Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genetically transitional disease: conceptual understanding and applicability to rheumatic disease

Abstract

In genomic medicine, the concept of genetically transitional disease (GTD) refers to cases in which gene mutation is necessary but not sufficient to cause disease. In this Perspective, we apply this novel concept to rheumatic diseases, which have been linked to hundreds of genetic variants via association studies. These variants are in the ‘grey zone’ between monogenic variants with large effect sizes and common susceptibility alleles with small effect sizes. Among genes associated with rare autoinflammatory diseases, many low-frequency and/or low-penetrance variants are known to increase susceptibility to systemic inflammation. In autoimmune diseases, hundreds of HLA and non-HLA genetic variants have been revealed to be modest- to moderate-risk alleles. These diseases can be reclassified as GTDs. The same concept could apply to many other human diseases. GTD could improve the reporting of genetic testing results, diagnostic yields, genetic counselling and selection of therapy, as well as facilitating research using a novel approach to human genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GTD-related working nosology for genetic disease and examples.
Fig. 2: Germline and somatic mutations associated with diseases.

Similar content being viewed by others

References

  1. Chakravarti, A. Magnitude of Mendelian versus complex inheritance of rare disorders. Am. J. Med. Genet. A 185, 3287–3293 (2021).

    PubMed  Google Scholar 

  2. Tukker, A. M., Royal, C. D., Bowman, A. B. & McAllister, K. A. The impact of environmental factors on monogenic Mendelian diseases. Toxicol. Sci. 181, 3–12 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Selvaraj, M. S. et al. Whole genome sequence analysis of blood lipid levels in >66,000 individuals. Nat. Commun. 13, 5995 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Khoshbakht, S., Başkurt, D., Vural, A. & Vural, S. Behçet’s disease: a comprehensive review on the role of HLA-B*51, antigen presentation, and inflammatory cascade. Int. J. Mol. Sci. 24, 16382 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Andrews, S. J. et al. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions. EBioMedicine 90, 104511 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Consortium, E. P. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Google Scholar 

  8. Amberger, J. S., Bocchini, C. A., Scott, A. F. & Hamosh, A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 47, D1038–D1043 (2019).

    CAS  PubMed  Google Scholar 

  9. Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    CAS  PubMed  Google Scholar 

  10. Aksentijevich, I. & Schnappauf, O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat. Rev. Rheumatol. 17, 405–425 (2021).

    CAS  PubMed  Google Scholar 

  11. Harper, P. S. Julia Bell and the treasury of human inheritance. Hum. Genet. 116, 422–432 (2005).

    PubMed  Google Scholar 

  12. Senol-Cosar, O. et al. Considerations for clinical curation, classification, and reporting of low-penetrance and low effect size variants associated with disease risk. Genet. Med. 21, 2765–2773 (2019).

    PubMed  Google Scholar 

  13. Yao, Q., Gorevic, P., Shen, B. & Gibson, G. Genetically transitional disease: a new concept in genomic medicine. Trends Genet. 39, 98–108 (2023).

    CAS  PubMed  Google Scholar 

  14. Mullis, M. N., Matsui, T., Schell, R., Foree, R. & Ehrenreich, I. M. The complex underpinnings of genetic background effects. Nat. Commun. 9, 3548 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Van Gijn, M. E. et al. New workflow for classification of genetic variants’ pathogenicity applied to hereditary recurrent fevers by the International Study Group for Systemic Autoinflammatory Diseases (INSAID). J. Med. Genet. 55, 530–537 (2018).

    PubMed  Google Scholar 

  16. Chen, X. & Yu, X. Cohort-driven variant burden analysis and pathogenicity identification in monogenic autoinflammatory disorders. J. Allergy Clin. Immunol. 152, 517–527 (2023).

    CAS  PubMed  Google Scholar 

  17. Schnappauf, O. & Aksentijevich, I. Current and future advances in genetic testing in systemic autoinflammatory diseases. Rheumatology 58, vi44–vi55 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Horowitz, J. E. et al. Mutation spectrum of NOD2 reveals recessive inheritance as a main driver of early onset Crohn’s disease. Sci. Rep. 11, 5595 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolton, C. et al. An integrated taxonomy for monogenic inflammatory bowel disease. Gastroenterology 162, 859–876 (2022).

    CAS  PubMed  Google Scholar 

  20. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Eichler, E. E. Genetic variation, comparative genomics, and the diagnosis of disease. N. Engl. J. Med. 381, 64–74 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lappalainen, T. & MacArthur, D. G. From variant to function in human disease genetics. Science 373, 1464–1468 (2021).

    CAS  PubMed  Google Scholar 

  23. Sazonovs, A. et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 54, 1275–1283 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Adler, J. et al. The prognostic power of the NOD2 genotype for complicated Crohn’s disease: a meta-analysis. Am. J. Gastroenterol. 106, 699–712 (2011).

    CAS  PubMed  Google Scholar 

  25. Wainschtein, P. et al. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nat. Genet. 54, 263–273 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shinar, Y. et al. Guidelines for the genetic diagnosis of hereditary recurrent fevers. Ann. Rheum. Dis. 71, 1599–1605 (2012).

    CAS  PubMed  Google Scholar 

  27. Yao, Q. Systemic autoinflammatory disease and genetic testing. Rheumatol. Immunol. Res. 2, 209–211 (2021).

    PubMed  PubMed Central  Google Scholar 

  28. Kuemmerle-Deschner, J. B. et al. Clinical and molecular phenotypes of low-penetrance variants of NLRP3: diagnostic and therapeutic challenges.Arthritis Rheumatol. 69, 2233–2240 (2017).

    CAS  PubMed  Google Scholar 

  29. Shen, M., Tang, L., Shi, X., Zeng, X. & Yao, Q. NLRP12 autoinflammatory disease: a Chinese case series and literature review. Clin. Rheumatol. 36, 1661–1667 (2017).

    PubMed  Google Scholar 

  30. Park, Y. H. et al. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 21, 857–867 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Marek-Yagel, D. et al. Clinical disease among patients heterozygous for familial Mediterranean fever. Arthritis Rheum. 60, 1862–1866 (2009).

    CAS  PubMed  Google Scholar 

  32. Eyal, O., Shinar, Y., Pras, M. & Pras, E. Familial Mediterranean fever: penetrance of the p.[Met694Val];[Glu148Gln] and p.[Met694Val];[=] genotypes. Hum. Mutat. 41, 1866–1870 (2020).

    CAS  PubMed  Google Scholar 

  33. Broad Institute. MEFV, in gnomAD: Genome Aggregation Database. https://gnomad.broadinstitute.org/gene/ENSG00000103313?dataset=gnomad_r4.

  34. Sugiura, T. et al. Familial Mediterranean fever in three Japanese patients, and a comparison of the frequency of MEFV gene mutations in Japanese and Mediterranean populations. Mod. Rheumatol. 18, 57–59 (2008).

    PubMed  Google Scholar 

  35. Tanatar, A., Karadag, S. G., Sonmez, H. E., Cakan, M. & Ayaz, N. A. Comparison of pediatric familial Mediterranean fever patients carrying only E148Q variant with the ones carrying homozygous pathogenic mutations. J. Clin. Rheumatol. 27, 182–186 (2021).

    PubMed  Google Scholar 

  36. Aydin, F. et al. Clinical features and disease severity of Turkish FMF children carrying E148Q mutation. J. Clin. Lab. Anal. 33, e22852 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Tirosh, I. et al. Clinical significance of E148Q heterozygous variant in paediatric familial Mediterranean fever. Rheumatology 60, 5447–5451 (2021).

    CAS  PubMed  Google Scholar 

  38. Arici, Z. S. et al. Evaluation of E148Q and concomitant AA amyloidosis in patients with familial Mediterranean fever. J. Clin. Med. 10, 3511 (2021).

    PubMed  PubMed Central  Google Scholar 

  39. Reygaerts, T. et al. Pyrin variant E148Q potentiates inflammasome activation and the effect of pathogenic mutations in cis. Rheumatology https://doi.org/10.1093/rheumatology/kead376 (2023).

  40. Verma, D. et al. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PLoS One 7, e34977 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Theodoropoulou, K. et al. Increased prevalence of NLRP3 Q703K variant among patients with autoinflammatory diseases: an international multicentric study. Front. Immunol. 11, 877 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lidar, M. et al. A high and equal prevalence of the Q703K variant in NLRP3 patients with autoinflammatory symptoms and ethnically matched controls. Clin. Exp. Rheumatol. 35, 82–85 (2017).

    PubMed  Google Scholar 

  43. Naselli, A. et al. Clinical characteristics of patients carrying the Q703K variant of the NLRP3 gene: a 10-year multicentric national study. J. Rheumatol. 43, 1093–1100 (2016).

    CAS  PubMed  Google Scholar 

  44. De Pieri, C. et al. F402L variant in NLRP12 in subjects with undiagnosed periodic fevers and in healthy controls. Clin. Exp. Rheumatol. 32, 993–994 (2014).

    PubMed  Google Scholar 

  45. Vitale, A. et al. Rare NLRP12 variants associated with the NLRP12-autoinflammatory disorder phenotype: an Italian case series. Clin. Exp. Rheumatol. 31, 155–156 (2013).

    PubMed  Google Scholar 

  46. Lachmann, H. J. et al. The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann. Rheum. Dis. 73, 2160–2167 (2014).

    CAS  PubMed  Google Scholar 

  47. Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: inferring the contribution of common variants. Proc. Natl Acad. Sci. USA 111, E5272–E5281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yao, Q. & Shen, B. A systematic analysis of treatment and outcomes of NOD2-associated autoinflammatory disease. Am. J. Med. 130, 365.e313–365.e318 (2017).

    Google Scholar 

  49. Navetta-Modrov, B. et al. A novel nucleotide-binding oligomerization domain 2 genetic marker for Yao syndrome. J. Am. Acad. Dermatol. 89, 166–168 (2023).

    CAS  PubMed  Google Scholar 

  50. Touitou, I. Twists and turns of the genetic story of mevalonate kinase-associated diseases: a review. Genes. Dis. 9, 1000–1007 (2022).

    CAS  PubMed  Google Scholar 

  51. Houten, S. M., van Woerden, C. S., Wijburg, F. A., Wanders, R. J. & Waterham, H. R. Carrier frequency of the V377I (1129G>A) MVK mutation, associated with Hyper-IgD and periodic fever syndrome, in the Netherlands. Eur. J. Hum. Genet. 11, 196–200 (2003).

    CAS  PubMed  Google Scholar 

  52. Sengupta, S. et al. Ultra-fast local-haplotype variant calling using paired-end DNA-sequencing data reveals somatic mosaicism in tumor and normal blood samples. Nucleic Acids Res. 44, e25 (2016).

    PubMed  Google Scholar 

  53. Acha-Sagredo, A., Ganguli, P. & Ciccarelli, F. D. Somatic variation in normal tissues: friend or foe of cancer early detection? Ann. Oncol. 33, 1239–1249 (2022).

    CAS  PubMed  Google Scholar 

  54. Nishikomori, R., Izawa, K., Kambe, N., Ohara, O. & Yasumi, T. Low-frequency mosaicism in cryopyrin-associated periodic fever syndrome: mosaicism in systemic autoinflammatory diseases. Int. Immunol. 31, 649–655 (2019).

    CAS  PubMed  Google Scholar 

  55. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. de Inocencio, J. et al. Somatic NOD2 mosaicism in Blau syndrome. J. Allergy Clin. Immunol. 136, 484–487.e482 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Rowczenio, D. M. et al. Brief report: association of tumor necrosis factor receptor-associated periodic syndrome with gonosomal mosaicism of a novel 24-nucleotide TNFRSF1A deletion. Arthritis Rheumatol. 68, 2044–2049 (2016).

    CAS  PubMed  Google Scholar 

  58. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Beck, D. B. et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. J. Am. Med. Assoc. 329, 318–324 (2023).

    CAS  Google Scholar 

  60. Gutierrez-Rodrigues, F. et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood 142, 244–259 (2023).

    CAS  PubMed  Google Scholar 

  61. Vijg, J. & Dong, X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182, 12–23 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Valladares Ayerbes, M. et al. Origin of renal cell carcinomas. Clin. Transl. Oncol. 10, 697–712 (2008).

    PubMed  Google Scholar 

  63. Hino, O. & Kobayashi, T. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci. 108, 5–11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao, Q. et al. NOD2-associated autoinflammatory disease: a large cohort study. Rheumatology 54, 1904–1912 (2015).

    CAS  PubMed  Google Scholar 

  65. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Louvrier, C. et al. NLRP3-associated autoinflammatory diseases: phenotypic and molecular characteristics of germline versus somatic mutations. J. Allergy Clin. Immunol. 145, 1254–1261 (2020).

    CAS  PubMed  Google Scholar 

  67. Rivera, E. G. et al. SARS-CoV-2/COVID-19 and its relationship with NOD2 and ubiquitination. Clin. Immunol. 238, 109027 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kubo, A. et al. Clonal expansion of second-hit cells with somatic recombinations or C>T transitions form porokeratosis in MVD or MVK mutant heterozygotes. J. Invest. Dermatol. 139, 2458–2466.e2459 (2019).

    CAS  PubMed  Google Scholar 

  69. Walport, M. J., Davies, K. A. & Botto, M. C1q and systemic lupus erythematosus. Immunobiology 199, 265–285 (1998).

    CAS  PubMed  Google Scholar 

  70. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Caielli, S., Wan, Z. & Pascual, V. Systemic lupus erythematosus pathogenesis: interferon and beyond. Annu. Rev. Immunol. 41, 533–560 (2023).

    CAS  PubMed  Google Scholar 

  72. Sinicato, N. A. et al. Familial aggregation of childhood- and adulthood-onset systemic lupus erythematosus. Arthritis Care Res. 72, 1147–1151 (2020).

    Google Scholar 

  73. Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Graham, R. R. et al. Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur. J. Hum. Genet. 15, 823–830 (2007).

    CAS  PubMed  Google Scholar 

  75. Kariuki, S. N. et al. Genetic analysis of the pathogenic molecular sub-phenotype interferon-alpha identifies multiple novel loci involved in systemic lupus erythematosus. Genes. Immun. 16, 15–23 (2015).

    CAS  PubMed  Google Scholar 

  76. Saevarsdottir, S. et al. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann. Rheum. Dis. 81, 1085–1095 (2022).

    CAS  PubMed  Google Scholar 

  77. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    CAS  PubMed  Google Scholar 

  78. Lee, H. S. et al. Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum. 56, 1745–1753 (2007).

    CAS  PubMed  Google Scholar 

  79. Niewold, T. B., Harrison, M. J. & Paget, S. A. Anti-CCP antibody testing as a diagnostic and prognostic tool in rheumatoid arthritis. QJM 100, 193–201 (2007).

    CAS  PubMed  Google Scholar 

  80. Thanarajasingam, U. et al. Brief report: a novel ELANE mutation associated with inflammatory arthritis, defective NETosis, and recurrent parvovirus infection. Arthritis Rheumatol. 69, 2396–2401 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Okada, Y., Eyre, S., Suzuki, A., Kochi, Y. & Yamamoto, K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis. 78, 446–453 (2019).

    CAS  PubMed  Google Scholar 

  82. Lim, A. J. W. et al. Robust SNP-based prediction of rheumatoid arthritis through machine-learning-optimized polygenic risk score. J. Transl. Med. 21, 92 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Euesden, J., Breen, G., Farmer, A., McGuffin, P. & Lewis, C. M. The relationship between schizophrenia and rheumatoid arthritis revisited: genetic and epidemiological analyses. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B, 81–88 (2015).

    PubMed  Google Scholar 

  84. Honda, S. et al. Association of polygenic risk scores with radiographic progression in patients with rheumatoid arthritis. Arthritis Rheumatol. 74, 791–800 (2022).

    PubMed  Google Scholar 

  85. Lopez-Isac, E. et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat. Commun. 10, 4955 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Alahmari, H., Ahmad, Z. & Johnson, S. R. Environmental risks for systemic sclerosis. Rheum. Dis. Clin. North. Am. 48, 845–860 (2022).

    PubMed  Google Scholar 

  87. Feghali-Bostwick, C., Medsger, T. A. Jr & Wright, T. M. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 48, 1956–1963 (2003).

    PubMed  Google Scholar 

  88. Gourh, P. et al. HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc. Natl Acad. Sci. USA 117, 552–562 (2020).

    CAS  PubMed  Google Scholar 

  89. Ortiz-Fernandez, L., Martin, J. & Alarcon-Riquelme, M. E. A summary on the genetics of systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and Sjogren’s syndrome. Clin. Rev. Allergy Immunol. 64, 392–411 (2023).

    CAS  PubMed  Google Scholar 

  90. Thorlacius, G. E., Bjork, A. & Wahren-Herlenius, M. Genetics and epigenetics of primary Sjogren syndrome: implications for future therapies. Nat. Rev. Rheumatol. 19, 288–306 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gorevic, P. Overview of amyloidosis. UpToDate https://www.uptodate.com/contents/overview-of-amyloidosis (2021).

  92. Wininger, A. E. et al. Musculoskeletal pathology as an early warning sign of systemic amyloidosis: a systematic review of amyloid deposition and orthopedic surgery. BMC Musculoskelet. Disord. 22, 51 (2021).

    PubMed  PubMed Central  Google Scholar 

  93. Joury, A., Gupta, T. & Krim, S. R. Cardiac amyloidosis: presentations, diagnostic work-up and collaborative approach for comprehensive clinical management. Curr. Probl. Cardiol. 46, 100910 (2021).

    PubMed  Google Scholar 

  94. Soares, M. L. et al. Haplotypes and DNA sequence variation within and surrounding the transthyretin gene: genotype-phenotype correlations in familial amyloid polyneuropathy (V30M) in Portugal and Sweden. Eur. J. Hum. Genet. 12, 225–237 (2004).

    CAS  PubMed  Google Scholar 

  95. Sinha, A. et al. Association of the V122I transthyretin amyloidosis genetic variant with cardiac structure and function in middle-aged black adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Cardiol. 6, 1–5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Planté-Bordeneuve, V. et al. Genetic study of transthyretin amyloid neuropathies: carrier risks among French and Portuguese families. J. Med. Genet. 40, e120 (2003).

    PubMed  PubMed Central  Google Scholar 

  97. Kaku, M. & Berk, J. L. Neuropathy associated with systemic amyloidosis. Semin. Neurol. 39, 578–588 (2019).

    PubMed  Google Scholar 

  98. Gentile, L. et al. A 15-year consolidated overview of data in over 6000 patients from the Transthyretin Amyloidosis Outcomes Survey (THAOS). Orphanet J. Rare Dis. 18, 350 (2023).

    PubMed  PubMed Central  Google Scholar 

  99. Damrauer, S. M. et al. Association of the V122I hereditary transthyretin amyloidosis genetic variant with heart failure among individuals of African or Hispanic/Latino ancestry. J. Am. Med. Assoc. 322, 2191–2202 (2019).

    CAS  Google Scholar 

  100. Shah, K. B. et al. Transthyretin cardiac amyloidosis in Black Americans. Circ. Heart Fail. 9, e002558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Obi, C. A., Mostertz, W. C., Griffin, J. M. & Judge, D. P. ATTR epidemiology, genetics, and prognostic factors. Methodist Debakey Cardiovasc. J. 18, 17–26 (2022).

    PubMed  PubMed Central  Google Scholar 

  102. Itzhaki, B. Z. O. & Falk, R. H. Variant and wild type transthyretin amyloidosis: two sides of the same coin or different currencies in different pockets? Eur. J. Heart Fail. 25, 525–527 (2023).

    Google Scholar 

  103. Sikora, J. L. et al. Genetic variation of the transthyretin gene in wild-type transthyretin amyloidosis (ATTRwt). Hum. Genet. 134, 111–121 (2015).

    CAS  PubMed  Google Scholar 

  104. Tasaki, M. et al. Age-related amyloidosis outside the brain: a state-of-the-art review. Ageing Res. Rev. 70, 101388 (2021).

    CAS  PubMed  Google Scholar 

  105. Sandoval-Plata, G., Morgan, K. & Abhishek, A. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank. Ann. Rheum. Dis. 80, 1220–1226 (2021).

    CAS  PubMed  Google Scholar 

  106. Torres, R. J. & Puig, J. G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis. 2, 48 (2007).

    PubMed  PubMed Central  Google Scholar 

  107. Jang, G. et al. Therapeutic gene correction for Lesch-Nyhan syndrome using CRISPR-mediated base and prime editing. Mol. Ther. Nucleic Acids 31, 586–595 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. AlBakheet, A. et al. Detailed genetic and clinical analysis of a novel de novo variant in HPRT1: case report of a female patient from Saudi Arabia with Lesch-Nyhan syndrome. Front. Genet. 13, 1044936 (2022).

    PubMed  Google Scholar 

  109. Ayasreh, N. et al. Autosomal dominant tubulointerstitial kidney disease: clinical presentation of patients with ADTKD-UMOD and ADTKD-MUC1. Am. J. Kidney Dis. 72, 411–418 (2018).

    PubMed  Google Scholar 

  110. Olinger, E. et al. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 98, 717–731 (2020).

    CAS  PubMed  Google Scholar 

  111. Olinger, E. et al. An intermediate-effect size variant in UMOD confers risk for chronic kidney disease. Proc. Natl Acad. Sci. USA 119, e2114734119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R. & Riccio, A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235–248 (2019).

    CAS  PubMed  Google Scholar 

  113. Surace, A. E. A. & Hedrich, C. M. The role of epigenetics in autoimmune/inflammatory disease. Front. Immunol. 10, 1525 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. De Stefano, L., D’Onofrio, B., Manzo, A., Montecucco, C. & Bugatti, S. The genetic, environmental, and immunopathological complexity of autoantibody-negative rheumatoid arthritis. Int. J. Molec. Sci. 22, 12386 (2022).

    Google Scholar 

  115. Deshayes, S. et al. Specific changes in faecal microbiota are associated with familial Mediterranean fever. Ann. Rheum. Dis. 78, 1398–1404 (2019).

    CAS  PubMed  Google Scholar 

  116. Di Ciaula, A., Stella, A., Bonfrate, L., Wang, D. Q. H. & Portincasa, P. Gut microbiota between environment and genetic background in familial Mediterranean fever (FMF). Genes (Basel) 11 (2020).

  117. Rosser, E. C. & Mauri, C. A clinical update on the significance of the gut microbiota in systemic autoimmunity. J. Autoimmun. 74, 85–93 (2016).

    CAS  PubMed  Google Scholar 

  118. Shinar, Y. et al. ISSAID/EMQN best practice guidelines for the genetic diagnosis of monogenic autoinflammatory diseases in the next-generation sequencing era. Clin. Chem. 66, 525–536 (2020).

    PubMed  Google Scholar 

  119. Corso, G., Magnoni, F. & Veronesi, P. Points to consider regarding de-escalation surgery in high-risk breast cancer. Ann. Surg. Oncol. 29, 8084–8089 (2022).

    PubMed  Google Scholar 

  120. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    CAS  PubMed  Google Scholar 

  121. Zhu, P. et al. CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol. Ther. Nucleic Acids 7, 31–41 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Ewart, D. T., Peterson, E. J. & Steer, C. J. Gene editing for inflammatory disorders. Ann. Rheum. Dis. 78, 6–15 (2019).

    CAS  PubMed  Google Scholar 

  123. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    CAS  PubMed  Google Scholar 

  124. Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J. Am. Med. Assoc. 317, 2402–2416 (2017).

    CAS  Google Scholar 

  125. Forrest, I. S. et al. Population-based penetrance of deleterious clinical variants. J. Am. Med. Assoc. 327, 350–359 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to L. Hastings for assistance with the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and substantially contributed to discussion of content, writing and reviewing/editing of the manuscript.

Corresponding author

Correspondence to Qingping Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Dorota Rowczenio, Sinisa Savic and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/intro/

Infevers: https://infevers.umai-montpellier.fr/web/index.php

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niewold, T.B., Aksentijevich, I., Gorevic, P.D. et al. Genetically transitional disease: conceptual understanding and applicability to rheumatic disease. Nat Rev Rheumatol 20, 301–310 (2024). https://doi.org/10.1038/s41584-024-01086-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01086-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing