, G. A. Elevated serum levels of interleukin-17A in children with autism. J. Neuroinflammation 9, 158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Akintunde, M. E. et al. Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J. Neuroimmunol. 286, 33–41 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suzuki, K. et al. Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS ONE 6, e20470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ashwood, P. et al. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J. Neuroimmunol. 232, 196–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Heo, Y., Zhang, Y., Gao, D., Miller, V. M. & Lawrence, D. A. Aberrant immune responses in a mouse with behavioral disorders. PLoS ONE 6, e20912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577, 249–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Hsiao, E. Y., McBride, S. W., Chow, J., Mazmanian, S. K. & Patterson, P. H. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl Acad. Sci. USA 109, 12776–12781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Warren, R. P., Margaretten, N. C., Pace, N. C. & Foster, A. Immune abnormalities in patients with autism. J. Autism Dev. Disord. 16, 189–197 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Yonk, L. J. et al. CD4+ helper T cell depression in autism. Immunol. Lett. 25, 341–345 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Ahmad, S. F. et al. Dysregulation of Th1, Th2, Th17 and T regulatory cell-related transcription factor signaling in children with autism. Mol. Neurobiol. 54, 4390–4400 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Mostafa, G. A., Al Shehab, A. & Fouad, N. R. Frequency of CD4+CD25high regulatory T cells in the peripheral blood of Egyptian children with autism. J. Child Neurol. 25, 328–335 (2010).

    Article  PubMed  Google Scholar 

  67. Kim, E. et al. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4+ T cells. Immunity 55, 145–158 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Uddin, M. N., Yao, Y., Manley, K. & Lawrence, D. A. Development, phenotypes of immune cells in BTBR T+Itpr3tf/J mice. Cell Immunol. 358, 104223 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Warren, R. P., Foster, A. & Margaretten, N. C. Reduced natural killer cell activity in autism. J. Am. Acad. Child Adolesc. Psychiatry 26, 333–335 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Enstrom, A. M. et al. Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav. Immun. 23, 124–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Vojdani, A. et al. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J. Neuroimmunol. 205, 148–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Tarantino, N. et al. Natural killer cells in first-episode psychosis: an innate immune signature? Mol. Psychiatry 26, 5297–5306 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Mazza, M. G. et al. Monocyte count in schizophrenia and related disorders: a systematic review and meta-analysis. Acta Neuropsychiatr. 32, 229–236 (2020).

    Article  PubMed  Google Scholar 

  74. Sweeten, T. L., Posey, D. J. & McDougle, C. J. High blood monocyte counts and neopterin levels in children with autistic disorder. Am. J. Psychiatry 160, 1691–1693 (2003).

    Article  PubMed  Google Scholar 

  75. Hughes, H. K. et al. Dysregulated gene expression associated with inflammatory and translation pathways in activated monocytes from children with autism spectrum disorder. Transl. Psychiatry 12, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Singer, H. S. et al. Antibrain antibodies in children with autism and their unaffected siblings. J. Neuroimmunol. 178, 149–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Wills, S. et al. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav. Immun. 23, 64–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Goines, P. et al. Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav. Immun. 25, 514–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Mostafa, G. A. & Al-Ayadhi, L. Y. The relationship between the increased frequency of serum antineuronal antibodies and the severity of autism in children. Eur. J. Paediatr. Neurol. 16, 464–468 (2012).

    Article  PubMed  Google Scholar 

  80. Piras, I. S. et al. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in italian children with autism spectrum disorder. Brain Behav. Immun. 38, 91–99 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shiwaku, H. et al. Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Rep. Med. 3, 100597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu, G. et al. Association of food allergy and other allergic conditions with autism spectrum disorder in children. JAMA Netw. Open 1, e180279 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nemet, S., Asher, I., Yoles, I., Baevsky, T. & Sthoeger, Z. Early childhood allergy linked with development of attention deficit hyperactivity disorder and autism spectrum disorder. Pediatr. Allergy Immunol. https://doi.org/10.1111/pai.13819 (2022).

  84. Chen, M. H. et al. Is atopy in early childhood a risk factor for ADHD and ASD? a longitudinal study. J. Psychosom. Res. 77, 316–321 (2014).

    Article  PubMed  Google Scholar 

  85. Liao, T. C., Lien, Y. T., Wang, S., Huang, S. L. & Chen, C. Y. Comorbidity of atopic disorders with autism spectrum disorder and attention deficit/hyperactivity disorder. J. Pediatr. 171, 248–255 (2016).

    Article  PubMed  Google Scholar 

  86. Zheng, Z. et al. Association between asthma and autism spectrum disorder: a meta-analysis. PLoS ONE 11, e0156662 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lyall, K., Van de Water, J., Ashwood, P. & Hertz-Picciotto, I. Asthma and allergies in children with autism spectrum disorders: results from the CHARGE Study. Autism Res. 8, 567–574 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li, D. J., Tsai, C. S., Hsiao, R. C., Chen, Y. L. & Yen, C. F. Associations between allergic and autoimmune diseases with autism spectrum disorder and attention-deficit/hyperactivity disorder within families: a population-based cohort study. Int. J. Environ. Res. Public Health 19, 4503 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. McElhanon, B. O., McCracken, C., Karpen, S. & Sharp, W. G. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133, 872–883 (2014).

    Article  PubMed  Google Scholar 

  90. Doshi-Velez, F. et al. Prevalence of inflammatory bowel disease among patients with autism spectrum disorders. Inflamm. Bowel Dis. 21, 2281–2288 (2015).

    PubMed  Google Scholar 

  91. Kohane, I. S. et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE 7, e33224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, M. et al. Association of autism spectrum disorders and inflammatory bowel disease. J. Autism Dev. Disord. 48, 1523–1529 (2018).

    Article  PubMed  Google Scholar 

  93. Kim, J. Y. et al. Association between autism spectrum disorder and inflammatory bowel disease: a systematic review and meta-analysis. Autism Res. 15, 340–352 (2022).

    Article  PubMed  Google Scholar 

  94. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Poultney, C. S. et al. Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder. Am. J. Hum. Genet. 93, 607–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Somekh, J. et al. A model-driven methodology for exploring complex disease comorbidities applied to autism spectrum disorder and inflammatory bowel disease. J. Biomed. Inform. 63, 366–378 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Inoue, J. et al. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch. Biochem. Biophys. 521, 95–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Wei, S. C. et al. SHANK3 regulates intestinal barrier function through modulating ZO-1 expression through the PKCε-dependent pathway. Inflamm. Bowel Dis. 23, 1730–1740 (2017).

    Article  PubMed  Google Scholar 

  99. An, J. Y. & Claudianos, C. Genetic heterogeneity in autism: from single gene to a pathway perspective. Neurosci. Biobehav. Rev. 68, 442–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Golovina, E. et al. Understanding the impact of SNPs associated with autism spectrum disorder on biological pathways in the human fetal and adult cortex. Sci. Rep. 11, 15867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arenella, M. et al. Immunogenetics of autism spectrum disorder: a systematic literature review. Brain Behav. Immun. 114, 488–499 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, W. et al. Maternal immune activation alters adult behavior, intestinal integrity, gut microbiota and the gut inflammation. Brain Behav. 11, e02133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, N. et al. Correlation of gut microbiome between ASD children and mothers and potential biomarkers for risk assessment. Genomics Proteomics Bioinformatics 17, 26–38 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Curran, L. K. et al. Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 120, e1386–e1392 (2007).

    Article  PubMed  Google Scholar 

  109. Grzadzinski, R., Lord, C., Sanders, S. J., Werling, D. & Bal, V. H. Children with autism spectrum disorder who improve with fever: insights from the Simons Simplex Collection. Autism Res. 11, 175–184 (2018).

    Article  PubMed  Google Scholar 

  110. Muller, E., Shalev, I., Bachmat, E. & Eran, A. Data-driven dissection of the fever effect in autism spectrum disorder. Autism Res. 16, 1225–1235 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

E.K. was supported by the National Research Foundation of Korea (RS-2023-00209464), the Technology Innovation Program (20023378) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and a Korea University grant (K2225821). J.R.H. was supported by the Jeongho Kim Neurodevelopmental Research Fund, the Simons Foundation Autism Research Initiative and a National Institute of Mental Health grant (R01MH119459). G.B.C. was supported by a National Institute of Mental Health grant (R01MH115307), The Simons Foundation Autism Research Initiative, The JPB Foundation, The Carol and Gene Ludwig Family Foundation and The Nancy Lurie Marks Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.K. wrote the initial draft, conceptualized the figures and revised the manuscript. J.R.H. edited and enhanced the manuscript. G.B.C. supervised the writing and edited the manuscript.

Corresponding authors

Correspondence to Eunha Kim or Gloria B. Choi.

Ethics declarations

Competing interests

E.K. declares no competing interests. J.R.H. and G.B.C. are consultants for CJ Cheiljedang and Interon laboratories.

Peer review

Peer review information

Nature Immunology thanks John Lukens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: S. Houston, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Huh, J.R. & Choi, G.B. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol 25, 598–606 (2024). https://doi.org/10.1038/s41590-024-01797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-024-01797-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing