Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Targeting allosteric regulation of cancer metabolism

Abstract

Metabolic reprogramming is observed across all cancer types. Indeed, the success of many classic chemotherapies stems from their targeting of cancer metabolism. Contemporary research in this area has refined our understanding of tumor-specific metabolic mechanisms and has revealed strategies for exploiting these vulnerabilities selectively. Based on this growing understanding, new small-molecule tools and drugs have been developed to study and target tumor metabolism. Here, we highlight allosteric modulation of metabolic enzymes as an attractive mechanism of action for small molecules that target metabolic enzymes. We then discuss the mechanistic insights garnered from their application in cancer studies and highlight the achievements of this approach in targeting cancer metabolism. Finally, we discuss technological advances in drug discovery for allosteric modulators of enzyme activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Allosteric regulation of glycolysis and adjacent pathways.
Fig. 2: Glutamine- and lipid-metabolism pathways and allosteric inhibitors.
Fig. 3: Allosteric binding in glutamine metabolism and adjacent pathways.
Fig. 4: Allosteric inhibition of methionine metabolism.
Fig. 5: Proteomic techniques for discovering allosteric modulators.

Similar content being viewed by others

References

  1. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).

    Article  CAS  PubMed  Google Scholar 

  2. Luengo, A., Gui, D. Y. & Heiden, M. G. V. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DeVita, V. T. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Weinstein, I. B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heiden, M. G. V. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  8. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  9. Kaelin, W. G. & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yen, K. et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 7, 478–493 (2017). This paper reports the discovery and application of an allosteric IDH2 inhibitor in AML.

  11. Muller, F. L., Aquilanti, E. A. & DePinho, R. A. Collateral lethality: a new therapeutic strategy in oncology. Trends Cancer 1, 161–173 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Li, X. et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 16, 425–441 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Keshet, R., Szlosarek, P., Carracedo, A. & Erez, A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer 18, 634–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Triplett, T. A. et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 36, 758–764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanarek, N., Petrova, B. & Sabatini, D. M. Dietary modifications for enhanced cancer therapy. Nature 579, 507–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Nussinov, R. & Tsai, C.-J. Allostery in disease and in drug discovery. Cell 153, 293–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  19. Cornish-Bowden, A. Understanding allosteric and cooperative interactions in enzymes. FEBS J. 281, 621–632 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Wodak, S. J. et al. Allostery in its many disguises: from theory to applications. Structure 27, 566–578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nussinov, R. & Tsai, C.-J. Unraveling structural mechanisms of allosteric drug action. Trends Pharmacol. Sci. 35, 256–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Macpherson, J. A. et al. Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation. eLife 8, e45068 (2019).

  23. DeLaBarre, B., Hurov, J., Cianchetta, G., Murray, S. & Dang, L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem. Biol. 21, 1143–1161 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Lindsley, J. E. & Rutter, J. Whence cometh the allosterome? Proc. Natl Acad. Sci. USA 103, 10533–10535 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, J.-S., Seo, S. W., Jang, S., Jung, G. Y. & Kim, S. Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput. Biol. 8, e1002612 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He, X., Ni, D., Lu, S. & Zhang, J. Characteristics of allosteric proteins, sites, and modulators. Adv. Exp. Med. Biol. 1163, 107–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Xie, J. & Lai, L. Protein topology and allostery. Curr. Opin. Struct. Biol. 62, 158–165 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Anastasiou, D. et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8, 839–847 (2012). This paper provides biochemical and cellular characterization of the PKM2 activators DASA-58 and TEPP-46.

  30. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Macpherson, J. A. & Anastasiou, D. Allosteric regulation of metabolism in cancer: endogenous mechanisms and considerations for drug design. Curr. Opin. Biotechnol. 48, 102–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Kung, C. et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Svoboda, L. K. et al. Menin regulates the serine biosynthetic pathway in Ewing sarcoma. J. Pathol. 245, 324–336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullarky, E. et al. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl Acad. Sci. USA 113, 1778–1783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hitosugi, T. et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22, 585–600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452–458 (2016). This paper describes the discovery and application of NCT-503.

  38. Wang, Q. et al. Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Weinstabl, H. et al. Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J. Med. Chem. 62, 7976–7997 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Mullarky, E. et al. Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorg. Med. Chem. Lett. 29, 2503–2510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ravez, S. et al. α-ketothioamide derivatives: a promising tool to interrogate phosphoglycerate dehydrogenase (PHGDH). J. Med. Chem. 60, 1591–1597 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan, Y. et al. Biophysical and biochemical properties of PHGDH revealed by studies on PHGDH inhibitors. Cell. Mol. Life Sci. 79, 27 (2021).

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020). This paper describes the application of PH-755 in breast cancer metastasis models.

  45. Tajan, M. et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat. Commun. 12, 366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghergurovich, J. M. et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat. Chem. Biol. 16, 731–739 (2020). This paper describes the development and characterization of a potent and selective G6PD inhibitor.

  48. Au, S. W., Gover, S., Lam, V. M. & Adams, M. J. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP+ molecule and provides insights into enzyme deficiency. Structure 8, 293–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Kaelin, W. G. & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deng, G. et al. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J. Biol. Chem. 290, 762–774 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Robinson, M. M. et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406, 407–414 (2007). This paper biochemically characterizes BPTES.

  54. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, Q. et al. Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. J. Biol. Chem. 293, 3535–3545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gross, M. I. et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890–901 (2014). This paper describes the biochemical and cellular applications of CB-839.

  57. Biancur, D. E. et al. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun. 8, 15965 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chakrabarti, G. et al. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by β-lapachone. Cancer Metab. 3, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016). This paper describes the biochemical characterization and application of ND-646 in lung cancer models.

  60. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Granchi, C. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur. J. Med. Chem. 157, 1276–1291 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Wei, J. et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568, 566–570 (2019). This paper contains the biochemical characterization of a potent ACLY inhibitor, NDI-091143.

  63. Marjon, K. et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 15, 574–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Kalev, P. et al. MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell 39, 209–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Mavrakis, K. J. et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the arginine methyltransferase PRMT5 in human cancer cells. Science 351, 1214–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Quinlan, C. L. et al. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A. Nat. Chem. Biol. 13, 785–792 (2017). This paper provides insights into the allosteric regulation of MAT2A by MAT2B and the modulation of MAT2A by PF-9366.

  68. De Fusco, C. et al. Fragment-based design of a potent MAT2a inhibitor and in vivo evaluation in an MTAP null xenograft model. J. Med. Chem. 64, 6814–6826 (2021).

    Article  PubMed  CAS  Google Scholar 

  69. Konteatis, Z. et al. Discovery of AG-270, a first-in-class oral MAT2A inhibitor for the treatment of tumors with homozygous MTAP deletion. J. Med. Chem. 64, 4430–4449 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Lombardini, J. B., Coulter, A. W. & Talalay, P. Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase reaction. Deductions concerning the conformation of methionine. Mol. Pharmacol. 6, 481–499 (1970).

    CAS  PubMed  Google Scholar 

  71. Murray, B. et al. Structure and function study of the complex that synthesizes S-adenosylmethionine. IUCrJ 1, 240–249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ni, D. et al. Combining allosteric and orthosteric drugs to overcome drug resistance. Trends Pharmacol. Sci. 41, 336–348 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Sadowsky, J. D. et al. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc. Natl Acad. Sci. USA 108, 6056–6061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu, S., He, X., Ni, D. & Zhang, J. Allosteric modulator discovery: from serendipity to structure-based design. J. Med. Chem. 62, 6405–6421 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Erlanson, D. A., Wells, J. A. & Braisted, A. C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E. & Cravatt, B. F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kambe, T., Correia, B. E., Niphakis, M. J. & Cravatt, B. F. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc. 136, 10777–10782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Niphakis, M. J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015). This paper describes the development of functionalized lipids for lipid–protein interaction discovery by proteomics.

  80. Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, 527–541 (2017). This paper identified new allosteric site binders by harnessing functionalized chemical fragments in proteomic screens.

  81. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hahm, H. S. et al. Global targeting of functional tyrosines using sulfur–triazole exchange chemistry. Nat. Chem. Biol. 16, 150–159 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Hacker, S. M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9, 1181–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 562, 563–568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zambaldo, C. et al. 2-sulfonylpyridines as tunable, cysteine-reactive electrophiles. J. Am. Chem. Soc. 142, 8972–8979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372 (2018). This paper describes the LiP mapping method to identify metabolite–protein interactions.

  90. Piazza, I. et al. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 11, 4200 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hackett, S. R. et al. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 354, aaf2786 (2016). This paper describes the SIMMER method for identifying endogenous allosteric interactions.

  92. Link, H., Kochanowski, K. & Sauer, U. Systematic identification of allosteric protein–metabolite interactions that control enzyme activity in vivo. Nat. Biotechnol. 31, 357–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Sander, T. et al. Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. Cell Syst. 8, 66–75 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wagner, J. R. et al. Emerging computational methods for the rational discovery of allosteric drugs. Chem. Rev. 116, 6370–6390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, W., Xie, J. & Lai, L. Correlation between allosteric and orthosteric sites. Adv. Exp. Med. Biol. 1163, 89–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Reynolds, K. A., McLaughlin, R. N. & Ranganathan, R. Hot spots for allosteric regulation on protein surfaces. Cell 147, 1564–1575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sheik Amamuddy, O. et al. Integrated computational approaches and tools for allosteric drug discovery. Int. J. Mol. Sci. 21, 847 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  98. Huang, M. et al. AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res. 46, W451–W458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu, Y. et al. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 46, W374–W379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Song, K., Zhang, J. & Lu, S. Progress in allosteric database. Adv. Exp. Med. Biol. 1163, 65–87 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.A.L. received support from the NCI (R37CA237421, R01CA248160 and R01CA244931). D.M.K. received support from the George E. Hewitt Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

D.M.K. and C.A.L. contributed to conceptualization, investigation, writing, review and editing. C.A.L. provided supervision.

Corresponding author

Correspondence to Costas A. Lyssiotis.

Ethics declarations

Competing interests

C.A.L. has received consulting fees from Astellas Pharmaceuticals and Odyssey Therapeutics and is an inventor on patents pertaining to KRAS-regulated metabolic pathways, redox-control pathways in cancer and targeting the GOT1 pathway as a therapeutic approach.

Peer review

Peer review information

Nature Chemical Biology thanks Dimitrios Anastasiou, Gregory Ducker and Kevin Marks for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kremer, D.M., Lyssiotis, C.A. Targeting allosteric regulation of cancer metabolism. Nat Chem Biol 18, 441–450 (2022). https://doi.org/10.1038/s41589-022-00997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-022-00997-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer