Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into epileptogenesis from post-traumatic epilepsy

Abstract

Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.

Key points

  • Post-traumatic epilepsy (PTE) is highly prevalent after traumatic brain injury, impairing neurological recovery and leading to worse functional outcomes.

  • Current epilepsy therapeutics symptomatically treat seizures but do not modify epileptogenesis, the process by which brain tissue becomes prone to seizures.

  • The unique nature of PTE, occurring after a well-defined epileptogenic insult, makes it a promising model system for understanding epileptogenesis.

  • Future research in individuals with PTE populations might not only reveal novel mechanisms of epileptogenesis but also enable anti-epileptogenic therapies to be tested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of post-traumatic epilepsy after moderate or severe traumatic brain injury.
Fig. 2: Mechanisms of epileptogenesis after traumatic brain injury.

Similar content being viewed by others

References

  1. Popescu, C., Anghelescu, A., Daia, C. & Onose, G. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury. J. Med Life 8, 272–277 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Frieden, T. R., Houry, D. & Baldwin, G. Report to Congress on traumatic brain injury in the United States: epidemiology and rehabilitation. Centers for Disease Control and Prevention. https://www.cdc.gov/traumaticbraininjury/pdf/TBI_Report_to_Congress_Epi_and_Rehab-a.pdf (2015).

  3. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 56–87 (2019).

    Article  Google Scholar 

  4. Farrell, J. S., Wolff, M. D. & Teskey, G. C. Neurodegeneration and pathology in epilepsy: clinical and basic perspectives. Adv. Neurobiol. 15, 317–334 (2017).

    Article  PubMed  Google Scholar 

  5. Sharma, R. et al. Neuroinflammation in post-traumatic epilepsy: pathophysiology and tractable therapeutic targets. Brain Sci. 9, 318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pease, M. et al. Association of posttraumatic epilepsy with long-term functional outcomes in individuals with severe traumatic brain injury. Neurology 100, e1967–e1975 (2023).

    Article  PubMed  Google Scholar 

  7. Burke, J. et al. Association of posttraumatic epilepsy with 1-year outcomes after traumatic brain injury. JAMA Netw. Open 4, e2140191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fordington, S. & Manford, M. A review of seizures and epilepsy following traumatic brain injury. J. Neurol. 267, 3105–3111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lucke-Wold, B. P. et al. Traumatic brain injury and epilepsy: underlying mechanisms leading to seizure. Seizure 33, 13–23 (2015).

    Article  PubMed  Google Scholar 

  10. Annegers, J. F., Hauser, W. A., Coan, S. P. & Rocca, W. A. A population-based study of seizures after traumatic brain injuries. N. Engl. J. Med. 338, 20–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Pease, M. et al. Risk factors and incidence of epilepsy after severe traumatic brain injury. Ann. Neurol. 92, 663–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt, D., Friedman, D. & Dichter, M. A. Anti-epileptogenic clinical trial designs in epilepsy: issues and options. Neurotherapeutics 11, 401–411 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pitkänen, A., Lukasiuk, K., Dudek, F. E. & Staley, K. J. Epileptogenesis. Cold Spring Harb. Perspect. Med. 5, a022822 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Löscher, W., Potschka, H., Sisodiya, S. M. & Vezzani, A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 72, 606–638 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kehne, J. H., Klein, B. D., Raeissi, S. & Sharma, S. The National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP). Neurochem. Res. 42, 1894–1903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. French, J. A. et al. Antiepileptogenesis and disease modification: clinical and regulatory issues. Epilepsia Open 6, 483–492 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Löscher, W. & Schmidt, D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52, 657–678 (2011).

    Article  PubMed  Google Scholar 

  18. World Health Organization. Epilepsy: a public health imperative. WHO. https://iris.who.int/bitstream/handle/10665/325440/WHO-MSD-MER-19.2-eng.pdf (2019).

  19. Gugger, J. J. et al. Multimodal quality of life assessment in post-9/11 veterans with epilepsy: impact of drug resistance, traumatic brain injury, and comorbidity. Neurology 98, E1761–E1770 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Raymont, V. et al. Correlates of posttraumatic epilepsy 35 years following combat brain injury. Neurology 75, 224–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vespa, P. M. et al. The epilepsy bioinformatics study for anti-epileptogenic therapy (EpiBioS4Rx) clinical biomarker: study design and protocol. Neurobiol. Dis. 123, 110–114 (2019).

    Article  PubMed  Google Scholar 

  22. Saletti, P. G. et al. Tau phosphorylation patterns in the rat cerebral cortex after traumatic brain injury and sodium selenate effects: an Epibios4rx Project 2 study. J. Neurotrauma 41, 222–243 (2024).

    Article  Google Scholar 

  23. Saletti, P. G. et al. Early preclinical plasma protein biomarkers of brain trauma are influenced by early seizures and levetiracetam. Epilepsia Open 8, 586–608 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Engel, J. J. Epileptogenesis, traumatic brain injury, and biomarkers. Neurobiol. Dis. 123, 3–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Correa, D. J. et al. Applying participatory action research in traumatic brain injury studies to prevent post-traumatic epilepsy. Neurobiol. Dis. 123, 137–144 (2019).

    Article  PubMed  Google Scholar 

  26. Duncan, D. et al. Big data sharing and analysis to advance research in post-traumatic epilepsy. Neurobiol. Dis. 123, 127–136 (2019).

    Article  PubMed  Google Scholar 

  27. Christensen, J. The epidemiology of posttraumatic epilepsy. Semin. Neurol. 35, 218–222 (2015).

    Article  PubMed  Google Scholar 

  28. Thapa, A. et al. Post-traumatic seizures — a prospective study from a tertiary level trauma center in a developing country. Seizure 19, 211–216 (2010).

    Article  PubMed  Google Scholar 

  29. Ritter, A. C. et al. Incidence and risk factors of posttraumatic seizures following traumatic brain injury: a Traumatic Brain Injury Model Systems Study. Epilepsia 57, 1968–1977 (2016).

    Article  PubMed  Google Scholar 

  30. Haltiner, A. M., Temkin, N. R. & Dikmen, S. S. Risk of seizure recurrence after the first late posttraumatic seizure. Arch. Phys. Med. Rehabil. 78, 835–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W. & Newton, C. R. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51, 883–890 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thijs, R. D., Surges, R., O’Brien, T. J. & Sander, J. W. Epilepsy in adults. Lancet 393, 689–701 (2019).

    Article  PubMed  Google Scholar 

  33. Angeleri, F. et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia 40, 1222–1230 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Englander, J. et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch. Phys. Med. Rehabil. 84, 365–373 (2003).

    Article  PubMed  Google Scholar 

  35. Ferguson, P. L. et al. A population-based study of risk of epilepsy after hospitalization for traumatic brain injury. Epilepsia 51, 891–898 (2010).

    Article  PubMed  Google Scholar 

  36. Laing, J. et al. Risk factors and prognosis of early posttraumatic seizures in moderate to severe traumatic brain injury. JAMA Neurol. 79, 334–341 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Christensen, J. et al. Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet 373, 1105–1110 (2009).

    Article  PubMed  Google Scholar 

  38. Karlander, M., Ljungqvist, J. & Zelano, J. Post-traumatic epilepsy in adults: a nationwide register-based study. J. Neurol. Neurosurg. Psychiatry 92, 617–621 (2021).

    Article  PubMed  Google Scholar 

  39. DeGrauw, X. et al. Epidemiology of traumatic brain injury-associated epilepsy and early use of anti-epilepsy drugs: an analysis of insurance claims data, 2004–2014. Epilepsy Res. 146, 41–49 (2019).

    Article  Google Scholar 

  40. Annegers, J. F. et al. Seizures after head trauma: a population study. Neurology 30, 683–689 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Mahler, B. et al. Unprovoked seizures after traumatic brain injury: a population-based case–control study. Epilepsia 56, 1438–1444 (2015).

    Article  PubMed  Google Scholar 

  42. Santos, S., Murphy, G., Baxter, K. & Robinson, K. M. Organisational factors affecting the quality of hospital clinical coding. Heal. Inf. Manag. 37, 25–37 (2008).

    Google Scholar 

  43. O’Malley, K. J. et al. Measuring diagnoses: ICD code accuracy. Health Serv. Res. 40, 1620–1639 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Langlois, J. A., Rutland-Brown, W. & Wald, M. M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21, 375–378 (2006).

    Article  PubMed  Google Scholar 

  45. Pugh, M. J. V. et al. The prevalence of epilepsy and association with traumatic brain injury in veterans of the Afghanistan and Iraq wars. J. Head Trauma Rehabil. 30, 29–37 (2015).

    Article  PubMed  Google Scholar 

  46. Lolk, K., Dreier, J. W. & Christensen, J. Repeated traumatic brain injury and risk of epilepsy: a Danish nationwide cohort study. Brain 144, 875–884 (2021).

    Article  PubMed  Google Scholar 

  47. Tubi, M. A. et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: a longitudinal study. Neurobiol. Dis. 123, 115–121 (2019).

    Article  PubMed  Google Scholar 

  48. Salazar, A. M. et al. Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology 35, 1406–1414 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. The World Bank. World bank country and lending groups. Worldbank.org. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (2023).

  50. Ogunrin, O. A. & Adeyekun, A. A. Profile of post-traumatic epilepsy in Benin City, Nigeria. West Afr. J. Med. 29, 153–157 (2011).

    Article  Google Scholar 

  51. Rabiu, T. B. & Adetunmbi, B. Posttraumatic seizures in a rural Nigerian neurosurgical service. World Neurosurg. 104, 367–371 (2017).

    Article  PubMed  Google Scholar 

  52. Wang, X. P. et al. Development and external validation of a predictive nomogram model of posttraumatic epilepsy: a retrospective analysis. Seizure 88, 36–44 (2021).

    Article  PubMed  Google Scholar 

  53. Espinosa-Jovel, C., Toledano, R., Aledo-Serrano, Á., García-Morales, I. & Gil-Nagel, A. Epidemiological profile of epilepsy in low income populations. Seizure 56, 67–72 (2018).

    Article  PubMed  Google Scholar 

  54. Gennarelli, T., Champion, H., Copes, W. & Sacco, W. Comparison of mortality, morbidity, and severity of 59,713 head injured patients with 114,447 patients with extracranial injuries. J. Trauma 37, 962–968 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Eagle, S. R., Pease, M., Nwachuku, E., Deng, H. & Okonkwo, D. O. Prognostic models for traumatic brain injury have good discrimination but poor overall model performance for predicting mortality and unfavorable outcomes. Neurosurgery 92, 137–143 (2023).

    Article  PubMed  Google Scholar 

  56. Eagle, S. R. et al. Performance of CRASH and IMPACT prognostic models for traumatic brain injury at 12 and 24 months post-injury. Neurotrauma Rep. 4, 118–123 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hanna Siig Hausted, J. F. N. & Odgaard, L. Epilepsy after severe traumatic brain injury: frequency and injury severity. Brain Inj. 34, 889–894 (2020).

    Article  PubMed  Google Scholar 

  58. Ritter, A. C. et al. Prognostic models for predicting posttraumatic seizures during acute hospitalization, and at 1 and 2 years following traumatic brain injury. Epilepsia 57, 1503–1514 (2016).

    Article  PubMed  Google Scholar 

  59. Xu, T. et al. Risk factors for posttraumatic epilepsy: a systematic review and meta-analysis. Epilepsy Behav. 67, 1–6 (2017).

    Article  PubMed  Google Scholar 

  60. Temkin, N. R. Risk factors for posttraumatic seizures in adults. Epilepsia 44, 18–20 (2003).

    Article  PubMed  Google Scholar 

  61. Arefan, D., Pease, M., Eagle, S. R., Okonkwo, D. O. & Wu, S. Comparison of machine learning models to predict long-term outcomes after severe traumatic brain injury. Neurosurg. Focus 54, E14 (2023).

    Article  PubMed  Google Scholar 

  62. Dijkland, S. A. et al. Prognosis in moderate and severe traumatic brain injury: a systematic review of contemporary models and validation studies. J. Neurotrauma 37, 1–13 (2020).

    Article  PubMed  Google Scholar 

  63. Steyerberg, E. W. et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5, 1251–1261 (2008).

    Article  Google Scholar 

  64. Immonen, R. et al. Imaging biomarkers of epileptogenecity after traumatic brain injury — preclinical frontiers. Neurobiol. Dis. 123, 75–85 (2019).

    Article  PubMed  Google Scholar 

  65. Garner, R. et al. Imaging biomarkers of posttraumatic epileptogenesis. Epilepsia 60, 2151–2162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Prince, D. A. et al. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 50, 30–40 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jennett, W. B. & Lewin, W. Traumatic epilepsy after closed head injuries. J. Neurol. Neurosurg. Psychiatry 23, 295–301 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Al-Haddad, S. A. & Kirollos, R. A 5-year study of the outcome of surgically treated depressed skull fractures. Ann. R. Coll. Surg. Engl. 84, 196–200 (2002).

    PubMed  PubMed Central  Google Scholar 

  69. De Reuck, J. Risk factors for late-onset seizures related to cerebral contusions in adults with a moderate traumatic brain injury. Clin. Neurol. Neurosurg. 113, 469–471 (2011).

    Article  PubMed  Google Scholar 

  70. La Rocca, M. et al. Distribution and volume analysis of early hemorrhagic contusions by MRI after traumatic brain injury: a preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). Brain Imaging Behav. 15, 2804–2812 (2021).

    Article  PubMed  Google Scholar 

  71. Messori, A., Polonara, G., Carle, F., Gesuita, R. & Salvolini, U. Predicting posttraumatic epilepsy with MRI: prospective longitudinal morphologic study in adults. Epilepsia 46, 1472–1481 (2005).

    Article  PubMed  Google Scholar 

  72. Gupta, P. K. et al. Subtypes of post-traumatic epilepsy: clinical, electrophysiological, and imaging features. J. Neurotrauma 31, 1439–1443 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Won, S. Y. et al. A systematic review of epileptic seizures in adults with subdural haematomas. Seizure 45, 28–35 (2017).

    Article  PubMed  Google Scholar 

  74. La Rocca, M. et al. Multiplex networks to characterize seizure development in traumatic brain injury patients. Front. Neurosci. 14, 591662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lutkenhoff, E. S. et al. Early brain biomarkers of post-traumatic seizures: initial report of the multicentre epilepsy bioinformatics study for antiepileptogenic therapy (EpiBioS4Rx) prospective study. J. Neurol. Neurosurg. Psychiatry 91, 1154–1157 (2020).

    Article  PubMed  Google Scholar 

  76. Manninen, E. et al. Acute thalamic damage as a prognostic biomarker for post-traumatic epileptogenesis. Epilepsia 62, 1852–1864 (2021).

    Article  PubMed  Google Scholar 

  77. Graham, N. S. N., Cole, J. H., Bourke, N. J., Schott, J. M. & Sharp, D. J. Distinct patterns of neurodegeneration after TBI and in Alzheimer’s disease. Alzheimers Dement. 19, 3065–3077 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Dinkel, J. et al. Long-term white matter changes after severe traumatic brain injury: a 5-year prospective cohort. Am. J. Neuroradiol. 35, 23–29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zelano, J. & Westman, G. Epilepsy after brain infection in adults. Neurology 95, e3213–e3220 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Yu, T., Liu, X., Sun, L., Wu, J. & Wang, Q. Clinical characteristics of post-traumatic epilepsy and the factors affecting the latency of PTE. BMC Neurol. 21, 301 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Candy, N., Tsimiklis, C., Poonnoose, S. & Trivedi, R. The use of antiepileptic medication in early post traumatic seizure prophylaxis at a single institution. J. Clin. Neurosci. 69, 198–205 (2019).

    Article  PubMed  Google Scholar 

  82. DJohn, J., Ibrahim, R., Patel, P., DeHoff, K. & Kolbe, N. Administration of levetiracetam in traumatic brain injury: is it warranted? Cureus 12, e9117 (2020).

    PubMed  PubMed Central  Google Scholar 

  83. Pease, M. et al. Multicenter and prospective trial of anti-epileptics for early seizure prevention in mild traumatic brain injury with a positive computed tomography scan. Surg. Neurol. Int. 13, 241 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lee, S. T., Lui, T. N., Wong, C. W., Yeh, Y. S. & Tzaan, W. C. Early seizures after moderate closed head injury. Acta Neurochir. 137, 151–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Temkin, N. R. et al. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med. 323, 497–502 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Gugger, J. J. & Diaz-Arrastia, R. Early posttraumatic seizures — putting things in perspective. JAMA Neurol. 79, 325–326 (2022).

    Article  PubMed  Google Scholar 

  87. Jennett, B. Early traumatic epilepsy: incidence and significance after nonmissile injuries. Arch. Neurol. 30, 394–398 (1974).

    Article  CAS  PubMed  Google Scholar 

  88. Glaser, A. C. et al. The effect of antiseizure medication administration on mortality and early posttraumatic seizures in critically ill older adults with traumatic brain injury. Neurocrit. Care 37, 538–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, Y., Wu, H., Wang, X., Li, J. & Zhang, S. Clinical epidemiology of posttraumatic epilepsy in a group of Chinese patients. Seizure 21, 322–326 (2012).

    Article  PubMed  Google Scholar 

  90. Bakr, A. & Belli, A. A systematic review of levetiracetam versus phenytoin in the prevention of late post-traumatic seizures and survey of UK neurosurgical prescribing practice of antiepileptic medication in acute traumatic brain injury. Br. J. Neurosurg. 32, 237–244 (2018).

    Article  PubMed  Google Scholar 

  91. Carney, N. et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80, 6–15 (2017).

    Article  PubMed  Google Scholar 

  92. Wilson, C. D. et al. Early and late posttraumatic epilepsy in the setting of traumatic brain injury: a meta-analysis and review of antiepileptic management. World Neurosurg. 110, e901–e906 (2018).

    Article  PubMed  Google Scholar 

  93. Sundararajan, K., Milne, D., Edwards, S., Chapman, M. J. & Shakib, S. Anti-seizure prophylaxis in critically ill patients with traumatic brain injury in an intensive care unit. Anaesth. Intensive Care 43, 646–651 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Sun, Y. et al. Early post-traumatic seizures are associated with valproic acid plasma concentrations and UGT1A6/CYP2C9 genetic polymorphisms in patients with severe traumatic brain injury. Scand. J. Trauma Resusc. Emerg. Med 25, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Temkin, N. R. et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J. Neurosurg. 91, 593–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, B. C. et al. Comparative efficacy of prophylactic anticonvulsant drugs following traumatic brain injury: a systematic review and network meta-analysis of randomized controlled trials. PLoS ONE 17, e0265932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kwon, S. J. et al. Lacosamide versus phenytoin for the prevention of early post traumatic seizures. J. Crit. Care 50, 50–53 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Herman, S. T. et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J. Clin. Neurophysiol. 32, 87–95 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Vespa, P. et al. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann. Neurol. 79, 579–590 (2016).

    Article  PubMed  Google Scholar 

  100. Khor, D. et al. Early seizure prophylaxis in traumatic brain injuries revisited: a prospective observational study. World J. Surg. 42, 1727–1732 (2018).

    Article  PubMed  Google Scholar 

  101. Inglet, S. et al. Seizure prophylaxis in patients with traumatic brain injury: a single-center study. Cureus 8, 6–8 (2016).

    Google Scholar 

  102. Hazama, A. et al. The effect of Keppra prophylaxis on the incidence of early onset, post-traumatic brain injury seizures. Cureus 10, e2674 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Pingue, V., Mele, C. & Nardone, A. Post-traumatic seizures and antiepileptic therapy as predictors of the functional outcome in patients with traumatic brain injury. Sci. Rep. 11, 4708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zaccara, G. et al. Do antiepileptic drugs increase the risk of infectious diseases? A meta-analysis of placebo-controlled studies. Br. J. Clin. Pharm. 83, 1873–1879 (2017).

    Article  CAS  Google Scholar 

  105. Carpay, J. A., Aldenkamp, A. P. & van Donselaar, C. A. Complaints associated with the use of antiepileptic drugs: results from a community-based study. Seizure 14, 198–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Lu, X. & Wang, X. Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin. Drug Saf. 16, 77–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Aarabi, B., Taghipour, M., Haghnegahdar, A., Farokhi, M. & Mobley, L. Prognostic factors in the occurrence of posttraumatic epilepsy after penetrating head injury suffered during military service. Neurosurg. Focus 8, e1 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Galanopoulou, A. S. et al. Antiepileptogenesis and disease modification: progress, challenges, and the path forward — Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open 6, 276–296 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pingue, V. et al. Impact of seizures and their prophylaxis with antiepileptic drugs on rehabilitation course of patients with traumatic or hemorrhagic brain injury. Front. Neurol. 13, 1060008 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pugh, M. J. et al. The military injuries: understanding post-traumatic epilepsy study: understanding relationships among lifetime traumatic brain injury history, epilepsy, and quality of life. J. Neurotrauma 38, 2841–2850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Juengst, S. B. et al. Post-traumatic epilepsy associations with mental health outcomes in the first two years after moderate to severe TBI: a TBI Model Systems analysis. Epilepsy Behav. 73, 240–246 (2017).

    Article  PubMed  Google Scholar 

  112. Mazzini, L. et al. Posttraumatic epilepsy: neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia 44, 569–574 (2003).

    Article  PubMed  Google Scholar 

  113. Semple, B. D., Zamani, A., Rayner, G., Shultz, S. R. & Jones, N. C. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol. Dis. 123, 27–41 (2020).

    Article  Google Scholar 

  114. Ngadimon, I. W. et al. An interplay between post-traumatic epilepsy and associated cognitive decline: a systematic review. Front. Neurol. 13, 827571 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mukherjee, S. et al. Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflammation 17, 193 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. La Rocca, M. et al. Functional connectivity alterations in traumatic brain injury patients with late seizures. Neurobiol. Dis. 179, 106053 (2023).

    Article  PubMed  Google Scholar 

  117. Pease, M. et al. Outcome prediction in patients with severe traumatic brain injury using deep learning from head CT scans. Radiology 304, 385–394 (2022).

    Article  PubMed  Google Scholar 

  118. Lutkenhoff, E. S. et al. The subcortical basis of outcome and cognitive impairment in TBI: a longitudinal cohort study. Neurology 95, E2398–E2408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Walker, W. C. et al. Global outcome and late seizures after penetrating versus closed traumatic brain injury: a NIDRR TBI Model Systems study. J. Head Trauma Rehabil. 30, 231–240 (2015).

    Article  PubMed  Google Scholar 

  120. Bushnik, T., Englander, J., Wright, J. & Kolakowsky-Hayner, S. A. Traumatic brain injury with and without late posttraumatic seizures: what are the impacts in the post-acute phase: a NIDRR traumatic brain injury model systems study. J. Head Trauma Rehabil. 27, 36–44 (2012).

    Article  Google Scholar 

  121. Yu, T. et al. Predicting global functional outcomes among post-traumatic epilepsy patients after moderate-to-severe traumatic brain injury: development of a prognostic model. Front. Neurol. 13, 874491 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Uski, J., Lamusuo, S., Teperi, S., Löyttyniemi, E. & Tenovuo, O. Mortality after traumatic brain injury and the effect of posttraumatic epilepsy. Neurology 91, e878–e883 (2018).

    Article  PubMed  Google Scholar 

  123. Karlander, M., Ljungqvist, J., Sörbo, A. & Zelano, J. Risk and cause of death in post-traumatic epilepsy: a register-based retrospective cohort study. J. Neurol. 269, 6014–6020 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Englander, J., Bushnik, T., Wright, J. M., Jamison, L. & Duong, T. T. Mortality in late post-traumatic seizures. J. Neurotrauma 26, 1471–1477 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rayner, G., Jackson, G. D. & Wilson, S. J. Two distinct symptom-based phenotypes of depression in epilepsy yield specific clinical and etiological insights. Epilepsy Behav. 64, 336–344 (2016).

    Article  PubMed  Google Scholar 

  126. Ponsford, J. Anxiety and depression following TBI. in Neurobehavioural Disability and Social Handicap Following Traumatic Brain Injury 2nd edn (eds McMillan, T. M. & Wood, R. L. L.) 167–177 (Taylor & Francis, 2017).

  127. Foreman, B. et al. Seizures and cognitive outcome after traumatic brain injury: a post hoc analysis. Neurocrit. Care 36, 130–138 (2022).

    Article  PubMed  Google Scholar 

  128. Lee, H. et al. Continuous electroencephalography after moderate to severe traumatic brain injury. Crit. Care Med 47, 574–582 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. He, X. et al. Resective surgery for drug-resistant posttraumatic epilepsy: predictors of seizure outcome. J. Neurosurg. 133, 1568–1575 (2019).

    Article  Google Scholar 

  130. Chartrain, A. G. et al. Antiepileptics for post-traumatic seizure prophylaxis after traumatic brain injury. Curr. Pharm. Des. 23, 6428–6441 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Zimmermann, L. L., Martin, R. M. & Girgis, F. Treatment options for posttraumatic epilepsy. Curr. Opin. Neurol. 30, 580–586 (2017).

    Article  PubMed  Google Scholar 

  132. Hamed, R., Hussein, R., Ibraheem, S. & Jumaily, M. Comparative study between leviteracetam, phenytoin & carbamazepine in treating post traumatic epilepsy. NeuroQuantology 18, 1–5 (2020).

    Article  Google Scholar 

  133. Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hitti, F. L. et al. Surgical outcomes in post-traumatic epilepsy: a single institutional experience. Oper. Neurosurg. 18, 12–18 (2020).

    Article  Google Scholar 

  135. Marks, D. A., Kim, J., Spencer, D. D. & Spencer, S. S. Seizure localization and pathology following head injury in patients with uncontrolled epilepsy. Neurology 45, 2051–2057 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Hakimian, S. et al. Long-term outcome of extratemporal resection in posttraumatic epilepsy. Neurosurg. Focus 32, E10 (2012).

    Article  PubMed  Google Scholar 

  137. Schuele, S. U. & Lüders, H. O. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol. 7, 514–524 (2008).

    Article  PubMed  Google Scholar 

  138. Ferreira, L. D., Tabaeizadeh, M. & Haneef, Z. Surgical outcomes in post-traumatic temporal lobe epilepsy: a systematic review and meta-analysis. J. Neurotrauma 41, 319–330 (2024).

    Article  PubMed  Google Scholar 

  139. Wiebe, S., Blume, W. T., Girvin, J. P. & Eliasziw, M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N. Engl. J. Med. 345, 311–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, H.-O. et al. Effect of vagus nerve stimulation in post-traumatic epilepsy and failed epilepsy surgery: preliminary report. J. Korean Neurosurg. Soc. 44, 196–198 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Shen, C.-C. & Jiang, J.-F. Auricular electroacupuncture for late posttraumatic epilepsy after severe brain injury: a retrospective study. Evid. Based Complement Altern. Med. 2019, 5798912 (2019).

    Article  Google Scholar 

  142. Chen, Y. et al. Quantitative epileptiform burden and electroencephalography background features predict post-traumatic epilepsy. J. Neurol. Neurosurg. Psychiatry 94, 245–249 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Kim, J. A. et al. Epileptiform activity in traumatic brain injury predicts post-traumatic epilepsy. Ann. Neurol. 83, 858–862 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Faghihpirayesh, R. et al. Automatic detection of EEG epileptiform abnormalities in traumatic brain injury using deep learning. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 302–305 (2021).

    PubMed  PubMed Central  Google Scholar 

  145. Di Sapia, R. et al. ECoG spiking activity and signal dimension are early predictive measures of epileptogenesis in a translational mouse model of traumatic brain injury. Neurobiol. Dis. 185, 106251 (2023).

    Article  PubMed  Google Scholar 

  146. Kumar, U., Li, L., Bragin, A. & Engel, J. J. Spike and wave discharges and fast ripples during posttraumatic epileptogenesis. Epilepsia 62, 1842–1851 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, L. et al. Spatial and temporal profile of high-frequency oscillations in posttraumatic epileptogenesis. Neurobiol. Dis. 161, 105544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pease, M. et al. Predicting post-traumatic epilepsy using admission electroencephalography after severe traumatic brain injury. Epilepsia 64, 1842–1852 (2023).

    Article  PubMed  Google Scholar 

  149. Ghaith, H. S. et al. A literature review of traumatic brain injury biomarkers. Mol. Neurobiol. 59, 4141–4158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Misra, S. et al. Common pathways of epileptogenesis in patients with epilepsy post-brain injury: findings from a systematic review and meta-analysis. Neurology 101, e2243–e2256 (2023).

    Article  PubMed  Google Scholar 

  151. Cotter, D., Kelso, A. & Neligan, A. Genetic biomarkers of posttraumatic epilepsy: a systematic review. Seizure 46, 53–58 (2017).

    Article  PubMed  Google Scholar 

  152. Nam, J.-W. et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 53, 1031–1043 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yu, Y. et al. The role of exosomal microRNAs in central nervous system diseases. Mol. Cell. Biochem. 476, 2111–2124 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Gitaí, D. L. G. et al. Extracellular vesicles in the forebrain display reduced miR-346 and miR-331-3p in a rat model of chronic temporal lobe epilepsy. Mol. Neurobiol. 57, 1674–1687 (2020).

    Article  PubMed  Google Scholar 

  155. Chen, S.-D. et al. Circulating microRNAs from serum exosomes may serve as a putative biomarker in the diagnosis and treatment of patients with focal cortical dysplasia. Cells 9, 1867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brennan, G. P. & Henshall, D. C. microRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 667, 47–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Wang, Y. et al. Circulating microRNAs from plasma small extracellular vesicles as potential diagnostic biomarkers in pediatric epilepsy and drug-resistant epilepsy. Front. Mol. Neurosci. 15, 823802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Heiskanen, M. et al. Discovery and validation of circulating microRNAs as biomarkers for epileptogenesis after experimental traumatic brain injury — the EPITARGET Cohort. Int. J. Mol. Sci. 24, 2823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kumar, P. miRNA dysregulation in traumatic brain injury and epilepsy: a systematic review to identify putative biomarkers for post-traumatic epilepsy. Metab. Brain Dis. 38, 749–765 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Karnati, H. K. et al. Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury. J. Neurotrauma 36, 975–987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lin, Z. et al. Serum exosomal proteins F9 and TSP-1 as potential diagnostic biomarkers for newly diagnosed epilepsy. Front. Neurosci. 14, 737 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Karttunen, J., Heiskanen, M., Lipponen, A., Poulsen, D. & Pitkänen, A. Extracellular vesicles as diagnostics and therapeutics for structural epilepsies. Int. J. Mol. Sci. 20, 1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Upadhya, D. & Shetty, A. K. Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy Behav. 121, 106499 (2021).

    Article  PubMed  Google Scholar 

  164. Redell, J. B., Moore, A. N., Ward, N. H. III, Hergenroeder, G. W. & Dash, P. K. Human traumatic brain injury alters plasma microRNA levels. J. Neurotrauma 27, 2147–2156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Qin, X. et al. Expression profile of plasma microRNAs and their roles in diagnosis of mild to severe traumatic brain injury. PLoS ONE 13, e0204051 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ko, J. et al. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. Lab Chip 18, 3617–3630 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hicks, S. D. et al. Overlapping microRNA expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury. J. Neurotrauma 35, 64–72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Di Pietro, V. et al. MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury. J. Neurotrauma 34, 1948–1956 (2017).

    Article  PubMed  Google Scholar 

  169. Bhomia, M., Balakathiresan, N. S., Wang, K. K., Papa, L. & Maheshwari, R. K. A panel of serum miRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Sci. Rep. 6, 28148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yan, S. et al. Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Oncotarget 8, 4136–4146 (2017).

    Article  PubMed  Google Scholar 

  171. Raoof, R. et al. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. eBioMedicine 38, 127–141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Medel-Matus, J.-S. et al. Susceptibility to epilepsy after traumatic brain injury is associated with preexistent gut microbiome profile. Epilepsia 63, 1835–1848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Medel-Matus, J.-S. et al. Modification of post-traumatic epilepsy by fecal microbiota transfer. Epilepsy Behav. 134, 108860 (2022).

    Article  PubMed  Google Scholar 

  174. French, J. A. et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann. Neurol. 34, 774–780 (1993).

    Article  CAS  PubMed  Google Scholar 

  175. Löscher, W. The search for new screening models of pharmacoresistant epilepsy: is induction of acute seizures in epileptic rodents a suitable approach? Neurochem. Res. 42, 1926–1938 (2017).

    Article  PubMed  Google Scholar 

  176. Dudek, F. E. & Staley, K. J. The time course and circuit mechanisms of acquired epileptogenesis. in Jasper’s Basic Mechanisms of the Epilepsies 4th edn (eds Noebels, J. L. et al.) (Oxford Univ. Press, 2012).

  177. Santhakumar, V., Ratzliff, A. D., Jeng, J., Toth, Z. & Soltesz, I. Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann. Neurol. 50, 708–717 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Dudek, F. E. & Spitz, M. Hypothetical mechanisms for the cellular and neurophysiologic basis of secondary epileptogenesis: proposed role of synaptic reorganization. J. Clin. Neurophysiol. 14, 90–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Cantu, D. et al. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb. Cortex 25, 2306–2320 (2015).

    Article  PubMed  Google Scholar 

  180. Lowenstein, D. H., Thomas, M. J., Smith, D. H. & McIntosh, T. K. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J. Neurosci. 12, 4846–4853 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Raible, D. J., Frey, L. C., Cruz Del Angel, Y., Russek, S. J. & Brooks-Kayal, A. R. GABA(A) receptor regulation after experimental traumatic brain injury. J. Neurotrauma 29, 2548–2554 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gupta, A., Elgammal, F. S., Proddutur, A., Shah, S. & Santhakumar, V. Decrease in tonic inhibition contributes to increase in dentate semilunar granule cell excitability after brain injury. J. Neurosci. 32, 2523–2537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Webster, K. M. et al. Inflammation in epileptogenesis after traumatic brain injury. J. Neuroinflammation 14, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hunt, R. F., Scheff, S. W. & Smith, B. N. Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice. J. Neurosci. 31, 6880–6890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bolkvadze, T., Puhakka, N. & Pitkänen, A. Epileptogenesis after traumatic brain injury in Plaur-deficient mice. Epilepsy Behav. 60, 187–196 (2016).

    Article  PubMed  Google Scholar 

  186. Kumar, P. et al. Single-cell transcriptomics and surface epitope detection in human brain epileptic lesions identifies pro-inflammatory signaling. Nat. Neurosci. 25, 956–966 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Srinivasan, D., Yen, J.-H., Joseph, D. J. & Friedman, W. Cell type-specific interleukin-1beta signaling in the CNS. J. Neurosci. 24, 6482–6488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shiozaki, T. et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 23, 406–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Fan, L. et al. Experimental brain injury induces expression of interleukin-1 beta mRNA in the rat brain. Brain Res. Mol. Brain Res. 30, 125–130 (1995).

    Article  CAS  PubMed  Google Scholar 

  190. Clausen, F. et al. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur. J. Neurosci. 30, 385–396 (2009).

    Article  PubMed  Google Scholar 

  191. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Shi, Y., Zhang, L., Teng, J. & Miao, W. HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy. Mol. Med. Rep. 17, 5125–5131 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Chiavegato, A., Zurolo, E., Losi, G., Aronica, E. & Carmignoto, G. The inflammatory molecules IL-1β and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy. Front. Cell. Neurosci. 8, 155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Semple, B. D., Kossmann, T. & Morganti-Kossmann, M. C. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J. Cereb. Blood Flow Metab. 30, 459–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Gosselin, R. D. et al. Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J. Neurochem. 95, 1023–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Patabendige, A. & Janigro, D. The role of the blood–brain barrier during neurological disease and infection. Biochem. Soc. Trans. 51, 613–626 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Marchi, N., Granata, T., Alexopoulos, A. & Janigro, D. The blood–brain barrier hypothesis in drug resistant epilepsy. Brain 135, e211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Bargerstock, E. et al. Is peripheral immunity regulated by blood–brain barrier permeability changes? PLoS ONE 9, e101477 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Dadas, A. & Janigro, D. Breakdown of blood–brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol. Dis. 123, 20–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Weissberg, I. et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood–brain barrier dysfunction. Neurobiol. Dis. 78, 115–125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ivens, S. et al. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130, 535–547 (2007).

    Article  PubMed  Google Scholar 

  202. Saletti, P. G. et al. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol. Dis. 123, 86–99 (2019).

    Article  PubMed  Google Scholar 

  203. Kendirli, M. T., Rose, D. T. & Bertram, E. H. A model of posttraumatic epilepsy after penetrating brain injuries: effect of lesion size and metal fragments. Epilepsia 55, 1969–1977 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Takei, N. & Nawa, H. mTOR signaling and its roles in normal and abnormal brain development. Front. Mol. Neurosci. 7, 28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lee, D. Y. Roles of mTOR signaling in brain development. Exp. Neurobiol. 24, 177–185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Butler, C. R., Boychuk, J. A. & Smith, B. N. Effects of rapamycin treatment on neurogenesis and synaptic reorganization in the dentate gyrus after controlled cortical impact injury in mice. Front. Syst. Neurosci. 9, 163 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Niu, L.-J., Xu, R.-X., Zhang, P., Du, M.-X. & Jiang, X.-D. Suppression of Frizzled-2-mediated Wnt/Ca2+ signaling significantly attenuates intracellular calcium accumulation in vitro and in a rat model of traumatic brain injury. Neuroscience 213, 19–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Mardones, M. D. & Gupta, K. Transcriptome profiling of the hippocampal seizure network implicates a role for Wnt signaling during epileptogenesis in a mouse model of temporal lobe epilepsy. Int. J. Mol. Sci. 23, 12030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gupta, K. & Schnell, E. Neuronal network remodeling and Wnt pathway dysregulation in the intra-hippocampal kainate mouse model of temporal lobe epilepsy. PLoS ONE 14, e0215789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Raza, M. et al. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc. Natl Acad. Sci. USA 101, 17522–17527 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Powell, K. L., Cain, S. M., Snutch, T. P. & O’Brien, T. J. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br. J. Clin. Pharm. 77, 729–739 (2014).

    Article  CAS  Google Scholar 

  212. Conboy, K., Henshall, D. C. & Brennan, G. P. Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiol. Dis. 148, 105179 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Dębski, K. J. et al. Etiology matters — genomic DNA methylation patterns in three rat models of acquired epilepsy. Sci. Rep. 6, 25668 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Nelson, E. D., Kavalali, E. T. & Monteggia, L. M. Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J. Neurosci. 28, 395–406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Machnes, Z. M. et al. DNA methylation mediates persistent epileptiform activity in vitro and in vivo. PLoS ONE 8, e76299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Deutsch, S. I., Mastropaolo, J., Burket, J. A. & Rosse, R. B. An epigenetic intervention interacts with genetic strain differences to modulate the stress-induced reduction of flurazepam’s antiseizure efficacy in the mouse. Eur. Neuropsychopharmacol. 19, 398–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Sasa, M. A new frontier in epilepsy: novel antiepileptogenic drugs. J. Pharmacol. Sci. 100, 487–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  220. Brady, R. D. et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol. Dis. 123, 8–19 (2020).

    Article  Google Scholar 

  221. Ford, I. & Norrie, J. Pragmatic trials. N. Engl. J. Med. 375, 454–463 (2016).

    Article  PubMed  Google Scholar 

  222. Casey, J. D., Beskow, L. M. & Brown, J. Use of pragmatic and explanatory trial designs in acute care research: lessons from COVID-19. Lancet Respir. Med. 10, 700–714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Braun, R. It’s been a TRACK-TBI LONG time coming but well worth the wait. Neurology 101, 287–289 (2023).

    Article  PubMed  Google Scholar 

  224. McCrea, M. A. et al. Functional outcomes over the first year after moderate to severe traumatic brain injury in the prospective, longitudinal TRACK-TBI study. JAMA Neurol. 78, 982–992 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Andrews, P. J. et al. Therapeutic hypothermia to reduce intracranial pressure after traumatic brain injury: the Eurotherm3235 RCT. Health Technol. Assess. 22, 1–134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Bastian, L. A. et al. Stakeholder engagement in pragmatic clinical trials: emphasizing relationships to improve pain management delivery and outcomes. Pain Med. 21, S13–S20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Morain, S. & Largent, E. Think pragmatically: investigators’ obligations to patient-subjects when research is embedded in care. Am. J. Bioeth. 23, 10–21 (2023).

    Article  PubMed  Google Scholar 

  228. Diaz, V. Encouraging participation of minorities in research studies. Ann. Fam. Med. 10, 372–373 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Boden-Albala, B. et al. Use of community-engaged research approaches in clinical interventions for neurologic disorders in the United States. Neurology 101, S27–S46 (2023).

    Article  PubMed  Google Scholar 

  230. Griffith, D. M., Towfighi, A., Manson, S. M., Littlejohn, E. L. & Skolarus, L. E. Determinants of inequities in neurologic disease, health, and well-being: the NINDS Social Determinants of Health Framework. Neurology 101, S75–S81 (2023).

    Article  PubMed  Google Scholar 

  231. Danziger, J. et al. Temporal trends in critical care outcomes in U.S. minority-serving hospitals. Am. J. Respir. Crit. Care Med 201, 681–687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Kanter, G. P., Segal, A. G. & Groeneveld, P. W. Income disparities in access to critical care services. Health Aff. 39, 1362–1367 (2020).

    Article  Google Scholar 

  233. Nayfeh, A. & Fowler, R. A. Understanding patient- and hospital-level factors leading to differences, and disparities, in critical care. Am. J. Respir. Crit. Care Med 201, 642–644 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Brown, K. E., Fohner, A. E. & Woodahl, E. L. Beyond the individual: community-centric approaches to increase diversity in biomedical research. Clin. Pharmacol. Ther. 113, 509–517 (2023).

    Article  PubMed  Google Scholar 

  235. Benizri, N., Hallot, S., Burns, K. & Goldfarb, M. Patient and family representation in randomized clinical trials published in 3 medical and surgical journals: a systematic review. JAMA Netw. Open 5, e2230858 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Gill, M. et al. Patient and family member-led research in the intensive care unit: a novel approach to patient-centered research. PLoS ONE 11, e0160947 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Fairley, R. et al. Increasing clinical trial participation of Black women diagnosed with breast cancer. J. Racial Ethn. Health Disparities https://doi.org/10.1007/s40615-023-01644-z (2023).

    Article  PubMed  Google Scholar 

  238. Barrett, N. J. et al. Factors associated with biomedical research participation within community-based samples across 3 National Cancer Institute-designated cancer centers. Cancer 126, 1077–1089 (2020).

    Article  PubMed  Google Scholar 

  239. Miles, S. R. et al. Evolution of irritability, anger, and aggression after traumatic brain injury: identifying and predicting subgroups. J. Neurotrauma 38, 1827–1833 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Driver, S., Reynolds, M. & Kramer, K. Modifying an evidence-based lifestyle programme for individuals with traumatic brain injury. Brain Inj. 31, 1612–1616 (2017).

    Article  PubMed  Google Scholar 

  241. Sutton, K. M. et al. Engaging individuals with neurological conditions and caregivers in rural communities in a health research team. Prog. Community Health Partnersh. 13, 129–139 (2019).

    Article  PubMed  Google Scholar 

  242. Shimia, M. et al. A placebo-controlled randomized clinical trial of amantadine hydrochloride for evaluating the functional improvement of patients following severe acute traumatic brain injury. J. Neurosurg. Sci. 67, 598–604 (2023).

    Article  PubMed  Google Scholar 

  243. Morey, C. E., Cilo, M., Berry, J. & Cusick, C. The effect of Aricept in persons with persistent memory disorder following traumatic brain injury: a pilot study. Brain Inj. 17, 809–815 (2003).

    Article  PubMed  Google Scholar 

  244. Jha, A. et al. A randomized trial of modafinil for the treatment of fatigue and excessive daytime sleepiness in individuals with chronic traumatic brain injury. J. Head Trauma Rehabil. 23, 52–63 (2008).

    Article  PubMed  Google Scholar 

  245. Shultz, S. R. et al. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138, 1297–1313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Liu, S.-J. et al. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 139, 1919–1938 (2016).

    Article  PubMed  Google Scholar 

  247. Li, Z. et al. Iron neurotoxicity and protection by deferoxamine in intracerebral hemorrhage. Front. Mol. Neurosci. 15, 927334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Terrone, G., Balosso, S., Pauletti, A., Ravizza, T. & Vezzani, A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 167, 107742 (2020).

    Article  CAS  PubMed  Google Scholar 

  249. Serrano, G. E. et al. Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J. Neurosci. 31, 14850–14860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Desjardins, P. et al. Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem. Int. 42, 299–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  251. Löscher, W. & Friedman, A. Structural, molecular, and functional alterations of the blood–brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both? Int. J. Mol. Sci. 21, 591 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Henshall, D. C. & Kobow, K. Epigenetics and epilepsy. Cold Spring Harb. Perspect. Med. 5, a022731 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Guo, D., Zeng, L., Brody, D. L. & Wong, M. Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS ONE 8, e64078 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Galanopoulou, A. S., Gorter, J. A. & Cepeda, C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 53, 1119–1130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Coulter, D. A. & Steinhäuser, C. Role of astrocytes in epilepsy. Cold Spring Harb. Perspect. Med. 5, a022434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Christopher Brown (Indiana University) for his contributions to the design of the figures for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.P., K.G., S.M., A.G., D.O.O., J.G.-M., L.S. and J.F.C. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Matthew Pease.

Ethics declarations

Competing interests

S.M. is the Charles Frost Chair in Neurosurgery and Neurology and partially funded by grants from NIH U54 NS100064 (EpiBioS4Rx), R01-NS43209 and R01-NS127524, the US Department of Defense (W81XWH-22-1-0510, W81XWH-22-1-0210), a pilot grant from the National Institute of Child Health and Human Development (NICHD) centre grant (P50 HD105352) for the Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (RFK-IDDRC), the Heffer Family and the Segal Family Foundations, the Isabelle Rapin and Harold Oaklander Child Neurology Research Fund in the Isabelle Rapin Child Neurology Division and the Abbe Goldstein/Joshua Lurie and Laurie Marsh/Dan Levitz families. He is on the editorial boards of Brain and Development, Paediatric Neurology, Annals of Neurology, MedLink and Physiological Research. He receives compensation from MedLink for his work as Associate Editor; and royalties from books he co-edited. A.G. acknowledges research grant support from NINDS R01-NS127524, US Department of Defense (W81XWH-22-1-0210, W81XWH-22-1-0510, EP220067), a pilot grant from the NICHD centre grant (P50 HD105352) for the RFK-IDDRC, R01-DA019473, R01-AI164864, the Heffer Family and the Segal Family Foundations, the Isabelle Rapin and Harold Oaklander Child Neurology Research Fund in the Isabelle Rapin Child Neurology Division and the Abbe Goldstein/Joshua Lurie and Laurie Marsh/Dan Levitz families. She is the Editor-in-Chief of Epilepsia Open and associate editor of Neurobiology of Disease and receives royalties from Elsevier, Walters Kluwer and MedLink for publications. J.G.-M. receives consulting fees for Zimmer Biomet. D.C. receives compensation as lead editor for the Brain and Life podcast for the American Academy of Neurology and is co-editor of a new textbook on health equity among neurological disorders including chapters on traumatic brain injury and epilepsy. J.F.C. and K.G. accept fees from NeuroOne Medical Technologies Corporation for consulting. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks S. Shultz and D. Duncan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anti-epileptogenic medications

(AEMs). Therapies that ameliorate epileptogenesis, with lasting effects beyond the period of drug exposure.

Anti-seizure medications

(ASMs). Medications that treat seizures but do not modify the process of epileptogenesis or alter the disease course of epilepsy.

Cerebrospinal fluid shunting

A common neurosurgical procedure to drain cerebrospinal fluid, usually from the ventricular system, thereby decreasing intracranial pressure.

Encephalomalacia

A radiological finding denoting an area of brain tissue that has undergone liquefactive necrosis.

Engel Epilepsy Surgery Outcome Scale

A classification scheme of seizure outcomes after epilepsy surgery using four classes: 1, free of disabling seizures; 2, rare disabling seizures; 3, worthwhile improvement; and 4, no worthwhile improvement.

Extended GOS

(GOSE). An extension of the Glasgow Outcome Scale that subdivides the categories of severe disability, moderate disability and good recovery into lower and upper categories.

Glasgow Coma Scale

(GCS). A broadly utilized clinical scale describing the level of consciousness after traumatic injury.

Glasgow Outcome Scale

(GOS). A global scale for functional outcome after brain injury that rates patient status using five categories: dead, vegetative state, severe disability, moderate disability and good recovery.

Mild TBI

Traumatic brain injury with post-impact (may not need resuscitation) Glasgow Coma Scale score 13–15.

Moderate TBI

Traumatic brain injury with post-resuscitation Glasgow Coma Scale score 9–12.

Pathological posturing responses

Stereotypical movements of the trunk and extremities in response to stimuli, typically indicative of significant CNS injury.

Severe TBI

Traumatic brain injury with post-resuscitation Glasgow Coma Scale score ≤ 8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pease, M., Gupta, K., Moshé, S.L. et al. Insights into epileptogenesis from post-traumatic epilepsy. Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-00954-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41582-024-00954-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research