Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards clinical application of tissue engineering for erectile penile regeneration

Abstract

Penile wounds after traumatic and surgical amputation require reconstruction in the form of autologous tissue transfers. However, currently used techniques are associated with high infection rates, implant erosion and donor site morbidity. The use of tissue-engineered neocorpora provides an alternative treatment option. Contemporary tissue-engineering strategies enable the seeding of a biomaterial scaffold and subsequent implantation to construct a neocorpus. Tissue engineering of penile tissue should focus on two main strategies: first, correcting the volume deficit for structural integrity in order to enable urinary voiding in the standing position and second, achieving erectile function for sexual activity. The functional outcomes of the neocorpus can be addressed by optimizing the use of stem cells and scaffolds, or alternatively, the use of gene therapy. Current research in penile tissue engineering is largely restricted to rodent and rabbit models, but the use of larger animal models should be considered as a better representation of the anatomical and physiological function in humans. The development of a cell-seeded scaffold to achieve and maintain erection continues to be a considerable challenge in humans. However, advances in penile tissue engineering show great promise and, in combination with gene therapy and surgical techniques, have the potential to substantially improve patient outcomes.

Key points

  • Reconstruction of the erectile tissue has a variety of indications, including trauma, surgical amputation, gender affirmation and Peyronie’s disease.

  • Current surgical treatments for penile reconstruction and erectile dysfunction are associated with high complication rates, emphasizing the need for a tissue-engineered approach.

  • The goals of penile tissue engineering are to cosmetically correct volume deficits, to accomplish urinary voiding and to achieve erectile function.

  • To date, most studies investigating tissue engineering for erectile penile regeneration have been preclinical trials in animal models.

  • Contemporary tissue-engineering strategies enable the seeding of a biomaterial scaffold and implantation to construct a neocorpus; the use of induced pluripotent stem cells and 3D-bioprinted scaffolds can provide a patient-specific approach to penile tissue engineering.

  • The use of gene therapy in erectile tissues has only been successfully performed in one human clinical trial; however, it has the potential to enhance neurogenic and vasculogenic regeneration, increasing blood flow, and increasing growth factor delivery to the corpus cavernosum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of the penis in humans and animal models.
Fig. 2: The process of tissue engineering neocorpora.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Salgado, C. J. et al. Reconstruction of the penis after surgery. Urol. Clin. North Am. 37, 379–401 (2010).

    Google Scholar 

  2. Veale, D. et al. Sexual functioning and behavior of men with body dysmorphic disorder concerning penis size compared with men anxious about penis size and with controls: a cohort study. Sex. Med. 3, 147–155 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Felici, N. & Felici, A. A new phalloplasty technique: the free anterolateral thigh flap phalloplasty. J. Plast. Reconstr. Aesthet. Surg. 59, 153–157 (2006).

    CAS  PubMed  Google Scholar 

  4. Montague, D. K. & Angermeier, K. W. Operative Urology at the Cleveland Clinic (Humana, 2006).

  5. Byun, J., Cho, B. & Baik, B. Results of one-stage penile reconstruction using an innervated radial osteocutaneous flap. J. Reconstr. Microsurg. 10, 321-331 (2008).

  6. Young, V. L., Khouri, R. K., Lee, G. W. & Nemecek, J. A. Advances in total phalloplasty and urethroplasty with microvascular free flaps. Clin. Plast. Surg. 19, 927–938 (1992).

    CAS  PubMed  Google Scholar 

  7. Kayes, O., Shabbir, M., Ralph, D. & Minhas, S. Therapeutic strategies for patients with micropenis or penile dysmorphic disorder. Nat. Rev. Urol. 9, 499–507 (2012).

    PubMed  Google Scholar 

  8. Williams, M. & Jezior, J. Management of combat-related urological trauma in the modern era. Nat. Rev. Urol. 10, 504–512 (2013).

    PubMed  Google Scholar 

  9. Morrison, S. D., Chen, M. L. & Crane, C. N. An overview of female-to-male gender-confirming surgery. Nat. Rev. Urol. 14, 486–500 (2017).

    PubMed  Google Scholar 

  10. Cimador, M., Catalano, P., Ortolano, R. & Giuffrè, M. The inconspicuous penis in children. Nat. Rev. Urol. 12, 205–215 (2015).

    PubMed  Google Scholar 

  11. Dean, R. C. & Lue, T. F. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol. Clin. North Am. 32, 379–395 (2005).

    PubMed  PubMed Central  Google Scholar 

  12. Xie, X. et al. Construction of engineered corpus cavernosum with primary mesenchymal stem cells in vitro. Sci. Rep. 7, 18053 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Sathananthan, A. H., Adaikan, P. G., Lau, L. C., Ho, J. & Ratnam, S. S. Fine structure of the human corpus cavernosum. Arch. Androl. 26, 107–117 (1991).

    CAS  PubMed  Google Scholar 

  14. Wespes, E. Cavernosal smooth muscle biopsy is a useful tool in the diagnosis of erectile dysfunction. Curr. Sex. Health Rep. 10, e0140728 (2007).

    Google Scholar 

  15. Costa, W. S., Carrerete, F. B., Horta, W. G. & Sampaio, F. J. B. Comparative analysis of the penis corpora cavernosa in controls and patients with erectile dysfunction. BJU Int. 97, 567–569 (2006).

    PubMed  Google Scholar 

  16. Shafik, A. et al. Histologic study of the tunica albuginea of the penis and mode of cavernosus muscles’ insertion in it. Arch. Androl. 52, 1–8 (2006).

    CAS  PubMed  Google Scholar 

  17. Yao, A. et al. Total penile reconstruction: a systematic review. J. Plast. Reconstr. Aesthet. Surg. 71, 788–806 (2018).

    CAS  PubMed  Google Scholar 

  18. Govier, F. E., Gibbons, R. P., Correa, R. J., Pritchett, T. R. & Kramer-Levien, D. Mechanical reliability, surgical complications, and patient and partner satisfaction of the modern three-piece inflatable penile prosthesis. Urology 52, 282–286 (1998).

    CAS  PubMed  Google Scholar 

  19. Minervini, A., Ralph, D. J. & Pryor, J. P. Outcome of penile prosthesis implantation for treating erectile dysfunction: experience with 504 procedures. BJU Int. 97, 129–133 (2006).

    PubMed  Google Scholar 

  20. Hoebeke, P. B. et al. Erectile implants in female-to-male transsexuals: our experience in 129 patients. Eur. Urol. 57, 334–340 (2010).

    PubMed  Google Scholar 

  21. Carson, C. C., Mulcahy, J. J. & Govier, F. E. Efficacy and safety of outcomes of the AMS 700CX inflatable penile prosthesis. J. Urol. 164, 376–380 (2003).

    Google Scholar 

  22. Garaffa, G., Raheem, A. A. & Ralph, D. J. An update on penile reconstruction. Asian J. Androl. 13, 391–394 (2011).

  23. van der Merwe, A. et al. Penile allotransplantation for penis amputation following ritual circumcision: a case report with 24 months of follow-up. Lancet 390, 1038–1047 (2017).

    PubMed  Google Scholar 

  24. Hu, W. et al. A preliminary report of penile transplantation. Eur. Urol. 50, 851–853 (2006).

    PubMed  Google Scholar 

  25. Cetrulo Jr, C. L. et al. Penis transplantation: first US experience. Ann. Surg. 267, 983–988 (2017).

  26. Sopko, N. A. & Burnett, A. L. Penile transplantation is here. Lancet 390, 1008–1010 (2017).

  27. Szafran, A. A., Redett, R. & Burnett, A. L. Penile transplantation: the US experience and institutional program set-up. Transl. Androl. Urol. 7, 639–645 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Kueckelhaus, M. et al. Vascularized composite allotransplantation: current standards and novel approaches to prevent acute rejection and chronic allograft deterioration. Transpl. Int. 29, 655–662 (2016).

    PubMed  Google Scholar 

  29. Monstrey, S. et al. Penile reconstruction: is the radial forearm flap really the standard technique? Plast. Reconstr. Surg. 124, 510–518 (2009).

    CAS  PubMed  Google Scholar 

  30. Park, H. J., Yoo, J. J., Kershen, R. T., Moreland, R. & Atala, A. Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J. Urol. 162, 1106–1109 (1999).

    CAS  PubMed  Google Scholar 

  31. Kovanecz, I. et al. Implanted muscle-derived stem cells ameliorate erectile dysfunction in a rat model of type 2 diabetes, but their repair capacity is impaired by their prior exposure to the diabetic milieu. J. Sex. Med. 13, 786–797 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Cengiz, T. et al. Intracavernous injection of human umbilical cord blood mononuclear cells improves erectile dysfunction in streptozotocin-induced diabetic rats. J. Sex. Med. 14, 50–58 (2017).

    PubMed  Google Scholar 

  33. Sun, X., Luo, L. H., Feng, L., Li, D. S. & Zhong, K. B. Cell lymphoma-2-modified bone marrow-derived mesenchymal stem cells transplantation for the treatment of diabetes mellitus-induced erectile dysfunction in a rat model. Urol. Int. 98, 358–366 (2017).

    CAS  PubMed  Google Scholar 

  34. Inoue, S. et al. Regeneration of rat corpora cavernosa tissue by transplantation of CD133+ cells derived from human bone marrow and placement of biodegradable gel sponge sheet. Asian J. Androl. 19, 203–207 (2017).

    CAS  PubMed  Google Scholar 

  35. An, G., Ji, C., Wei, Z., Chen, H. & Zhang, J. Engineering of corpus cavernosum using vascular endothelial growth factor-expressing muscle-derived stem cells seeded on acellular corporal collagen matrices. Urology 81, 424–431 (2013).

    PubMed  Google Scholar 

  36. Ji, C. et al. Construction of tissue-engineered corpus cavernosum with muscle-derived stem cells and transplantation in vivo. BJU Int. 107, 1638–1646 (2011).

    PubMed  Google Scholar 

  37. Bae, J. H. et al. Comparison between subcutaneous injection of basic fibroblast growth factor-hydrogel and intracavernous injection of adipose-derived stem cells in a rat model of cavernous nerve injury. Urology 84, 1248.e1–1248.e7 (2014).

    Google Scholar 

  38. An, G., Ji, C., Wei, Z., Chen, H. & Zhang, J. The therapeutic role of VEGF-expressing muscle-derived stem cells in acute penile cavernosal injury. J. Sex. Med. 9, 1988–2000 (2012).

    CAS  PubMed  Google Scholar 

  39. Kajbafzadeh, A. M. et al. In vivo human corpus cavernosum regeneration: fabrication of tissue-engineered corpus cavernosum in rat using the body as a natural bioreactor. Int. Urol. Nephrol. 49, 1193–1199 (2017).

    CAS  PubMed  Google Scholar 

  40. Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16, 109–110 (1983).

    CAS  PubMed  Google Scholar 

  41. Piao, S. et al. The mouse as a model for the study of penile erection: moving towards a smaller animal. Int. J. Androl. 30, 452–457 (2007).

    PubMed  Google Scholar 

  42. Kapoor, M. S., Khan, S. A., Gupta, S. K., Choudhary, R. & Bodakhe, S. H. Animal models of erectile dysfunction. J. Pharmacol. Toxicol. Methods 76, 43–54 (2015).

    CAS  PubMed  Google Scholar 

  43. McMurray, G., Casey, J. H. & Naylor, A. M. Animal models in urological disease and sexual dysfunction. Br. J. Pharmacol. 147, S62–S79 (2006).

    Google Scholar 

  44. Misra, A. in Biotechnology: Recent Trends and Emerging Dimensions (eds Bhargava, A. & Srivastava, S.) 123–140 (CRC Press, 2017).

  45. Atala, A., Yoo, J. J., Falke, G., Kwon, T. G. & Moreland, R. Formation of corporal tissue architecture in vivo using human cavernosal muscle and endothelial cells seeded on collagen matrices. Tissue Eng. 9, 871–879 (2003).

    PubMed  Google Scholar 

  46. Pederzoli, F., Joice, G., Salonia, A., Bivalacqua, T. J. & Sopko, N. A. Regenerative and engineered options for urethroplasty. Nat. Rev. Urol. 16, 453–464 (2019).

    CAS  PubMed  Google Scholar 

  47. Kwon, T. G., Yoo, J. J. & Atala, A. Autologous penile corpora cavernosa replacement using tissue engineering techniques. J. Urol. 168, 1754–1758 (2002).

    Google Scholar 

  48. Eberli, D., Susaeta, R., Yoo, J. J. & Atala, A. A method to improve cellular content for corporal tissue engineering. Tissue Eng. Part A 14, 1581–1589 (2008).

    PubMed  Google Scholar 

  49. Chen, K.-L., Eberli, D., Yoo, J. J. & Atala, A. Bioengineered corporal tissue for structural and functional restoration of the penis. Proc. Natl Acad. Sci. USA 107, 3346–3350 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Taylor, J. & Eardley, I. Peyronie’s disease: assessment and treatment options. Trends Urol. Mens Health 2, 35–38 (2011).

    Google Scholar 

  51. Brock, J. W. et al. Use of small intestinal submucosa for corporal body grafting in cases of severe penile curvature. J. Urol. 168, 1742–1745 (2003).

    Google Scholar 

  52. Horton, C. E., Gearhart, J. P. & Jeffs, R. D. Dermal grafts for correction of severe chordee associated with hypospadias. J. Urol. 150, 452–455 (1993).

    PubMed  Google Scholar 

  53. Pope IV, J. C. et al. Penile orthoplasty using dermal grafts in the outpatient setting. Urology 48, 124–127 (1996).

    Google Scholar 

  54. Vandersteen, D. R. & Husmann, D. A. Late onset recurrent penile chordee after successful correction at hypospadias repair. J. Urol. 160, 1131–1133 (1998).

    CAS  PubMed  Google Scholar 

  55. Caesar, R. E. & Caldamone, A. A. The use of free grafts for correcting penile chordee. J. Urol. 164, 1691–1693 (2000).

    CAS  PubMed  Google Scholar 

  56. Perlmutter, A. D., Montgomery, B. T. & Steinhardt, G. F. Tunica vaginalis free graft for the correction of chordee. J. Urol. 134, 311–313 (1985).

    CAS  PubMed  Google Scholar 

  57. Schultheiss, D. et al. Functional tissue engineering of autologous tunica albuginea: a possible graft for Peyronie’s disease surgery. Eur. Urol. 45, 781–786 (2004).

    PubMed  Google Scholar 

  58. Patel, M. N. & Atala, A. Tissue engineering of the penis. Sci. World J. 11, 2567–2578 (2011).

    Google Scholar 

  59. de Vocht, D. E. C. M. et al. A systematic review on cell-seeded tissue engineering of penile corpora. J. Tissue Eng. Regen. Med. 12, 687–694 (2018).

    PubMed  Google Scholar 

  60. Chan, C. K. F. et al. Identification of the human skeletal stem cell. Cell 175, 43–56.e21 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Baiguera, S., Jungebluth, P., Mazzanti, B. & MacChiarini, P. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl. Int. 25, 369–382 (2012).

    CAS  PubMed  Google Scholar 

  62. Xie, C., Ritchie, R. P., Huang, H., Zhang, J. & Chen, Y. E. Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler. Thromb. Vasc. Biol. 31, 1485–1494 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Song, Y. S. et al. Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int. J. Impot. Res. 19, 378–385 (2007).

    CAS  PubMed  Google Scholar 

  64. Kendirci, M. et al. Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury. J. Urol. 184, 1560–1566 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Urish, K., Kanda, Y. & Huard, J. Initial failure in myoblast transplantation therapy has led the way toward the isolation of muscle stem cells: potential for tissue regeneration. Curr. Top. Dev. Biol. 68, 263–280 (2005).

    PubMed  Google Scholar 

  66. Usas, A. & Huard, J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28, 5401–5406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Deasy, B. M., Li, Y. & Huard, J. Tissue engineering with muscle-derived stem cells. Cur. Opin. Biotechnol. 28, 5401–5406 (2004).

    Google Scholar 

  68. Hwang, J. H. et al. Isolation of muscle derived stem cells from rat and its smooth muscle differentiation. Mol. Cells 17, 57–61 (2004).

    CAS  PubMed  Google Scholar 

  69. Cherubino, M. & Marra, K. G. Adipose-derived stem cells for soft tissue reconstruction. Regen. Med. 4, 109–117 (2009).

    PubMed  Google Scholar 

  70. Ning, H. et al. Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cell. J. Sex. Med. 6, 967–979 (2009).

    CAS  PubMed  Google Scholar 

  71. Jeon, S. H. et al. Combination therapy using human adipose-derived stem cells on the cavernous nerve and low-energy shockwaves on the corpus cavernosum in a rat model of post-prostatectomy erectile dysfunction. Urology 88, 226.e1–226.e9 (2016).

    Google Scholar 

  72. Chong, M. S. K., Ng, W. K. & Chan, J. K. Y. Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Transl. Med. 5, 530–538 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sukmawati, D. & Tanaka, R. Introduction to next generation of endothelial progenitor cell therapy: a promise in vascular medicine. Am. J. Transl. Res. 7, 411–421 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hjortnaes, J. et al. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng. Part C Methods 16, 597–607 (2010).

    CAS  PubMed  Google Scholar 

  75. Peters, E. B. Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng. Part B Rev. 24, 1–24 (2017).

    PubMed  Google Scholar 

  76. Rouwkema, J., Westerweel, P. E., de Boer, J., Verhaar, M. C. & van Blitterswijk, C. A. The use of endothelial progenitor cells for prevascularized bone tissue engineering. Tissue Eng. Part A 15, 2015–2027 (2009).

    CAS  PubMed  Google Scholar 

  77. Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl Acad. Sci. USA 97, 3422–3427 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pilatz, A. et al. Isolation of primary endothelial and stromal cell cultures of the corpus cavernosum penis for basic research and tissue engineering. Eur. Urol. 47, 710–718 (2005).

    PubMed  Google Scholar 

  79. Tsai, R. Y. L. & McKay, R. D. G. Cell contact regulates fate choice by cortical stem cells. J. Neurosci. 20, 3725–3735 (2018).

    Google Scholar 

  80. Oishi, K., Ogawa, Y., Gamoh, S. & Uchida, M. K. Contractile responses of smooth muscle cells differentiated from rat neural stem cells. J. Physiol. 540, 139–152 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Song, Y. et al. Transdifferentiation of rat fetal brain stem cells into penile smooth muscle cells. BJU Int. 104, 257–262 (2009).

    CAS  PubMed  Google Scholar 

  82. Zhang, D., Wei, G., Li, P., Zhou, X. & Zhang, Y. Urine-derived stem cells: a novel and versatile progenitor source for cell-based therapy and regenerative medicine. Genes Dis. 1, 8–17 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Liu, G. et al. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials 34, 1311–1326 (2013).

    CAS  PubMed  Google Scholar 

  84. Bharadwaj, S. et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 31, 1840–1856 (2013).

    CAS  PubMed  Google Scholar 

  85. Aboushwareb, T. & Atala, A. Stem cells in urology. Nat. Clin. Pract. Urol. 5, 621–631 (2008).

    CAS  PubMed  Google Scholar 

  86. Bochinski, D. et al. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int. 94, 904–909 (2004).

    PubMed  Google Scholar 

  87. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  88. Mandai, M. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 (2017).

    CAS  PubMed  Google Scholar 

  89. Führmann, T. et al. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 83, 23–36 (2016).

    PubMed  Google Scholar 

  90. Focosi, D. et al. Induced pluripotent stem cells in hematology: current and future applications. Blood Cancer J. 4, e21 (2014).

    Google Scholar 

  91. Madl, C. M., Heilshorn, S. C. & Blau, H. M. Bioengineering strategies to accelerate stem cell therapeutics. Nature 557, 335–342 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Miyagawa, S. et al. Phase I clinical trial of autologous stem cell-sheet transplantation therapy for treating cardiomyopathy. J. Am. Heart Assoc. 6, e003918 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Ferretti, L. et al. Tissue engineering for penile surgery: comparative study of noncellular and cell-seeded synthetic grafts for tunica albuginea replacement. J. Sex. Med. 9, 625–631 (2012).

    CAS  PubMed  Google Scholar 

  94. Ma, T. et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res. Ther. 8, 124 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Castiglione, F. et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur. Urol. 63, 551–560 (2013).

    CAS  PubMed  Google Scholar 

  96. Milenkovic, U., Albersen, M. & Castiglione, F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat. Rev. Urol. 16, 79–97 (2019).

    PubMed  Google Scholar 

  97. Ma, L. et al. Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction. Proc. Natl Acad. Sci. USA 109, 2090–2095 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, L., Qin, F., Ge, M., Shu, Q. & Xu, J. Application of adipose-derived stem cells in heart disease. J. Cardiovasc. Transl. Res. 7, 651–663 (2014).

    PubMed  Google Scholar 

  99. Drewa, T., Adamowicz, J. & Sharma, A. Tissue engineering for the oncologic urinary bladder. Nat. Rev. Urol. 9, 561–572 (2012).

    CAS  PubMed  Google Scholar 

  100. Thomson, J. A. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  101. Blum, B. & Benvenisty, N. The tumorigenicity of human embryonic stem cells. Adv. Cancer Res. 100, 133–158 (2008).

    PubMed  Google Scholar 

  102. Tang, C. & Drukker, M. Potential barriers to therapeutics utilizing pluripotent cell derivatives: intrinsic immunogenicity of in vitro maintained and matured populations. Semin. Immunopathol. 33, 563–572 (2011).

    CAS  PubMed  Google Scholar 

  103. Ridge, S. M., Sullivan, F. J. & Glynn, S. A. Mesenchymal stem cells: key players in cancer progression. Mol. Cancer 16, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Hakim, L., Van Der Aa, F., Bivalacqua, T. J., Hedlund, P. & Albersen, M. Emerging tools for erectile dysfunction: a role for regenerative medicine. Nat. Rev. Urol. 9, 520–536 (2012).

    CAS  PubMed  Google Scholar 

  105. Fandel, T. M. et al. Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury. Eur. Urol. 9, 520–536 (2012).

    Google Scholar 

  106. Brown, B. N. & Badylak, S. F. in Translating Regenerative Medicine to the Clinic (ed. Laurence, J.) 11–29 (Academic Press, 2016).

  107. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shukla, D., Box, G. N. & Edwards RA, T. D. Bone marrow stem cells for urologic tissue engineering. World J. Urol. 26, 341–349 (2008).

    PubMed  Google Scholar 

  109. Kanematsu, A. et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25, 4513–4520 (2004).

    CAS  PubMed  Google Scholar 

  110. Martino, M. M. et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3, 100ra89 (2011).

    PubMed  Google Scholar 

  111. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    CAS  PubMed  Google Scholar 

  112. Oh, S. H., Kang, S. G., Kim, E. S., Cho, S. H. & Lee, J. H. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24, 4011–4021 (2003).

    CAS  PubMed  Google Scholar 

  113. Lu, L. et al. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21, 1837–1845 (2000).

    CAS  PubMed  Google Scholar 

  114. Rowlands, A. S., Lim, S. A., Martin, D. & Cooper-White, J. J. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials 28, 2109–2121 (2007).

    CAS  PubMed  Google Scholar 

  115. Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Progr. Polym. Sci. 36, 1254-1276 (2011).

    CAS  Google Scholar 

  116. Colaco, M., Igel, D. A. & Atala, A. The potential of 3D printing in urological research and patient care. Nat. Rev. Urol. 15, 213–221 (2018).

    PubMed  Google Scholar 

  117. Chun, J. L., McGregor, A., Krishnan, R. & Carson, C. C. A comparison of dermal and cadaveric pericardial grafts in the modified Horton-Devine procedure for Peyronie’s disease. J. Urol. 166, 185–188 (2001).

    CAS  PubMed  Google Scholar 

  118. Egydio, P. H., Lucon, A. M. & Arap, S. Treatment of Peyronie’s disease by incomplete circumferential incision of the tunica albuginea and plaque with bovine pericardium graft. Urology 59, 570–574 (2002).

    PubMed  Google Scholar 

  119. Joo, K. J. et al. Porcine vesical acellular matrix graft of tunica albuginea for penile reconstruction. Asian J. Androl. 8, 543–548 (2006).

    PubMed  Google Scholar 

  120. da Silva, F. G., Filho, A. M., Damião, R. & da Silva, E. A. Human acellular matrix graft of tunica albuginea for penile reconstruction. J. Sex. Med. 8, 3196–3203 (2011).

    PubMed  Google Scholar 

  121. Imbeault, A. et al. Surgical option for the correction of Peyronie’s disease: an autologous tissue-engineered endothelialized graft. J. Sex. Med. 8, 3227–3235 (2011).

    PubMed  Google Scholar 

  122. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    CAS  PubMed  Google Scholar 

  123. Ong, C. S. et al. 3D bioprinting using stem cells. Pediatr. Res. 83, 223–231 (2018).

    CAS  PubMed  Google Scholar 

  124. Tricomi, B. J., Dias, A. D. & Corr, D. T. Stem cell bioprinting for applications in regenerative medicine. Ann. N. Y. Acad. Sci. 1383, 115–124 (2016).

    PubMed  Google Scholar 

  125. Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).

    CAS  PubMed  Google Scholar 

  126. Phillippi, J. A. et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26, 127–134 (2008).

    CAS  PubMed  Google Scholar 

  127. Gu, Q. et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv. Healthc. Mater. 5, 1429–1438 (2016).

    CAS  PubMed  Google Scholar 

  128. Li, J., Chen, M., Fan, X. & Zhou, H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J. Transl. Med. 14, 271 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Kato, R. et al. Herpes simplex virus vector-mediated delivery of glial cell line-derived neurotrophic factor rescues erectile dysfunction following cavernous nerve injury. Gene Ther. 14, 1344–1352 (2007).

    CAS  PubMed  Google Scholar 

  130. Provasi, E. et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18, 807–815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Aiuti, A. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341, 1233151 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Riesenberg, S. & Maricic, T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat. Commun. 9, 2164 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Melman, A., Bar-Chama, N., McCullough, A., Davies, K. & Christ, G. hMaxi-K gene transfer in males with erectile dysfunction: results of the first human trial. Hum. Gene Ther. 17, 1165–1176 (2006).

    CAS  PubMed  Google Scholar 

  135. Christ, G. J. et al. Smooth-muscle-specific gene transfer with the human maxi-k channel improves erectile function and enhances sexual behavior in atherosclerotic cynomolgus monkeys. Eur. Urol. 56, 1055–1066 (2009).

    CAS  PubMed  Google Scholar 

  136. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS  PubMed  Google Scholar 

  137. Goins, W. F. et al. Herpes simplex virus vector-mediated gene delivery for the treatment of lower urinary tract pain. Gene Ther. 16, 558–569 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yoshimura, N., Kato, R., Chancellor, M. B., Nelson, J. B. & Glorioso, J. C. Gene therapy as future treatment of erectile dysfunction. Expert Opin. Biol. Ther. 10, 1305–1314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Christ, G. J. Intracorporal injection of hSlo cDNA in rats produces physiologically relevant alterations in penile function. Am. J. Physiol. 275, H600–H608 (1998).

    CAS  PubMed  Google Scholar 

  140. Bakircioglu, M. E. et al. The effect of adeno-associated virus mediated brain derived neurotrophic factor in an animal model of neurogenic impotence. J. Urol. 165, 2103–2109 (2001).

    CAS  PubMed  Google Scholar 

  141. Ryu, J. K. et al. Combined angiopoietin-1 and vascular endothelial growth factor gene transfer restores cavernous angiogenesis and erectile function in a rat model of hypercholesterolemia. Mol. Ther. 13, 705–715 (2006).

    CAS  PubMed  Google Scholar 

  142. Jin, Z. et al. Tissue engineering penoplasty with biodegradable scaffold Maxpol-T cografted autologous fibroblasts for small penis syndrome. J. Androl. 32, 491–495 (2011).

    PubMed  Google Scholar 

  143. Perovic, S. V. et al. Penile enhancement using autologous tissue engineering with biodegradable scaffold: a clinical and histomorphometric study. J. Sex. Med. 7, 3206–3215 (2010).

    CAS  PubMed  Google Scholar 

  144. Song, Y. S. et al. Human neural crest stem cells transplanted in rat penile corpus cavernosum to repair erectile dysfunction. BJU Int. 102, 220–224 (2008).

    CAS  PubMed  Google Scholar 

  145. Phillips, T. R., Wright, D. K., Gradie, P. E., Johnston, L. A. & Pask, A. J. A comprehensive atlas of the adult mouse penis. Sex. Dev. 9, 162–172 (2015).

    PubMed  Google Scholar 

  146. Nolazco, G. et al. Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int. 101, 1156–1164 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.W.A., M.K., L.M. and D.K. researched data for the article. All authors made substantial contributions to discussions of content and to writing the manuscript. T.W.A., M.K., A.M. D.K. and A.A. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Tom W. Andrew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks N. Sopko, J.-K. Ryu and the other, anonymous, reviewer(s) for their help with the peer review of this manuscript.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrew, T.W., Kanapathy, M., Murugesan, L. et al. Towards clinical application of tissue engineering for erectile penile regeneration. Nat Rev Urol 16, 734–744 (2019). https://doi.org/10.1038/s41585-019-0246-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0246-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research