Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regenerative and engineered options for urethroplasty

Abstract

Surgical correction of urethral strictures by substitution urethroplasty — the use of grafts or flaps to correct the urethral narrowing — remains one of the most challenging procedures in urology and is frequently associated with complications, restenosis and poor quality of life for the affected individual. Tissue engineering using different cell types and tissue scaffolds offers a promising alternative for tissue repair and replacement. The past 30 years of tissue engineering has resulted in the development of several therapies that are now in use in the clinic, especially in treating cutaneous, bone and cartilage defects. Advances in tissue engineering for urethral replacement have resulted in several clinical applications that have shown promise but have not yet become the standard of care.

Key points

  • Strategies to engineer the urethra mostly comprise two components — a scaffold to provide structure and cells to provide a barrier from transported fluids; growth factors can also be used to influence cell migration, graft remodelling and vascularization.

  • Several cell sources can successfully differentiate into urothelium, including urine, foreskin, oral mucosa and adipose tissue.

  • Urine-derived and adipose-derived stem cells have proved the most popular for urethral reconstruction owing to their low invasiveness of retrieval, ability to differentiate into different cell lineages, high proliferation potential and strong inhibition of the immune system.

  • Natural and synthetic scaffolds have been extensively investigated in urethral reconstruction, and the general consensus is that seeded patches are needed to successfully correct circumferential urethral defects >5 mm.

  • The first clinical studies using tissue-engineered scaffolds in the urethra showed encouraging results for the translation of these materials from the bench to the operating theatre, but further studies are needed to assess long-term outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The main players in urethral tissue engineering.
Fig. 2: The anatomy and histology of male urethra.

Similar content being viewed by others

References

  1. Alwaal, A., Blaschko, S. D., McAninch, J. W. & Breyer, B. N. Epidemiology of urethral strictures. Transl Androl. Urol. 3, 209–213 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Tritschler, S., Roosen, A., Füllhase, C., Stief, C. G. & Rübben, H. Urethral stricture: etiology, investigation and treatments. Dtsch. Arztebl. Int. 110, 220–226 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Santucci, R. A., Joyce, G. F. & Wise, M. Male urethral stricture disease. J. Urol. 177, 1667–1674 (2007).

    PubMed  Google Scholar 

  4. Mundy, A. R. & Andrich, D. E. Urethral strictures. BJU Int. 107, 6–26 (2011).

    PubMed  Google Scholar 

  5. Davis, N. F. et al. Incidence, cost, complications and clinical outcomes of iatrogenic urethral catheterization injuries: a prospective multi-institutional study. J. Urol. 196, 1473–1477 (2016).

    CAS  PubMed  Google Scholar 

  6. Miller, D. C., Saigal, C. S. & Litwin, M. S. The demographic burden of urologic diseases in America. Urol. Clin. North Am. 36, 11–27 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Baskin, L. S. et al. Biochemical characterization and quantitation of the collagenous components of urethral stricture tissue. J. Urol. 150, 642–647 (1993).

    CAS  PubMed  Google Scholar 

  8. Cavalcanti, A. G., Costa, W. S., Baskin, L. S., McAninch, J. A. & Sampaio, F. J. B. A morphometric analysis of bulbar urethral strictures. BJU Int. 100, 397–402 (2007).

    PubMed  Google Scholar 

  9. Chambers, R. M. & Baitera, B. The anatomy of the urethral stricture. Br. J. Urol. 49, 545–551 (1977).

    CAS  PubMed  Google Scholar 

  10. Singh, M. & Blandy, J. P. The pathology of urethral stricture. J. Urol. 115, 673–676 (1976).

    CAS  PubMed  Google Scholar 

  11. Meeks, J. J., Erickson, B. A., Granieri, M. A. & Gonzalez, C. M. Stricture recurrence after urethroplasty: a systematic review. J. Urol. 182, 1266–1270 (2009).

    PubMed  Google Scholar 

  12. Eltahawy, E. A., Virasoro, R., Schlossberg, S. M., McCammon, K. A. & Jordan, G. H. Long-term followup for excision and primary anastomosis for anterior urethral strictures. J. Urol. 177, 1803–1806 (2007).

    PubMed  Google Scholar 

  13. Ivaz, S., Bugeja, S., Frost, A., Andrich, D. & Mundy, A. R. The nontransecting approach to bulbar urethroplasty. Urol. Clin. North Am. 44, 57–66 (2017).

    PubMed  Google Scholar 

  14. Park, J. J., Kuo, T. L. & Chapple, C. R. Mitomycin C in the treatment of anterior urethral strictures. Nat. Rev. Urol. 15, 717–718 (2018).

    PubMed  Google Scholar 

  15. Ramsay, S., Ringuette-Goulet, C., Langlois, A. & Bolduc, S. Clinical challenges in tissue-engineered urethral reconstruction. Transl Androl. Urol. 5, 267–270 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Wessells, H. et al. Male urethral stricture: American Urological Association guideline. J. Urol. 197, 182–190 (2017).

    PubMed  Google Scholar 

  17. Jordan, G., Chapple, C. & Heyns, C. (eds) Urethral Strictures: An International Consultation on Urethral Strictures (Société Internationale d’Urologie, 2010).

  18. Palminteri, E., Brandes, S. B. & Djordjevic, M. Urethral reconstruction in lichen sclerosus. Curr. Opin. Urol. 22, 478–483 (2012).

    PubMed  Google Scholar 

  19. Wessells, H. & McAninch, J. W. Current controversies in anterior urethral stricture repair: free-graft versus pedicled skin-flap reconstruction. World J. Urol. 16, 175–180 (1998).

    CAS  PubMed  Google Scholar 

  20. de Kemp, V., de Graaf, P., Fledderus, J. O., Ruud Bosch, J. L. H. & de Kort, L. M. O. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLOS ONE 10, e0118653 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Eberli, D., Filho, L. F., Atala, A. & Yoo, J. J. Composite scaffolds for the engineering of hollow organs and tissues. Methods 47, 109–115 (2009).

    CAS  PubMed  Google Scholar 

  22. Bostwick, D. G. & Cheng, L. Urologic Surgical Pathology 2nd edn (Elsevier Health Sciences, 2008).

  23. Orabi, H. et al. Tissue engineering of urinary bladder and urethra: advances from bench to patients. Sci. World J. 2013, 154564 (2013).

    Google Scholar 

  24. Huang, J.-W. et al. Reconstruction of penile urethra with the 3-dimensional porous bladder acellular matrix in a rabbit model. Urology 84, 1499–1505 (2014).

    PubMed  Google Scholar 

  25. Orlandini, S. Z. & Orlandini, G. E. Ultrastructure of human male urethra. Arch. Androl. 23, 51–59 (1989).

    CAS  PubMed  Google Scholar 

  26. da Silva, E. A., Sampaio, F. J. B., Ortiz, V. & Cardoso, L. E. M. Regional differences in the extracellular matrix of the human spongy urethra as evidenced by the composition of glycosaminoglycans. J. Urol. 167, 2183–2187 (2002).

    PubMed  Google Scholar 

  27. Bank, J., Phillips, N. A., Park, J. E. & Song, D. H. Economic analysis and review of the literature on implant-based breast reconstruction with and without the use of the acellular dermal matrix. Aesthetic Plast. Surg. 37, 1194–1201 (2013).

    PubMed  Google Scholar 

  28. Macadam, S. A. & Lennox, P. A. Acellular dermal matrices: economic considerations in reconstructive and aesthetic breast surgery. Clin. Plast. Surg. 39, 187–216 (2012).

    PubMed  Google Scholar 

  29. Badylak, S. F. & Gilbert, T. W. Immune response to biologic scaffold materials. Semin. Immunol. 20, 109–116 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Feil, G. et al. Investigations of urothelial cells seeded on commercially available small intestine submucosa. Eur. Urol. 50, 1330–1337 (2006).

    PubMed  Google Scholar 

  31. Zheng, M. H. et al. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J. Biomed. Mater. Res. B Appl. Biomater. 73, 61–67 (2005).

    CAS  PubMed  Google Scholar 

  32. Gilbert, T. W., Freund, J. M. & Badylak, S. F. Quantification of DNA in biologic scaffold materials. J. Surg. Res. 152, 135–139 (2009).

    CAS  PubMed  Google Scholar 

  33. Dai, Z., Ronholm, J., Tian, Y., Sethi, B. & Cao, X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 7, 2041731416648810 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Micol, L. A. et al. In-vivo performance of high-density collagen gel tubes for urethral regeneration in a rabbit model. Biomaterials 33, 7447–7455 (2012).

    CAS  PubMed  Google Scholar 

  35. Sayeg, K. et al. Integration of collagen matrices into the urethra when implanted as onlay graft. Int. Braz. J. Urol. 39, 414–423 (2013).

    PubMed  Google Scholar 

  36. Pinnagoda, K. et al. Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. Acta Biomater. 43, 208–217 (2016).

    CAS  PubMed  Google Scholar 

  37. Aufderklamm, S. et al. Collagen cell carriers seeded with human urothelial cells for urethral reconstructive surgery: first results in a xenograft minipig model. World J. Urol. 35, 1125–1132 (2017).

    CAS  PubMed  Google Scholar 

  38. Chung, Y. G. et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLOS ONE 9, e91592 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Yang, B. et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng. Part C Methods 16, 1201–1211 (2010).

    CAS  PubMed  Google Scholar 

  40. Atala, A. Tissue engineering for the replacement of organ function in the genitourinary system. Am. J. Transplant. 4 (Suppl. 6), 58–73 (2004).

    CAS  PubMed  Google Scholar 

  41. Mehr, N. G., Li, X., Chen, G., Favis, B. D. & Hoemann, C. D. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds. J. Biomed. Mater. Res. A 103, 2449–2459 (2015).

    CAS  PubMed  Google Scholar 

  42. Melchels, F. P. W. et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32, 2878–2884 (2011).

    CAS  PubMed  Google Scholar 

  43. Brehmer, B., Rohrmann, D., Becker, C., Rau, G. & Jakse, G. Different types of scaffolds for reconstruction of the urinary tract by tissue engineering. Urol. Int. 78, 23–29 (2007).

    PubMed  Google Scholar 

  44. Jia, W. et al. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model. Biomaterials 69, 45–55 (2015).

    CAS  PubMed  Google Scholar 

  45. Zhu, J. et al. A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C. Colloids Surf. B Biointerfaces 135, 416–424 (2015).

    CAS  PubMed  Google Scholar 

  46. Chen, W., Shi, C., Hou, X., Zhang, W. & Li, L. Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration. Tissue Eng. Part A 20, 2234–2242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kikuno, N. et al. Nerve growth factor combined with vascular endothelial growth factor enhances regeneration of bladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder. BJU Int. 103, 1424–1428 (2009).

    CAS  PubMed  Google Scholar 

  48. Jerman, U. D., Veranič, P. & Kreft, M. E. Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng. Part C Methods 20, 317–327 (2014).

    CAS  PubMed  Google Scholar 

  49. Wang, F. et al. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med. Sci. Monit. 20, 2430–2438 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Niknejad, H. et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cell. Mater. 15, 88–99 (2008).

    CAS  PubMed  Google Scholar 

  51. Mamede, A. C. et al. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res. 349, 447–458 (2012).

    CAS  PubMed  Google Scholar 

  52. FitzGerald, J. F. & Kumar, A. S. Biologic versus synthetic mesh reinforcement: what are the pros and cons? Clin. Colon Rectal Surg. 27, 140–148 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Jones, I., Currie, L. & Martin, R. A guide to biological skin substitutes. Br. J. Plast. Surg. 55, 185–193 (2002).

    CAS  PubMed  Google Scholar 

  54. Singh, A. et al. Biomanufacturing seamless tubular and hollow collagen scaffolds with unique design features and biomechanical properties. Adv. Healthc. Mater. 6, 1601136 (2017).

    Google Scholar 

  55. Jeong, S. I. et al. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds. Biomaterials 25, 5939–5946 (2004).

    CAS  PubMed  Google Scholar 

  56. Jeong, S. I. et al. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Biomacromolecules 5, 1303–1309 (2004).

    CAS  PubMed  Google Scholar 

  57. Sartoneva, R. et al. Characterizing and optimizing poly-l-lactide-co-ε-caprolactone membranes for urothelial tissue engineering. J. R. Soc. Interface 9, 3444–3454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sung, H.-J., Meredith, C., Johnson, C. & Galis, Z. S. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25, 5735–5742 (2004).

    CAS  PubMed  Google Scholar 

  59. Zhang, K. et al. Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study. Int. J. Mol. Sci. 16, 27659–27676 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, J.-H. et al. Continued sustained release of VEGF by PLGA nanospheres modified BAMG stent for the anterior urethral reconstruction of rabbit. Asian Pac. J. Trop. Med. 6, 481–484 (2013).

    CAS  PubMed  Google Scholar 

  61. Imani, R. et al. Biocompatibility of different nanostructured TiO2 scaffolds and their potential for urologic applications. Protoplasma 253, 1439–1447 (2016).

    CAS  PubMed  Google Scholar 

  62. Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008).

    CAS  PubMed  Google Scholar 

  63. Alpaslan, E., Ercan, B. & Webster, T. J. Anodized 20 nm diameter nanotubular titanium for improved bladder stent applications. Int. J. Nanomed. 6, 219–225 (2011).

    CAS  Google Scholar 

  64. Zhang, Y. S. et al. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45, 148–163 (2017).

    PubMed  Google Scholar 

  65. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    CAS  PubMed  Google Scholar 

  66. Mandrycky, C., Wang, Z., Kim, K. & Kim, D.-H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).

    CAS  PubMed  Google Scholar 

  67. Lee, V. et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods 20, 473–484 (2014).

    CAS  PubMed  Google Scholar 

  68. Kesti, M. et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv. Funct. Mater. 25, 7406–7417 (2015).

    Google Scholar 

  69. Lee, V. K. et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35, 8092–8102 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y. et al. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol. 180, 2226–2233 (2008).

    CAS  PubMed  Google Scholar 

  71. Fullhase, C., Soler, R., Atala, A., Andersson, K.-E. & Yoo, J. J. A. Novel hybrid printing system for the generation of organized bladder tissue. J. Urol. 181, 282–283 (2009).

    Google Scholar 

  72. Zhang, K. et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 50, 154–164 (2017).

    CAS  PubMed  Google Scholar 

  73. Gu, B. K. et al. 3-Dimensional bioprinting for tissue engineering applications. Biomater. Res. 20, 12 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Owaki, T., Shimizu, T., Yamato, M. & Okano, T. Cell sheet engineering for regenerative medicine: current challenges and strategies. Biotechnol. J. 9, 904–914 (2014).

    CAS  PubMed  Google Scholar 

  75. Thomas, D. et al. Scaffold and scaffold-free self-assembled systems in regenerative medicine. Biotechnol. Bioeng. 113, 1155–1163 (2016).

    CAS  PubMed  Google Scholar 

  76. Neo, P. Y. et al. Stem cell-derived cell-sheets for connective tissue engineering. Connect. Tissue Res. 57, 428–442 (2016).

    CAS  PubMed  Google Scholar 

  77. Ge, Y., Gong, Y. Y., Xu, Z., Lu, Y. & Fu, W. The application of sheet technology in cartilage tissue engineering. Tissue Eng. Part B Rev. 22, 114–124 (2016).

    PubMed  Google Scholar 

  78. Laschke, M. W. & Menger, M. D. Prevascularization in tissue engineering: current concepts and future directions. Biotechnol. Adv. 34, 112–121 (2016).

    CAS  PubMed  Google Scholar 

  79. Akiyama, Y., Kikuchi, A., Yamato, M. & Okano, T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20, 5506–5511 (2004).

    CAS  PubMed  Google Scholar 

  80. Kushida, A. et al. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J. Biomed. Mater. Res. 45, 355–362 (1999).

    CAS  PubMed  Google Scholar 

  81. Masuda, S. & Shimizu, T. Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv. Drug Deliv. Rev. 96, 103–109 (2016).

    CAS  PubMed  Google Scholar 

  82. Lee, E. L. & von Recum, H. A. Cell culture platform with mechanical conditioning and nondamaging cellular detachment. J. Biomed. Mater. Res. A 93, 411–418 (2010).

    PubMed  Google Scholar 

  83. Yang, J. et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26, 6415–6422 (2005).

    CAS  PubMed  Google Scholar 

  84. Antoni, D., Burckel, H., Josset, E. & Noel, G. Three-dimensional cell culture: a breakthrough in vivo. Int. J. Mol. Sci. 16, 5517–5527 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bancroft, G. N. et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl Acad. Sci. USA 99, 12600–12605 (2002).

    CAS  PubMed  Google Scholar 

  86. Liu, Y., Bharadwaj, S., Lee, S. J., Atala, A. & Zhang, Y. Optimization of a natural collagen scaffold to aid cell–matrix penetration for urologic tissue engineering. Biomaterials 30, 3865–3873 (2009).

    CAS  PubMed  Google Scholar 

  87. Sikavitsas, V. I., Bancroft, G. N., Holtorf, H. L., Jansen, J. A. & Mikos, A. G. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl Acad. Sci. USA 100, 14683–14688 (2003).

    CAS  PubMed  Google Scholar 

  88. Zhang, Y. et al. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J. Urol. 164, 928–935 (2000).

    CAS  PubMed  Google Scholar 

  89. Becker, C. & Jakse, G. Stem cells for regeneration of urological structures. Eur. Urol. 51, 1217–1228 (2007).

    PubMed  Google Scholar 

  90. De Filippo, R. E., Yoo, J. J. & Atala, A. Urethral replacement using cell seeded tubularized collagen matrices. J. Urol. 168, 1789–1793 (2002).

    PubMed  Google Scholar 

  91. Cilento, B. G., Freeman, M. R., Schneck, F. X., Retik, A. B. & Atala, A. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J. Urol. 152, 665–670 (1994).

    CAS  PubMed  Google Scholar 

  92. Nagele, U. et al. In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. Eur. Urol. 54, 1414–1422 (2008).

    PubMed  Google Scholar 

  93. Birder, L. A. & de Groat, W. C. Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat. Clin. Pract. Urol. 4, 46–54 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Daher, A. et al. Growth, differentiation and senescence of normal human urothelium in an organ-like culture. Eur. Urol. 45, 799–805 (2004).

    PubMed  Google Scholar 

  95. Chamorro, C. I. et al. A study on proliferation and gene expression in normal human urothelial cells in culture. Tissue Eng. Part A 21, 510–517 (2015).

    CAS  PubMed  Google Scholar 

  96. Papafotiou, G. et al. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 7, 11914 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Versteegden, L. R. M. et al. Tissue engineering of the urethra: a systematic review and meta-analysis of preclinical and clinical studies. Eur. Urol. 72, 594–606 (2017).

    PubMed  Google Scholar 

  98. Fu, Q., Deng, C., Liu, W. & Cao, Y. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int. 99, 1162–1165 (2007).

    PubMed  Google Scholar 

  99. Kimball, J. R., Nittayananta, W., Klausner, M., Chung, W. O. & Dale, B. A. Antimicrobial barrier of an in vitro oral epithelial model. Arch. Oral Biol. 51, 775–783 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, C. et al. Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J. Urol. 180, 1538–1542 (2008).

    PubMed  Google Scholar 

  101. Bhargava, S., Chapple, C. R., Bullock, A. J., Layton, C. & MacNeil, S. Tissue-engineered buccal mucosa for substitution urethroplasty. BJU Int. 93, 807–811 (2004).

    CAS  PubMed  Google Scholar 

  102. Stephens, P. et al. Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br. J. Dermatol. 144, 229–237 (2001).

    CAS  PubMed  Google Scholar 

  103. Feng, C., Xu, Y., Fu, Q., Zhu, W. & Cui, L. Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng. Part A 17, 3011–3019 (2011).

    CAS  PubMed  Google Scholar 

  104. Rajasekaran, M., Kasyan, A., Allilain, W. & Monga, M. Ex vivo expression of angiogenic growth factors and their receptors in human penile cavernosal cells. J. Androl. 24, 85–90 (2003).

    CAS  PubMed  Google Scholar 

  105. Sa, Y., Li, C., Li, H. & Guo, H. TIMP-1 induces a-smooth muscle actin in fibroblasts to promote urethral scar formation. Cell. Physiol. Biochem. 35, 2233–2243 (2015).

    CAS  PubMed  Google Scholar 

  106. Aoki, M. et al. siRNA knockdown of tissue inhibitor of metalloproteinase-1 in keloid fibroblasts leads to degradation of collagen type I. J. Invest. Dermatol. 134, 818–826 (2014).

    CAS  PubMed  Google Scholar 

  107. Guo, H. et al. Urethral reconstruction with small intestinal submucosa seeded with oral keratinocytes and TIMP-1 siRNA transfected fibroblasts in a rabbit model. Urol. Int. 96, 223–230 (2015).

    PubMed  Google Scholar 

  108. Morrison, S. J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074 (2006).

    CAS  PubMed  Google Scholar 

  109. Dozmorov, M. G., Kropp, B. P., Hurst, R. E., Cheng, E. Y. & Lin, H.-K. Differentially expressed gene networks in cultured smooth muscle cells from normal and neuropathic bladder. J. Smooth Muscle Res. 43, 55–72 (2007).

    PubMed  Google Scholar 

  110. Subramaniam, R., Hinley, J., Stahlschmidt, J. & Southgate, J. Tissue engineering potential of urothelial cells from diseased bladders. J. Urol. 186, 2014–2020 (2011).

    CAS  PubMed  Google Scholar 

  111. Mauney, J. R. et al. All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PLOS ONE 5, e11513 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. Kinebuchi, Y. et al. Direct induction of layered tissues from mouse embryonic stem cells: potential for differentiation into urinary tract tissue. Cell Tissue Res. 331, 605–615 (2008).

    CAS  PubMed  Google Scholar 

  113. Oottamasathien, S. et al. Directed differentiation of embryonic stem cells into bladder tissue. Dev. Biol. 304, 556–566 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu, S. et al. Urothelial differentiation of human umbilical cord-derived mesenchymal stromal cells in vitro. Anal. Cell. Pathol. (Amst.) 36, 63–69 (2013).

    CAS  Google Scholar 

  115. Sun, D. et al. Engineering of pre-vascularized urethral patch with muscle flaps and hypoxia-activated hUCMSCs improves its therapeutic outcome. J. Cell. Mol. Med. 18, 434–443 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Clément, F. et al. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell. Investig. 4, 67 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Tian, H. et al. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng. Part A 16, 1769–1779 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ullah, I., Subbarao, R. B. & Rho, G. J. Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 35, e00191 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Anumanthan, G. et al. Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J. Urol. 180, 1778–1783 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, D. et al. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. Connect. Tissue Res. 56, 434–439 (2015).

    CAS  PubMed  Google Scholar 

  121. Brzoska, M., Geiger, H., Gauer, S. & Baer, P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem. Biophys. Res. Commun. 330, 142–150 (2005).

    CAS  PubMed  Google Scholar 

  122. Zhao, Z. et al. Differentiate into urothelium and smooth muscle cells from adipose tissue-derived stem cells for ureter reconstruction in a rabbit model. Am. J. Transl Res. 8, 3757 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, M. et al. Differentiation of human adipose-derived stem cells co-cultured with urothelium cell line toward a urothelium-like phenotype in a nude murine model. Urology 81, 465.e15–465.e22 (2013).

    Google Scholar 

  124. Zhang, M. et al. The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation. PLOS ONE 9, e95583 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Wang, Y., Fu, Q., Zhao, R.-Y. & Deng, C.-L. Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor. Biotechnol. Lett. 36, 1909–1916 (2014).

    CAS  PubMed  Google Scholar 

  126. Li, H. et al. Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng. Part A 20, 774–784 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, S., Liu, Y., Bharadwaj, S., Atala, A. & Zhang, Y. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32, 1317–1326 (2011).

    PubMed  Google Scholar 

  128. Bharadwaj, S. et al. Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology: multipotential of human urine derived stem cells. Stem Cells 31, 1840–1856 (2013).

    CAS  PubMed  Google Scholar 

  129. Kang, H. S. et al. Advanced properties of urine derived stem cells compared to adipose tissue derived stem cells in terms of cell proliferation, immune modulation and multi differentiation. J. Kor. Med. Sci. 30, 1764–1776 (2015).

    CAS  Google Scholar 

  130. Palminteri, E., Berdondini, E., Colombo, F. & Austoni, E. Small intestinal submucosa (SIS) graft urethroplasty: short-term results. Eur. Urol. 51, 1695–1701 (2007).

    PubMed  Google Scholar 

  131. Villoldo, G. M. et al. Histologic changes after urethroplasty using small intestinal submucosa unseeded with cells in rabbits with injured urethra. Urology 81, 1380.e1–1380.e5 (2013).

    Google Scholar 

  132. Kropp, B. P. et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 52, 138–142 (1998).

    CAS  PubMed  Google Scholar 

  133. Chen, F., Yoo, J. J. & Atala, A. Acellular collagen matrix as a possible ‘off the shelf’ biomaterial for urethral repair. Urology 54, 407–410 (1999).

    CAS  PubMed  Google Scholar 

  134. Dorin, R. P., Pohl, H. G., Filippo, R. E. D., Yoo, J. J. & Atala, A. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J. Urol. 26, 323–326 (2008).

    PubMed  Google Scholar 

  135. Nuininga, J. E. et al. Urethral reconstruction of critical defects in rabbits using molecularly defined tubular type I collagen biomatrices: key issues in growth factor addition. Tissue Eng. Part A 16, 3319–3328 (2010).

    CAS  PubMed  Google Scholar 

  136. Arenas da Silva, L. F. et al. Is there a need for smooth muscle cell transplantation in urethral reconstruction? Tissue Eng. Part A 20, 1542–1549 (2014).

    CAS  PubMed  Google Scholar 

  137. Orabi, H., AbouShwareb, T., Zhang, Y., Yoo, J. J. & Atala, A. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur. Urol. 63, 531–538 (2013).

    PubMed  Google Scholar 

  138. Xue, J.-D., Gao, J., Fu, Q., Feng, C. & Xie, H. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: a systematic review and meta-analysis. Exp. Biol. Med. 241, 1416–1428 (2016).

    CAS  Google Scholar 

  139. Voytik-Harbin, S. L., Brightman, A. O., Waisner, B. Z., Robinson, J. P. & Lamar, C. H. Small intestinal submucosa: a tissue-derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro. Tissue Eng. 4, 157–174 (1998).

    Google Scholar 

  140. Heise, R. L., Ivanova, J., Parekh, A. & Sacks, M. S. Generating elastin-rich small intestinal submucosa-based smooth muscle constructs utilizing exogenous growth factors and cyclic mechanical stimulation. Tissue Eng. Part A 15, 3951–3960 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sharma, A. K. et al. Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration. J. Urol. 182, 1898–1905 (2009).

    PubMed  Google Scholar 

  142. Sharma, A. K. et al. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials 31, 6207–6217 (2010).

    CAS  PubMed  Google Scholar 

  143. Jiang, X. et al. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci. Rep. 6, 20784 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gnecchi, M., Danieli, P., Malpasso, G. & Ciuffreda, M. C. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol. Biol. 1416, 123–146 (2016).

    CAS  PubMed  Google Scholar 

  145. Moon, J. J. & West, J. L. Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr. Top. Med. Chem. 8, 300–310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Estrada, R. et al. Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J. Cell. Physiol. 219, 563–571 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Conidi, A., van den Berghe, V. & Huylebroeck, D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int. J. Mol. Sci. 14, 6690–6719 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, F. et al. New insights into the pathogenesis and treatment of peritoneal fibrosis: a potential role of Wnt/β-catenin induced epithelial to mesenchymal transition and stem cells for therapy. Med. Hypotheses 81, 97–100 (2013).

    CAS  PubMed  Google Scholar 

  149. Xie, H., Feng, C., Fu, Q., Sa, Y.-L. & Xu, Y.-M. Crosstalk between TGF-β1 and CXCR3 signaling during urethral fibrosis. Mol. Cell. Biochem. 394, 283–290 (2014).

    CAS  PubMed  Google Scholar 

  150. Enzo, M. V., Rastrelli, M., Rossi, C. R., Hladnik, U. & Segat, D. The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. Mol. Cell. Ther. 3, 1 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. el-Kassaby, A., AbouShwareb, T. & Atala, A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J. Urol. 179, 1432–1436 (2008).

    PubMed  Google Scholar 

  152. Ram-Liebig, G. et al. Results of use of tissue-engineered autologous oral mucosa graft for urethral reconstruction: a multicenter, prospective, observational trial. EBioMedicine 23, 185–192 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Lumen, N., Oosterlinck, W. & Hoebeke, P. Urethral reconstruction using buccal mucosa or penile skin grafts: systematic review and meta-analysis. Urol. Int. 89, 387–394 (2012).

    CAS  PubMed  Google Scholar 

  154. Barbagli, G. et al. Bulbar urethroplasty using buccal mucosa grafts placed on the ventral, dorsal or lateral surface of the urethra: are results affected by the surgical technique? J. Urol. 174, 955–957 (2005).

    PubMed  Google Scholar 

  155. Liu, J. S., Dong, C. & Gonzalez, C. M. Risk factors and timing of early stricture recurrence after urethroplasty. Urology 95, 202–207 (2016).

    PubMed  Google Scholar 

  156. Kulkarni, S. B., Joshi, P. M. & Venkatesan, K. Management of panurethral stricture disease in India. J. Urol. 188, 824–830 (2012).

    PubMed  Google Scholar 

  157. Barbagli, G. & Lazzeri, M. Clinical experience with urethral reconstruction using tissue-engineered oral mucosa: a quiet revolution. Eur. Urol. 68, 917–918 (2015).

    PubMed  Google Scholar 

  158. Corradini, F. et al. Comparative assessment of cultures from oral and urethral stem cells for urethral regeneration. Curr. Stem Cell Res. Ther. 11, 643–651 (2016).

    CAS  PubMed  Google Scholar 

  159. Barbagli, G. et al. Anterior urethroplasty using a new tissue engineered oral mucosa graft: surgical techniques and outcomes. J. Urol. 200, 448–456 (2018).

    PubMed  Google Scholar 

  160. Pellegrini, G. et al. Design of a trial for hypospadias failure treatment, a regenerative medicine approach [abstract MP81-13]. J. Urol. 199 (Suppl. 4), e1101 (2018).

    Google Scholar 

Download references

Reviewer information

Nature Reviews Urology thanks R. Santucci, A. Mundy and M. Lazzeri for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

N.A.S. and F.P. researched data for the article and wrote the manuscript. All authors made substantial contributions to discussions of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nikolai A. Sopko.

Ethics declarations

Competing interests

N.A.S. declares employment with PolarityTE. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pederzoli, F., Joice, G., Salonia, A. et al. Regenerative and engineered options for urethroplasty. Nat Rev Urol 16, 453–464 (2019). https://doi.org/10.1038/s41585-019-0198-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0198-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research