Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From mucosal infection to successful cancer immunotherapy

Abstract

The clinical management of advanced malignancies of the upper and lower urinary tract has been revolutionized with the advent of immune checkpoint blockers (ICBs). ICBs reinstate or bolster pre-existing immune responses while creating new T cell specificities. Immunogenic cancers, which tend to benefit more from immunotherapy than cold tumours, harbour tumour-specific neoantigens, often associated with a high tumour mutational burden, as well as CD8+ T cell infiltrates and ectopic lymphoid structures. The identification of beneficial non-self tumour antigens and natural adjuvants is the focus of current investigation. Moreover, growing evidence suggests that urinary or intestinal commensals, BCG and uropathogenic Escherichia coli influence long-term responses in patients with kidney or bladder cancer treated with ICBs. Bacteria infecting urothelium could be a prominent target for T follicular helper cells and B cells, linking innate and cognate CD8+ memory responses. In the urinary tract, commensal flora differ between healthy and tumoural mucosae. Although antibiotics can affect the prognosis of urinary tract malignancies, bacteria can have a major influence on cancer immunosurveillance. Beyond their role as biomarkers, immune responses against uropathogenic commensals could be harnessed for the design of future immunoadjuvants that can be advantageously combined with ICBs.

Key points

  • The immune infiltrate of the urinary tract has prognostic and predictive value in kidney and bladder cancers.

  • Upper and lower urinary tract malignancies are not sterile.

  • Antibiotics compromise the efficacy of immune checkpoint inhibitors.

  • Cellular and humoral immune responses against uropathogenic Escherichia coli or BCG dictate the success of immune checkpoint inhibitors.

  • Novel therapeutic strategies should harness the urinary or intestinal microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The tumour microenvironment of muscle-invasive bladder cancer.
Fig. 2: Local microbiota and formation of tertiary lymphoid structures in response to immune checkpoint blockers.
Fig. 3: The tumour microenvironment of renal cell carcinoma.
Fig. 4: From mucosal infection or commensalism to effective immunomodulation during immune checkpoint blockade.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  3. Dobruch, J. et al. Gender and bladder cancer: a collaborative review of etiology, biology, and outcomes. Eur. Urol. 69, 300–310 (2016).

    Article  PubMed  Google Scholar 

  4. Kantor, A. F. et al. Urinary tract infection and risk of bladder cancer. Am. J. Epidemiol. 119, 510–515 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Scelo, G. & Larose, T. L. Epidemiology and risk factors for kidney cancer. J. Clin. Oncol. 36, 3574–3581 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  6. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  7. Dalmartello, M. et al. European cancer mortality predictions for the year 2022 with focus on ovarian cancer. Ann. Oncol. 33, 330–339 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  9. Matsumoto, A. et al. Preoperative chronic kidney disease is predictive of oncological outcome of radical cystectomy for bladder cancer. World J. Urol. 36, 249–256 (2018).

    Article  PubMed  Google Scholar 

  10. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cathomas, R. et al. The 2021 updated European Association of Urology guidelines on metastatic urothelial carcinoma. Eur. Urol. 81, 95–103 (2022).

    Article  PubMed  Google Scholar 

  14. Bajorin, D. F. et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 384, 2102–2114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balar, A. V. et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study. Lancet Oncol. 22, 919–930 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Albiges, L. et al. First-line nivolumab plus ipilimumab versus sunitinib in patients without nephrectomy and with an evaluable primary renal tumor in the CheckMate 214 trial. Eur. Urol. 81, 266–271 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Ljungberg, B. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. Eur. Urol. https://doi.org/10.1016/j.eururo.2022.03.006 (2022).

    Article  PubMed  Google Scholar 

  18. Bedke, J. et al. 2021 updated European Association of Urology guidelines on the use of adjuvant pembrolizumab for renal cell carcinoma. Eur. Urol. 81, 134–137 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Choueiri, T. K. et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N. Engl. J. Med. 385, 683–694 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Rouanne, M. et al. Rationale and outcomes for neoadjuvant immunotherapy in urothelial carcinoma of the bladder. Eur. Urol. Oncol. 3, 728–738 (2020).

    Article  PubMed  Google Scholar 

  21. Zou, X. et al. A novel 6-gene signature derived from tumor-infiltrating T cells and neutrophils predicts survival of bladder urothelial carcinoma. Aging 13, 25496–25517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfannstiel, C. et al. The tumor immune microenvironment drives a prognostic relevance that correlates with bladder cancer subtypes. Cancer Immunol. Res. 7, 923–938 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article  PubMed  Google Scholar 

  24. Wong, Y. N. S. et al. Urine-derived lymphocytes as a non-invasive measure of the bladder tumor immune microenvironment. J. Exp. Med. 215, 2748–2759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taber, A. et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis. Nat. Commun. 11, 4858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baras, A. S. et al. The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology 5, e1134412 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vollmer, T. et al. The intratumoral CXCR3 chemokine system is predictive of chemotherapy response in human bladder cancer. Sci. Transl. Med. 13, eabb3735 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Q. et al. Mass cytometry reveals immune atlas of urothelial carcinoma. BMC Cancer 22, 677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oh, D. Y. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mariathasan, S. et al. TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Banchereau, R. et al. Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. J. Immunother. Cancer 9, e002231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Powles, T. et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 25, 1706–1714 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Gao, J. et al. Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat. Med. 26, 1845–1851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Dijk, N. et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat. Med. 26, 1839–1844 (2020).

    Article  PubMed  Google Scholar 

  35. Goubet, A.-G. et al. Escherichia coli-specific CXCL13-producing TFH are associated with clinical efficacy of neoadjuvant PD-1 blockade against muscle-invasive bladder cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-0201 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Groeneveld, C. S. et al. Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur. J. Cancer Oxf. Engl. 148, 181–189 (2021).

    Article  CAS  Google Scholar 

  37. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakano, O. et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 61, 5132–5136 (2001).

    CAS  PubMed  Google Scholar 

  39. Remark, R. et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin. Cancer Res. 19, 4079–4091 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Daugan, M. V. et al. Complement C1s and C4d as prognostic biomarkers in renal cancer: emergence of noncanonical functions of C1s. Cancer Immunol. Res. 9, 891–908 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Terry, S. et al. Association of AXL and PD-L1 expression with clinical outcomes in patients with advanced renal cell carcinoma treated with PD-1 blockade. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 27, 6749–6760 (2021).

    Article  CAS  Google Scholar 

  42. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mujal, A. M. et al. Holistic characterization of tumor monocyte-to-macrophage differentiation integrates distinct immune phenotypes in kidney cancer. Cancer Immunol. Res. 10, 403–419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-022-00619-z (2022).

    Article  PubMed  Google Scholar 

  45. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Choueiri, T. K. & Motzer, R. J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 376, 354–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Motzer, R. J. et al. Phase II randomized trial comparing sequential first-line everolimus and second-line sunitinib versus first-line sunitinib and second-line everolimus in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 32, 2765–2772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 20, 1370–1385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, e6 (2021).

    Article  Google Scholar 

  51. Choueiri, T. K. et al. Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin. Cancer Res. 22, 5461–5471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ross-Macdonald, P. et al. Molecular correlates of response to nivolumab at baseline and on treatment in patients with RCC. J. Immunother. Cancer 9, e001506 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Guislain, A. et al. Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma. Cancer Immunol. Immunother. 64, 1241–1250 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wennhold, K. et al. CD86+ antigen-presenting B cells are increased in cancer, localize in tertiary lymphoid structures, and induce specific T-cell responses. Cancer Immunol. Res. 9, 1098–1108 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Garaud, S. et al. Antigen specificity and clinical significance of IgG and IgA autoantibodies produced in situ by tumor-infiltrating B cells in breast cancer. Front. Immunol. 9, 2660 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Garaud, S. et al. Tumor-infiltrating B cells signal functional humoral immune responses in breast cancer. JCI Insight 5, e129641 (2019).

    Article  PubMed  Google Scholar 

  60. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113, 5–13 (2002).

    Article  Google Scholar 

  62. Stamm, W. E. & Hooton, T. M. Management of urinary tract infections in adults. N. Engl. J. Med. 329, 1328–1334 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113, 14S–19S (2002).

    Article  PubMed  Google Scholar 

  64. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. IARC Monogr. Eval. Carcinog. Risks Hum. 100, 1–441 (2012).

    PubMed Central  Google Scholar 

  65. Chagneau, C. V. et al. Uropathogenic E. coli induces DNA damage in the bladder. PLoS Pathog. 17, e1009310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abd-El-Raouf, R. et al. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci. Rep. 10, 18024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. El-Mosalamy, H., Salman, T. M., Ashmawey, A. M. & Osama, N. Role of chronic E. coli infection in the process of bladder cancer- an experimental study. Infect. Agent. Cancer 7, 19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Howe, G. R. et al. Tobacco use, occupation, coffee, various nutrients, and bladder cancer. J. Natl Cancer Inst. 64, 701–713 (1980).

    CAS  PubMed  Google Scholar 

  69. Claude, J. et al. Life-style and occupational risk factors in cancer of the lower urinary tract. Am. J. Epidemiol. 124, 578–589 (1986).

    Article  CAS  PubMed  Google Scholar 

  70. Piper, J. M., Matanoski, G. M. & Tonascia, J. Bladder cancer in young women. Am. J. Epidemiol. 123, 1033–1042 (1986).

    Article  CAS  PubMed  Google Scholar 

  71. Kjaer, S. K., Knudsen, J. B., Sørensen, B. L. & Jensen, O. M. The Copenhagen case-control study of bladder cancer. V. Review of the role of urinary-tract infection. Acta Oncol. 28, 631–636 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. González, C. A. et al. Urinary infection, renal lithiasis and bladder cancer in Spain. Eur. J. Cancer 27, 498–500 (1991).

    Article  PubMed  Google Scholar 

  73. La Vecchia, C., Negri, E., D’Avanzo, B., Savoldelli, R. & Franceschi, S. Genital and urinary tract diseases and bladder cancer. Cancer Res. 51, 629–631 (1991).

    PubMed  Google Scholar 

  74. Jhamb, M. et al. Urinary tract diseases and bladder cancer risk: a case-control study. Cancer Causes Control 18, 839–845 (2007).

    Article  PubMed  Google Scholar 

  75. Sturgeon, S. R. et al. Associations between bladder cancer risk factors and tumor stage and grade at diagnosis. Epidemiology 5, 218–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Jiang, X. et al. Urinary tract infections and reduced risk of bladder cancer in Los Angeles. Br. J. Cancer 100, 834–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, C.-H. et al. Risk of cancer after lower urinary tract infection: a population-based cohort study. Int. J. Environ. Res. Public. Health 16, E390 (2019).

    Article  Google Scholar 

  78. Vermeulen, S. H. et al. Recurrent urinary tract infection and risk of bladder cancer in the Nijmegen bladder cancer study. Br. J. Cancer 112, 594–600 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Bayne, C. E., Farah, D., Herbst, K. W. & Hsieh, M. H. Role of urinary tract infection in bladder cancer: a systematic review and meta-analysis. World J. Urol. 36, 1181–1190 (2018).

    Article  PubMed  Google Scholar 

  80. Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hilt, E. E. et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 52, 871–876 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hooton, T. M. Recurrent urinary tract infection in women. Int. J. Antimicrob. Agents 17, 259–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Morand, A. et al. Human bacterial repertoire of the urinary tract: a potential paradigm shift. J. Clin. Microbiol. 57, e00675–18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dubourg, G. et al. Deciphering the urinary microbiota repertoire by culturomics reveals mostly anaerobic bacteria from the gut. Front. Microbiol. 11, 513305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Morand, A. et al. Actinomyces urinae sp. nov., isolated from 13-year-old girl affected by nephritic syndrome. New Microbes New Infect. 13, 1–2 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Downes, J. et al. Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum ‘Synergistetes’ isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 59, 972–980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jumas-Bilak, E. et al. Jonquetella anthropi gen. nov., sp. nov., the first member of the candidate phylum ‘Synergistetes’ isolated from man. Int. J. Syst. Evol. Microbiol. 57, 2743–2748 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Bilski, K. et al. Urobiome in gender — related diversities of bladder cancer. Int. J. Mol. Sci. 21, 4488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bajic, P., Wolfe, A. J. & Gupta, G. N. The urinary microbiome: implications in bladder cancer pathogenesis and therapeutics. Urology 126, 10–15 (2019).

    Article  PubMed  Google Scholar 

  90. Yacouba, A., Tidjani Alou, M., Lagier, J.-C., Dubourg, G. & Raoult, D. Urinary microbiota and bladder cancer: a systematic review and a focus on uropathogens. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.12.010 (2022).

  91. Liu, F. et al. Dysbiosis signatures of the microbial profile in tissue from bladder cancer. Cancer Med. 8, 6904–6914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bučević Popović, V. et al. The urinary microbiome associated with bladder cancer. Sci. Rep. 8, 12157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Oresta, B. et al. The microbiome of catheter collected urine in males with bladder cancer according to disease stage. J. Urol. 205, 86–93 (2021).

    Article  PubMed  Google Scholar 

  94. Hussein, A. A. et al. Investigating the association between the urinary microbiome and bladder cancer: an exploratory study. Urol. Oncol. Semin. Orig. Investig. 39, 370.e9–370.e19 (2021).

    CAS  Google Scholar 

  95. Lacerda Mariano, L. & Ingersoll, M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 17, 439–458 (2020).

    Article  PubMed  Google Scholar 

  96. Lobo, N. et al. 100 years of Bacillus Calmette–Guérin immunotherapy: from cattle to COVID-19. Nat. Rev. Urol. 18, 611–622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Terlizzi, M. E., Gribaudo, G. & Maffei, M. E. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8, 1566 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Song, J. et al. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc. Natl Acad. Sci. USA 106, 14966–14971 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Abraham, S. N. & Miao, Y. The nature of immune responses to urinary tract infections. Nat. Rev. Immunol. 15, 655–663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, J. et al. A highly polarized TH2 bladder response to infection promotes epithelial repair at the expense of preventing new infections. Nat. Immunol. 21, 671–683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Walker, J. A. & McKenzie, A. N. J. TH2 cell development and function. Nat. Rev. Immunol. 18, 121–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, F. et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 18, 260–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wynn, T. A. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 15, 271–282 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Choi, H. W. et al. Loss of bladder epithelium induced by cytolytic mast cell granules. Immunity 45, 1258–1269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, J., Bao, C., Reinhardt, R. L. & Abraham, S. N. Local induction of bladder Th1 responses to combat urinary tract infections. Proc. Natl Acad. Sci. USA 118, e2026461118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Song, C. H. et al. Lactobacillus crispatus limits bladder uropathogenic E. coli infection by triggering a host type I interferon response. Proc. Natl Acad. Sci. USA 119, e2117904119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Derosa, L. et al. Microbiota-centered interventions: the next breakthrough in immuno-oncology. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-0236 (2021).

    Article  PubMed  Google Scholar 

  114. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Daillère, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).

    Article  PubMed  Google Scholar 

  116. Rong, Y. et al. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma. Exp. Cell Res. 358, 352–359 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  PubMed  Google Scholar 

  119. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur. Urol. 59, 997–1008 (2011).

    Article  PubMed  Google Scholar 

  120. Biot, C. et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci. Transl. Med. 4, 137ra72 (2012).

    Article  PubMed  Google Scholar 

  121. Rouanne, M. et al. BCG therapy downregulates HLA-I on malignant cells to subvert antitumor immune responses in bladder cancer. J. Clin. Invest. 132, e145666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Antonelli, A. C., Binyamin, A., Hohl, T. M., Glickman, M. S. & Redelman-Sidi, G. Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-γ signaling. Proc. Natl Acad. Sci. USA 117, 18627–18637 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Svatek, R. S., Tangen, C., Delacroix, S., Lowrance, W. & Lerner, S. P. Background and update for S1602 “A phase III randomized trial to evaluate the influence of BCG strain differences and T cell priming with intradermal BCG before intravesical therapy for BCG-naïve high-grade non-muscle-invasive bladder cancer. Eur. Urol. Focus. 4, 522–524 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rosenberg, S. A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Dyrskjøt, L. et al. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma. Br. J. Cancer 107, 116–122 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sharma, P. et al. Immune responses detected in urothelial carcinoma patients after vaccination with NY-ESO-1 protein plus BCG and GM-CSF. J. Immunother. 31, 849–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, K. H. et al. The first-week proliferative response of peripheral blood PD-1+CD8+ T cells predicts the response to anti-PD-1 therapy in solid tumors. Clin. Cancer Res. 25, 2144–2154 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Holm, J. S. et al. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma. Nat. Commun. 13, 1935 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Grabe, M., Forsgren, A. & Hellsten, S. The effect of a short antibiotic course in transurethral prostatic resection. Scand. J. Urol. Nephrol. 18, 37–42 (1984).

    Article  CAS  PubMed  Google Scholar 

  133. Murphy, D. M. et al. Bacteraemia during prostatectomy and other transurethral operations: influence of timing of antibiotic administration. J. Clin. Pathol. 37, 673–676 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lightner, D. J., Wymer, K., Sanchez, J. & Kavoussi, L. Best practice statement on urologic procedures and antimicrobial prophylaxis. J. Urol. 203, 351–356 (2020).

    Article  PubMed  Google Scholar 

  135. EAU Guidelines on Urological Infections — THE GUIDELINE — Uroweb. European Association of Urology https://uroweb.org/guidelines/urological-infections/chapter/the-guideline (2022).

  136. Khaw, C. et al. Assessment of guideline discordance with antimicrobial prophylaxis best practices for common urologic procedures. JAMA Netw. Open. 1, e186248 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bausch, K. et al. Antimicrobial prophylaxis for postoperative urinary tract infections in transurethral resection of bladder tumors: a systematic review and meta-analysis. J. Urol. 205, 987–998 (2021).

    Article  PubMed  Google Scholar 

  138. Herr, H. W. Intravesical bacille Calmette-Guerin in patients with asymptomatic bacteriuria. JAMA 305, 1413–1414 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Poletajew, S., Zapała, P. & Radziszewski, P. Safety and efficacy of intravesical Bacillus Calmette-Guérin immunotherapy in patients with non-muscle-invasive bladder cancer presenting with asymptomatic bacteriuria: a systematic review. Urol. Int. 99, 1–5 (2017).

    Article  PubMed  Google Scholar 

  140. Herr, H. Does asymptomatic bacteriuria affect the response to intravesical bacillus Calmette-Guérin? Int. J. Urol. J. Jpn. Urol. Assoc. 27, 72–74 (2020).

    Google Scholar 

  141. Herr, H. & Donat, M. Reduced recurrence of low-grade papillary bladder tumors associated with asymptomatic bacteriuria. Urology 124, 179–182 (2019).

    Article  PubMed  Google Scholar 

  142. Fukushima, H., Kobayashi, M., Kawano, K. & Morimoto, S. Effect of preoperative bacteriuria and pyuria on intravesical recurrence in patients with upper tract urothelial carcinoma undergoing radical nephroureterectomy. Vivo 31, 1215–1220 (2017).

    CAS  Google Scholar 

  143. Logothetis, C. J., Assikis, V. & Sarriera, J. E. in Holland-Frei Cancer Medicine 6th edn (BC Decker, 2003).

  144. Peterson, J., Kaul, S., Khashab, M., Fisher, A. & Kahn, J. B. Identification and pretherapy susceptibility of pathogens in patients with complicated urinary tract infection or acute pyelonephritis enrolled in a clinical study in the United States from November 2004 through April 2006. Clin. Ther. 29, 2215–2221 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Tandoğdu, Z. et al. Antimicrobial resistance in urosepsis: outcomes from the multinational, multicenter global prevalence of infections in urology (GPIU) study 2003-2013. World J. Urol. 34, 1193–1200 (2016).

    Article  PubMed  Google Scholar 

  146. Clifford, T. G. et al. Urinary tract infections following radical cystectomy and urinary diversion: a review of 1133 patients. World J. Urol. 36, 775–781 (2018).

    Article  PubMed  Google Scholar 

  147. Suriano, F. et al. Bacteriuria in patients with an orthotopic ileal neobladder: urinary tract infection or asymptomatic bacteriuria? BJU Int 101, 1576–1579 (2008).

    Article  PubMed  Google Scholar 

  148. Falagas, M. E. & Vergidis, P. I. Urinary tract infections in patients with urinary diversion. Am. J. Kidney Dis. 46, 1030–1037 (2005).

    Article  PubMed  Google Scholar 

  149. Chan, R. C., Reid, G., Bruce, A. W. & Costerton, J. W. Microbial colonization of human ileal conduits. Appl. Environ. Microbiol. 48, 1159–1165 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Parker, W. P. et al. Risk factors and microbial distribution of urinary tract infections following radical cystectomy. Urology 94, 96–101 (2016).

    Article  PubMed  Google Scholar 

  151. Pariser, J. J. et al. The effect of broader, directed antimicrobial prophylaxis including fungal coverage on perioperative infectious complications after radical cystectomy. Urol. Oncol. Semin. Orig. Investig. 34, 121.e9–121.e14 (2016).

    Google Scholar 

  152. Derosa, L. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 29, 1437–1444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Raggi, D. et al. Concomitant antibiotics (ATBs) use and survival outcomes in patients (pts) with muscle-invasive bladder cancer (MIBC) treated with neoadjuvant pembrolizumab (PURE-01 study). J. Clin. Oncol. 39, 449–449 (2021).

    Article  Google Scholar 

  154. Hopkins, A. M., Kichenadasse, G., Karapetis, C. S., Rowland, A. & Sorich, M. J. Concomitant antibiotic use and survival in urothelial carcinoma treated with atezolizumab. Eur. Urol. 78, 540–543 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Luo, Z. et al. The negative effect of antibiotics on RCC patients with immunotherapy: a systematic review and meta-analysis. Front. Immunol. 13, 1065004 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tinsley, N. et al. Antibiotic use reduces efficacy of tyrosine kinase inhibitors in patients with advanced melanoma and non-small-cell lung cancer. ESMO Open 7, 100430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lalani, A.-K. A. et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur. Urol. Oncol. 3, 372–381 (2020).

    Article  PubMed  Google Scholar 

  158. Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Raymond, F. et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 10, 707–720 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Denton, A. E. et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J. Exp. Med. 216, 621–637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Newman, J. H. et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl Acad. Sci. USA 117, 1119–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Herati, R. S. et al. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat. Immunol. 23, 1183–1192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mayor, N., Fankhauser, C., Sangar, V. & Mostafid, H. Management of NMIBC during BCG shortage and COVID-19. Trends Urol. Mens. Health 12, 7–11 (2021).

    Article  Google Scholar 

  165. Meghani, K. et al. First-in-human intravesical delivery of pembrolizumab identifies immune activation in bladder cancer unresponsive to Bacillus Calmette-Guérin. Eur. Urol. 82, 602–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu, P. et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front. Cell. Infect. Microbiol. 8, 167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Bi, H. et al. Urinary microbiota — a potential biomarker and therapeutic target for bladder cancer. J. Med. Microbiol. 68, 1471–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Zeng, J. Alterations in urobiome in patients with bladder cancer and implications for clinical outcome: a single-institution study. Front. Cell Infect. Microbiol. 10, 555508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Chipollini, J. et al. Characterization of urinary microbiome in patients with bladder cancer: results from a single-institution, feasibility study. Urol. Oncol. Semin. Orig. Investig. 38, 615–621 (2020).

    CAS  Google Scholar 

  170. Hourigan, S. K. et al. Studying the urine microbiome in superficial bladder cancer: samples obtained by midstream voiding versus cystoscopy. BMC Urol. 20, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Pederzoli, F. et al. Sex-specific alterations in the urinary and tissue microbiome in therapy-naïve urothelial bladder cancer patients. Eur. Urol. Oncol. 3, 784–788 (2020).

    Article  PubMed  Google Scholar 

  172. Ma, W. et al. Can smoking cause differences in urine microbiome in male patients with bladder cancer? A retrospective study. Front. Oncol. 11, 677605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chen, C. et al. Urogenital microbiota:potentially important determinant of PD-L1 expression in male patients with non-muscle invasive bladder cancer. BMC Microbiol. 22, 7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Mansour, B. et al. Bladder cancer-related microbiota: examining differences in urine and tissue samples. Sci. Rep. 10, 11042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rodriguez, R. M., Hernandez, B. Y., Menor, M., Deng, Y. & Khadka, V. S. The landscape of bacterial presence in tumor and adjacent normal tissue across 9 major cancer types using TCGA exome sequencing. Comput. Struct. Biotechnol. J. 18, 631–641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li, W. T. et al. The bladder microbiome is associated with epithelial–mesenchymal transition in muscle invasive urothelial bladder carcinoma. Cancers 13, 3649 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Parra-Grande, M. et al. Profiling the bladder microbiota in patients with bladder cancer. Front. Microbiol. 12, 718776 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Pak, S. et al. Association between antibiotic treatment and the efficacy of intravesical BCG therapy in patients with high-risk non-muscle invasive bladder cancer. Front. Oncol. 11, 570077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Agarwal, A. et al. Impact of concurrent medications on outcomes with PD1/PD-L1 inhibitors for metastatic urothelial carcinoma. J. Clin. Oncol. 37, 435–435 (2019).

    Article  Google Scholar 

  180. Khan, M. S., Radakovich, N., Ornstein, M. & Gupta, S. 778P Concomitant antibiotic use and its effect on immune-checkpoint inhibitor efficacy in patients with advanced urothelial carcinoma. Ann. Oncol. 31, S597 (2020).

    Article  Google Scholar 

  181. Ishiyama, Y. et al. Antibiotic use and survival of patients receiving pembrolizumab for chemotherapy-resistant metastatic urothelial carcinoma. Urol. Oncol. 39, 834.e21–834.e28 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Braun, A., Deng, M., Handorf, E. A. & Abbosh, P. Association of antibiotic therapy and treatment efficacy in urothelial cell carcinoma patients receiving immune checkpoint inhibitors. J. Clin. Oncol. 40, 4578–4578 (2022).

    Article  Google Scholar 

  183. Derosa, L. et al. 657MO Antibiotic (ATB) therapy and outcome from nivolumab (N) in metastatic renal cell carcinoma (mRCC) patients (pts): Results of the GETUG-AFU 26 NIVOREN multicentric phase II study. Ann. Oncol. 32, S681 (2021).

    Article  Google Scholar 

  184. Ueda, K. et al. The impact of antibiotics on prognosis of metastatic renal cell carcinoma in Japanese patients treated with immune checkpoint inhibitors. Anticancer. Res. 39, 6265–6271 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Kulkarni, A. A. et al. Comparative analysis of antibiotic exposure association with clinical outcomes of chemotherapy versus immunotherapy across three tumour types. ESMO Open 5, e000803 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Guven, D. C. et al. The association between antibiotic use and survival in renal cell carcinoma patients treated with immunotherapy: a multi-center study. Curr. Probl. Cancer 45, 100760 (2021).

    Article  PubMed  Google Scholar 

  187. Iglesias-Santamaría, A. Impact of antibiotic use and other concomitant medications on the efficacy of immune checkpoint inhibitors in patients with advanced cancer. Clin. Transl. Oncol. 22, 1481–1490 (2020).

    Article  PubMed  Google Scholar 

  188. Masini, C. et al. Results of an Italian CORE-IMMUNO study: safety and clinical-related biomarkers as predictors of immunotherapy (IT) benefit in real-world treatment of various advanced tumors (ATs). J. Clin. Oncol. 37, e14156–e14156 (2019).

    Article  Google Scholar 

  189. Spakowicz, D. et al. Inferring the role of the microbiome on survival in patients treated with immune checkpoint inhibitors: causal modeling, timing, and classes of concomitant medications. BMC Cancer 20, 383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tinsley, N. et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist 25, 55–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Pinato, D. J. et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol. 5, 1774–1778 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Ahmed, J. et al. Use of broad-spectrum antibiotics impacts outcome in patients treated with immune checkpoint inhibitors. Oncoimmunology 7, e1507670 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Abraham, S. N., Sun, D., Dale, J. B. & Beachey, E. H. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336, 682–684 (1988).

    Article  CAS  PubMed  Google Scholar 

  195. Asadi Karam, M. R., Oloomi, M., Mahdavi, M., Habibi, M. & Bouzari, S. Vaccination with recombinant FimH fused with flagellin enhances cellular and humoral immunity against urinary tract infection in mice. Vaccine 31, 1210–1216 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Uehling, D. T., Hopkins, W. J., James, L. J. & Balish, E. Vaginal immunization of monkeys against urinary tract infection with a multi-strain vaccine. J. Urol. 151, 214–216 (1994).

    Article  CAS  PubMed  Google Scholar 

  197. Mike, L. A., Smith, S. N., Sumner, C. A., Eaton, K. A. & Mobley, H. L. T. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl Acad. Sci. USA 113, 13468–13473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Forsyth, V. S. et al. Optimization of an experimental vaccine to prevent Escherichia coli urinary tract infection. mBio 11, e00555–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pen, G. et al. The outer membrane proteins and their synergy triggered the protective effects against pathogenic Escherichia coli. Microorganisms 10, 982 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jodal, U. et al. Local antibodies in childhood urinary tract infection: a preliminary study. Int. Arch. Allergy Appl. Immunol. 47, 537–546 (1974).

    Article  CAS  PubMed  Google Scholar 

  201. Sarkissian, C. A., Alteri, C. J. & Mobley, H. L. T. UTI patients have pre-existing antigen-specific antibody titers against UTI vaccine antigens. Vaccine 37, 4937–4946 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Brumbaugh, A. R. & Mobley, H. L. T. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert. Rev. Vaccines 11, 663–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Klein, R. D. & Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 18, 211–226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Asadi Karam, M. R., Habibi, M. & Bouzari, S. Urinary tract infection: pathogenicity, antibiotic resistance and development of effective vaccines against uropathogenic Escherichia coli. Mol. Immunol. 108, 56–67 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.-G.G., M.R., L.D. and L.Z. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Laurence Zitvogel.

Ethics declarations

Competing interests

L.Z. and A.-G.G. hold a patent entitled “A biomarker and compositions to increase the therapeutic index of neoadjuvant immunotherapy in muscle-invasive urothelial carcinoma” (No. PCT/EP2023/053977). L.Z. has held research contracts with 9 Meters Biopharma, Daiichi Sankyo and Pilege, and was on the Board of Directors of Transgene. L.Z. is a cofounder of everImmune, and its SAB President and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. Among these, patents were licensed to everImmune (US20210346438A1, US20200360449A1) and Transgene (US20200376052A1). L.D. is a consultant for everImmune, and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. L.D. is a member of everImmune SAB. G.K. has been holding research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Tollys and Vascage. G.K. has been consulting for Reithera. G.K. is on the Board of Directors of the Bristol Myers Squibb Foundation France. G.K. is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. G.K. is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders. Among these, patents were licensed to Bayer (WO2014020041-A1, WO2014020043-A1), Bristol Myers Squibb (WO2008057863-A1), Osasuna Therapeutics (WO2019057742A1), PharmaMar (WO2022049270A1 and WO2022048775-A1), Raptor Pharmaceuticals (EP2664326-A1), Samsara Therapeutics (GB202017553D0) and Therafast Bio (EP3684471A1). G.K.’s brother, Romano Kroemer, was an employee of Sanofi and now consults for Boehringer-Ingelheim. M.R. declares no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Donald Lamm and Harry Herr for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Culturomics

High-throughput culture approach optimizing bacterial culture techniques to uncover rare, under-represented, fastidious or hard-to-cultivate bacteria.

Tertiary lymphoid structures

(TLS). Ectopic lymphoid organs that develop in non-lymphoid tissues upon long-lasting exposure to inflammatory signals.

Urinary tract malignancies

Cancers affecting the urinary system (kidney, ureter, bladder and urethra) and the male reproductive system (penis, prostate and testicles). The latter is not dealt with in the present Review.

Urobiome

Microbiota contained in the normal ‘sterile’ urinary tract (without overt infection by pathogens).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goubet, AG., Rouanne, M., Derosa, L. et al. From mucosal infection to successful cancer immunotherapy. Nat Rev Urol 20, 682–700 (2023). https://doi.org/10.1038/s41585-023-00784-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00784-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer