Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating B cell immunology to the treatment of antibody-mediated allograft rejection

Abstract

Antibody-mediated rejection (AMR), including chronic AMR (cAMR), causes ~50% of kidney allograft losses each year. Despite attempts to develop well-tolerated and effective therapeutics for the management of AMR, to date, none has obtained FDA approval, thereby highlighting an urgent unmet medical need. Discoveries over the past decade from basic, translational and clinical studies of transplant recipients have provided a foundation for developing novel therapeutic approaches to preventing and treating AMR and cAMR. These interventions are aimed at reducing donor-specific antibody levels, decreasing graft injury and fibrosis, and preserving kidney function. Innovative approaches emerging from basic science findings include targeting interactions between alloreactive T cells and B cells, and depleting alloreactive memory B cells, as well as donor-specific antibody-producing plasmablasts and plasma cells. Therapies aimed at reducing the cytotoxic antibody effector functions mediated by natural killer cells and the complement system, and their associated pro-inflammatory cytokines, are also undergoing evaluation. The complexity of the pathogenesis of AMR and cAMR suggest that multiple approaches will probably be required to treat these disease processes effectively. Definitive answers await results from large, double-blind, multicentre, randomized controlled clinical trials.

Key points

  • Understanding the expression pattern of surface antigens — including CD19, CD20 and CD38 — on B cell subsets can guide strategies for using monoclonal antibodies to deplete relevant effector B cell subsets.

  • Enhanced understanding of the pleiotropic effects of IL-6–IL-6 receptor signalling in antibody-mediated rejection has led to early trials targeting IL-6R (tocilizumab) or IL-6 (clazakizumab) as potential effective therapies.

  • Plasma cell depletion strategies used in the treatment of multiple myeloma, including proteosome inhibition and an anti-CD38 monoclonal antibody (daratumumab)-mediated depletion of plasma cells, are being tested in kidney transplant recipients with chronic antibody-mediated rejection.

  • New approaches to targeting antibody effector functions with C1 esterase inhibitor (blocks classical and mannose-binding lectin complement pathways), eculizumab (inhibits terminal complement and membrane-attack complex (MAC) formation), imlifidase (cleaves antibody Fc region) and neonatal Fc receptor monoclonal antibodies (prevent antibody recycling and shorten antibody half-lives) show promise for preventing or treating antibody-mediated rejection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progression of B cell development in the bone marrow and peripheral circulation.
Fig. 2: Alloimmune B cell differentiation and therapeutic targets.
Fig. 3: Therapeutic targeting of antibody and complement-mediated cytotoxicity in transplantation.

Similar content being viewed by others

References

  1. Bohmig, G. A., Halloran, P. F. & Feucht, H. E. On a long and winding road: alloantibodies in organ transplantation. Transplantation 107, 1027–1041 (2023).

    Article  PubMed  Google Scholar 

  2. Patel, R. & Terasaki, P. I. Significance of the positive crossmatch test in kidney transplantation. N. Engl. J. Med. 280, 735–739 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. Mickey, M. R., Singal, D. P. & Terasaki, P. I. Serotyping for homotransplantation. XXV. Evidence for three HL-A subloci. Transpl. Proc. 1, 347–351 (1969).

    CAS  Google Scholar 

  4. Bray, R. A., Nickerson, P. W., Kerman, R. H. & Gebel, H. M. Evolution of HLA antibody detection: technology emulating biology. Immunol. Res. 29, 41–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Schinstock, C. A. et al. Recommended treatment for antibody-mediated rejection after kidney transplantation: the 2019 expert consensus from the transplantion society working group. Transplantation 104, 911–922 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Loupy, A., Hill, G. S. & Jordan, S. C. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure. Nat. Rev. Nephrol. 8, 348–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Nandiwada, S. L. Overview of human B-cell development and antibody deficiencies. J. Immunol. Methods 519, 113485 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Legler, D. F. et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187, 655–660 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hobeika, E., Nielsen, P. J. & Medgyesi, D. Signaling mechanisms regulating B-lymphocyte activation and tolerance. J. Mol. Med. 93, 143–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).

    Article  CAS  PubMed  Google Scholar 

  11. Rawlings, D. J. et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Smith, F. L. & Baumgarth, N. B-1 cell responses to infections. Curr. Opin. Immunol. 57, 23–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Somoza, C. & Lanier, L. L. T-cell costimulation via CD28-CD80/CD86 and CD40-CD40 ligand interactions. Res. Immunol. 146, 171–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Feng, Y., Seija, N., Di Noia, J. M. & Martin, A. AID in antibody diversification: there and back again. Trends Immunol. 41, 586–600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).

    CAS  PubMed  Google Scholar 

  16. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Choi, Y. S., Eto, D., Yang, J. A., Lao, C. & Crotty, S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190, 3049–3053 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Raybuck, A. L. et al. B cell-intrinsic mTORC1 promotes germinal center-defining transcription factor gene expression, somatic hypermutation, and memory B cell generation in humoral immunity. J. Immunol. 200, 2627–2639 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Weisel, F. & Shlomchik, M. Memory B cells of mice and humans. Annu. Rev. Immunol. 35, 255–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Cassese, G. et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol. 171, 1684–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Basler, M., Li, J. & Groettrup, M. On the role of the immunoproteasome in transplant rejection. Immunogenetics 71, 263–271 (2019).

    Article  PubMed  Google Scholar 

  24. Anolik, J. H., Looney, R. J., Lund, F. E., Randall, T. D. & Sanz, I. Insights into the heterogeneity of human B cells: diverse functions, roles in autoimmunity, and use as therapeutic targets. Immunol. Res. 45, 144–158 (2009).

    Article  PubMed  Google Scholar 

  25. Crotty, S. et al. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171, 4969–4973 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, M. et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20, 503–510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fribourg, M. et al. Allospecific memory B cell responses are dependent on autophagy. Am. J. Transpl. 18, 102–112 (2018).

    Article  CAS  Google Scholar 

  28. Goenka, R., Scholz, J. L., Sindhava, V. J. & Cancro, M. P. New roles for the BLyS/BAFF family in antigen-experienced B cell niches. Cytokine Growth Factor. Rev. 25, 107–113 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Chavele, K. M., Merry, E. & Ehrenstein, M. R. Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J. Immunol. 194, 2482–2485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Papillion, A. et al. Inhibition of IL-2 responsiveness by IL-6 is required for the generation of GC-TFH cells. Sci. Immunol. 4, eaaw7636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garbers, C., Heink, S., Korn, T. & Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug. Discov. 17, 395–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Jordan, S. C. et al. Interleukin-6: an important mediator of allograft injury. Transplantation 104, 2497–2506 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Jordan, S. C., Ammerman, N., Huang, E. & Vo, A. Importance of IL-6 inhibition in prevention and treatment of antibody-mediated rejection in kidney allografts. Am. J. Transpl. 22, 28–37 (2022).

    Article  CAS  Google Scholar 

  35. Liu, X., Jones, G. W., Choy, E. H. & Jones, S. A. The biology behind interleukin-6 targeted interventions. Curr. Opin. Rheumatol. 28, 152–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Xie, C. B. et al. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells. J. Clin. Invest. 130, 3437–3452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ekdahl, K. N. et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol. Rev. 274, 245–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Cravedi, P. & Heeger, P. S. Complement as a multifaceted modulator of kidney transplant injury. J. Clin. Invest. 124, 2348–2354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carroll, M. C. & Isenman, D. E. Regulation of humoral immunity by complement. Immunity 37, 199–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brooks, D. & Ravetch, J. V. Fc receptor signaling. Adv. Exp. Med. Biol. 365, 185–195 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Barb, A. W. Fc γ receptor compositional heterogeneity: considerations for immunotherapy development. J. Biol. Chem. 296, 100057 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Anania, J. C., Chenoweth, A. M., Wines, B. D. & Hogarth, P. M. The human FcγRII (CD32) family of leukocyte FcR in health and disease. Front. Immunol. 10, 464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jordan, S. C., Vo, A. A., Peng, A., Toyoda, M. & Tyan, D. Intravenous gammaglobulin (IVIG): a novel approach to improve transplant rates and outcomes in highly HLA-sensitized patients. Am. J. Transpl. 6, 459–466 (2006).

    Article  CAS  Google Scholar 

  44. Smith, K. G. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10, 328–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baldwin, W. M. III, Valujskikh, A. & Fairchild, R. L. The neonatal Fc receptor: key to homeostasic control of IgG and IgG-related biopharmaceuticals. Am. J. Transpl. 19, 1881–1887 (2019).

    Article  CAS  Google Scholar 

  46. Dragun, D. et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med. 352, 558–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Reinsmoen, N. L. et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation 90, 1473–1477 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Dinavahi, R. et al. Antibodies reactive to non-HLA antigens in transplant glomerulopathy. J. Am. Soc. Nephrol. 22, 1168–1178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jackson, A. M. et al. Endothelial cell antibodies associated with novel targets and increased rejection. J. Am. Soc. Nephrol. 26, 1161–1171 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Li, L. et al. Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and “antibodyome” measures. Proc. Natl Acad. Sci. USA 106, 4148–4153 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Reindl-Schwaighofer, R. et al. Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: genome-wide analysis in a prospective cohort. Lancet 393, 910–917 (2019).

    Article  PubMed  Google Scholar 

  52. Jordan, S. C. et al. Spontaneous anti-tubular-basement-membrane antibody production by lymphocytes isolated from a rejected allograft. Transplantation 41, 173–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Zorn, E. & See, S. B. Is there a role for natural antibodies in rejection following transplantation? Transplantation 103, 1612–1619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asano, Y. et al. Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection. Nat. Commun. 12, 4372 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Cumpelik, A. et al. Cutting edge: neutrophil complement receptor signaling is required for BAFF-dependent humoral responses in mice. J. Immunol. 210, 19–23 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Coca, A. & Sanz, I. Updates on B-cell immunotherapies for systemic lupus erythematosus and Sjogren’s syndrome. Curr. Opin. Rheumatol. 24, 451–456 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, I., Wu, G., Chai, N. N., Klein, A. S. & Jordan, S. Ibrutinib suppresses alloantibody responses in a mouse model of allosensitization. Transpl. Immunol. 45, 59–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Cumpelik, A. et al. Dynamic regulation of B cell complement signaling is integral to germinal center responses. Nat. Immunol. 22, 757–768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leibler, C. et al. Control of humoral response in renal transplantation by belatacept depends on a direct effect on B cells and impaired T follicular helper-B cell crosstalk. J. Am. Soc. Nephrol. 29, 1049–1062 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, J. et al. Cutting edge: CTLA-4Ig inhibits memory B cell responses and promotes allograft survival in sensitized recipients. J. Immunol. 195, 4069–4073 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, I., Wu, G., Chai, N. N., Klein, A. S. & Jordan, S. C. Immunological characterization of de novo and recall alloantibody suppression by CTLA4Ig in a mouse model of allosensitization. Transpl. Immunol. 38, 84–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Leibler, C. et al. Belatacept in renal transplant recipient with mild immunologic risk factor: a pilot prospective study (BELACOR). Am. J. Transpl. 19, 894–906 (2019).

    Article  CAS  Google Scholar 

  63. Vincenti, F. et al. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med. 374, 333–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Cerwenka, A. & Lanier, L. L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Negrin, R. S. Immune regulation in hematopoietic cell transplantation. Bone Marrow Transpl. 54, 765–768 (2019).

    Article  Google Scholar 

  66. Callemeyn, J. et al. Missing self-induced microvascular rejection of kidney allografts: a population-based study. J. Am. Soc. Nephrol. 32, 2070–2082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hidalgo, L. G. et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am. J. Transpl. 10, 1812–1822 (2010).

    Article  CAS  Google Scholar 

  68. Koenig, A. et al. Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nat. Commun. 10, 5350 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  69. Koenig, A. et al. Missing self-induced activation of NK cells combines with non-complement-fixing donor-specific antibodies to accelerate kidney transplant loss in chronic antibody-mediated rejection. J. Am. Soc. Nephrol. 32, 479–494 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. van Bergen, J. et al. KIR-ligand mismatches are associated with reduced long-term graft survival in HLA-compatible kidney transplantation. Am. J. Transpl. 11, 1959–1964 (2011).

    Article  Google Scholar 

  71. Yazdani, S. et al. Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney Int. 95, 188–198 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Yokoyama, W. M. & Plougastel, B. F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5, 208ra145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kohei, N. et al. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts. Kidney Int. 89, 1293–1306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yagisawa, T. et al. In the absence of natural killer cell activation donor-specific antibody mediates chronic, but not acute, kidney allograft rejection. Kidney Int. 95, 350–362 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Halloran, P. F. et al. The molecular phenotype of kidney transplants. Am. J. Transpl. 10, 2215–2222 (2010).

    Article  CAS  Google Scholar 

  77. Hidalgo, L. G. et al. Interpreting NK cell transcripts versus T cell transcripts in renal transplant biopsies. Am. J. Transpl. 12, 1180–1191 (2012).

    Article  CAS  Google Scholar 

  78. Fogal, B. et al. Neutralizing IL-6 reduces human arterial allograft rejection by allowing emergence of CD161+ CD4+ regulatory T cells. J. Immunol. 187, 6268–6280 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, L. et al. Endothelial cell-derived interleukin-18 released during ischemia reperfusion injury selectively expands T peripheral helper cells to promote alloantibody production. Circulation 141, 464–478 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Xie, C. B., Zhou, J., Mackay, S. & Pober, J. S. Complement-activated human endothelial cells stimulate increased polyfunctionality in alloreactive T cells. Am. J. Transpl. 21, 1902–1909 (2021).

    Article  CAS  Google Scholar 

  81. Basler, M. & Groettrup, M. On the role of the immunoproteasome in protein homeostasis. Cells 10, 3216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hainz, N. et al. The proteasome inhibitor bortezomib prevents lupus nephritis in the NZB/W F1 mouse model by preservation of glomerular and tubulointerstitial architecture. Nephron Exp. Nephrol. 120, e47–58, (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Ejaz, N. S. et al. Review of bortezomib treatment of antibody-mediated rejection in renal transplantation. Antioxid. Redox Signal. 21, 2401–2418 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Ezekian, B. et al. Pretransplant desensitization with costimulation blockade and proteasome inhibitor reduces DSA and delays antibody-mediated rejection in highly sensitized nonhuman primate kidney transplant recipients. J. Am. Soc. Nephrol. 30, 2399–2411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, J. et al. Immunoproteasome inhibition induces plasma cell apoptosis and preserves kidney allografts by activating the unfolded protein response and suppressing plasma cell survival factors. Kidney Int. 95, 611–623 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Kwun, J. et al. Humoral compensation after bortezomib treatment of allosensitized recipients. J. Am. Soc. Nephrol. 28, 1991–1996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Burghuber, C. K. et al. Dual targeting: combining costimulation blockade and bortezomib to permit kidney transplantation in sensitized recipients. Am. J. Transpl. 19, 724–736 (2019).

    Article  CAS  Google Scholar 

  88. Siedlecki, A., Irish, W. & Brennan, D. C. Delayed graft function in the kidney transplant. Am. J. Transpl. 11, 2279–2296 (2011).

    Article  CAS  Google Scholar 

  89. Mannon, R. B. Delayed graft function: the AKI of kidney transplantation. Nephron 140, 94–98 (2018).

    Article  PubMed  Google Scholar 

  90. Budhiraja, P. et al. Duration of delayed graft function and its impact on graft outcomes in deceased donor kidney transplantation. BMC Nephrol. 23, 154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gill, J., Dong, J., Rose, C. & Gill, J. S. The risk of allograft failure and the survival benefit of kidney transplantation are complicated by delayed graft function. Kidney Int. 89, 1331–1336 (2016).

    Article  PubMed  Google Scholar 

  92. Lim, W. H., Johnson, D. W., Teixeira-Pinto, A. & Wong, G. Association between duration of delayed graft function, acute rejection, and allograft outcome after deceased donor kidney transplantation. Transplantation 103, 412–419 (2019).

    Article  PubMed  Google Scholar 

  93. Cippa, P. E. et al. Transcriptional trajectories of human kidney injury progression. JCI Insight 3, e123151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chun, N., Horwitz, J. & Heeger, P. S. Role of complement activation in allograft inflammation. Curr. Transpl. Rep. 6, 52–59 (2019).

    Article  PubMed  Google Scholar 

  95. Loupy, A. et al. The Banff 2019 kidney meeting report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transpl. 20, 2318–2331 (2020).

    Article  CAS  Google Scholar 

  96. Allen, N. H. et al. Plasma exchange in acute renal allograft rejection. A controlled trial. Transplantation 35, 425–428 (1983).

    Article  CAS  PubMed  Google Scholar 

  97. Bonomini, V., Vangelista, A., Frasca, G. M., Di Felice, A. & Liviano D’Arcangelo, G. Effects of plasmapheresis in renal transplant rejection. A controlled study. Trans. Am. Soc. Artif. Intern. Organs 31, 698–703 (1985).

    CAS  PubMed  Google Scholar 

  98. Kirubakaran, M. G., Disney, A. P., Norman, J., Pugsley, D. J. & Mathew, T. H. A controlled trial of plasmapheresis in the treatment of renal allograft rejection. Transplantation 32, 164–165, (1981).

    Article  CAS  PubMed  Google Scholar 

  99. Bohmig, G. A. et al. Immunoadsorption in severe C4d-positive acute kidney allograft rejection: a randomized controlled trial. Am. J. Transpl. 7, 117–121 (2007).

    Article  CAS  Google Scholar 

  100. Bartel, G. et al. Peritransplant immunoadsorption for positive crossmatch deceased donor kidney transplantation. Am. J. Transpl. 10, 2033–2042 (2010).

    Article  CAS  Google Scholar 

  101. Perez, E. E. et al. Update on the use of immunoglobulin in human disease: a review of evidence. J. Allergy Clin. Immunol. 139, S1–S46 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Jordan, S. C. et al. Posttransplant therapy using high-dose human immunoglobulin (intravenous gammaglobulin) to control acute humoral rejection in renal and cardiac allograft recipients and potential mechanism of action. Transplantation 66, 800–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Lefaucheur, C. et al. Complement-activating anti-HLA antibodies in kidney transplantation: allograft gene expression profiling and response to treatment. J. Am. Soc. Nephrol. 29, 620–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Luke, P. P. et al. IVIG rescue therapy in renal transplantation. Transpl. Proc. 33, 1093–1094 (2001).

    Article  CAS  Google Scholar 

  105. Vo, A. A. et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N. Engl. J. Med. 359, 242–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Sautenet, B. et al. One-year results of the effects of rituximab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH, a multicenter double-blind randomized placebo-controlled trial. Transplantation 100, 391–399 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Bailly, E. et al. An extension of the RITUX-ERAH study, multicenter randomized clinical trial comparing rituximab to placebo in acute antibody-mediated rejection after renal transplantation. Transpl. Int. 33, 786–795 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Lara, S., Heilig, J., Virtanen, A. & Kleinau, S. Exploring complement-dependent cytotoxicity by rituximab isotypes in 2D and 3D-cultured B-cell lymphoma. BMC Cancer 22, 678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kamburova, E. G. et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am. J. Transpl. 13, 1503–1511 (2013).

    Article  CAS  Google Scholar 

  110. Looney, C. M. et al. Obinutuzumab effectively depletes key B-cell subsets in blood and tissue in end-stage renal disease patients. Transpl. Direct 9, e1436 (2023).

    Article  CAS  Google Scholar 

  111. Arnold, J. et al. Efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. Rheumatology 61, 4905–4909 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Banham, G. D. et al. Belimumab in kidney transplantation: an experimental medicine, randomised, placebo-controlled phase 2 trial. Lancet 391, 2619–2630 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Agarwal, D. et al. BLyS neutralization results in selective anti-HLA alloantibody depletion without successful desensitization. Transpl. Immunol. 69, 101465 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Eskandary, F. et al. A randomized trial of bortezomib in late antibody-mediated kidney transplant rejection. J. Am. Soc. Nephrol. 29, 591–605 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Ensor, C. et al. Proteasome inhibitor carfilzomib-based therapy for antibody-mediated rejection of the pulmonary allograft: use and short-term findings. Am. J. Transplant. 17, 1380–1388 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Moreno Gonzales, M. A. et al. 32 doses of bortezomib for desensitization is not well tolerated and is associated with only modest reductions in anti-HLA antibody. Transplantation 101, 1222–1227 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05017545 (2023).

  118. Deaglio, S., Mehta, K. & Malavasi, F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk. Res. 25, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Krejcik, J. et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128, 384–394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hill, E., Morrison, C. & Kazandjian, D. Daratumumab: a review of current indications and future directions. Semin. Oncol. 49, 48–59 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Doberer, K. et al. CD38 antibody daratumumab for the treatment of chronic active antibody-mediated kidney allograft rejection. Transplantation 105, 451–457 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Scalzo, R. E. et al. Daratumumab use prior to kidney transplant and T cell-mediated rejection: a case report. Am. J. Kidney Dis. 81, 616–620 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT04827979 (2023).

  124. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT04294459 (2023).

  125. Mayer, K. A. et al. Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials 23, 270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vo, A. et al. Daratumumab (anti-cd38) for desensitization of treatment-resistant highly-sensitized ESRD patients. Am. J. Transpl. 23, S376 (2023).

    Google Scholar 

  127. van de Donk, N. & Zweegman, S. T-cell-engaging bispecific antibodies in cancer. Lancet 402, 142–158 (2023).

    Article  PubMed  Google Scholar 

  128. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05092347 (2023).

  129. Mitra, A. et al. From bench to bedside: the history and progress of CAR T cell therapy. Front. Immunol. 14, 1188049 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Du, Z., Zhu, S., Zhang, X., Gong, Z. & Wang, S. Non-conventional allogeneic anti-BCMA chimeric antigen receptor-based immune cell therapies for multiple myeloma treatment. Cancers 15, 567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hill, J. A. et al. Anti-HLA antibodies in recipients of CD19 versus BCMA-targeted CAR T-cell therapy. Am. J. Transpl. 23, 416–422 (2023).

    Article  Google Scholar 

  132. Choi, J. et al. Assessment of tocilizumab (Anti-Interleukin-6 Receptor Monoclonal) as a potential treatment for chronic antibody-mediated rejection and transplant glomerulopathy in HLA-sensitized renal allograft recipients. Am. J. Transpl. 17, 2381–2389 (2017).

    Article  CAS  Google Scholar 

  133. Irish, W. et al. Change in estimated GFR and risk of allograft failure in patients diagnosed with late active antibody-mediated rejection following kidney transplantation. Transplantation 105, 648–659 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Cabezas, L. et al. Tocilizumab and active antibody-mediated rejection in kidney transplantation: a literature review. Front. Immunol. 13, 839380 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pottebaum, A. A. et al. Efficacy and safety of tocilizumab in the treatment of acute active antibody-mediated rejection in kidney transplant recipients. Transpl. Direct 6, e543 (2020).

    Article  CAS  Google Scholar 

  136. Jouve, T. et al. Immune responses following tocilizumab therapy to desensitize HLA-sensitized kidney transplant candidates. Am. J. Transpl. 22, 71–84 (2022).

    Article  CAS  Google Scholar 

  137. Jordan, S. C. et al. Evaluation of clazakizumab (Anti-Interleukin-6) in patients with treatment-resistant chronic active antibody-mediated rejection of kidney allografts. Kidney Int. Rep. 7, 720–731 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Doberer, K. et al. A randomized clinical trial of anti-IL-6 antibody clazakizumab in late antibody-mediated kidney transplant rejection. J. Am. Soc. Nephrol. 32, 708–722 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03744910 (2023).

  140. Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00926-1 (2023).

    Article  PubMed  Google Scholar 

  141. Cornell, L. D., Schinstock, C. A., Gandhi, M. J., Kremers, W. K. & Stegall, M. D. Positive crossmatch kidney transplant recipients treated with eculizumab: outcomes beyond 1 year. Am. J. Transpl. 15, 1293–1302 (2015).

    Article  CAS  Google Scholar 

  142. Wiebe, C. et al. Evaluation of C1q status and titer of de novo donor-specific antibodies as predictors of allograft survival. Am. J. Transpl. 17, 703–711 (2017).

    Article  MathSciNet  CAS  Google Scholar 

  143. Roth, A. et al. Ravulizumab (ALXN1210) in patients with paroxysmal nocturnal hemoglobinuria: results of 2 phase 1b/2 studies. Blood Adv. 2, 2176–2185 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sheridan, D. et al. Design and preclinical characterization of ALXN1210: a novel anti-C5 antibody with extended duration of action. PLoS One 13, e0195909 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Huang, E. et al. Three-year outcomes of a randomized, double-blind, placebo-controlled study assessing safety and efficacy of C1 esterase inhibitor for prevention of delayed graft function in deceased donor kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 15, 109–116 (2020).

    Article  PubMed  ADS  Google Scholar 

  146. Jordan, S. C. et al. A phase I/II, double-blind, placebo-controlled study assessing safety and efficacy of C1 esterase inhibitor for prevention of delayed graft function in deceased donor kidney transplant recipients. Am. J. Transpl. 18, 2955–2964 (2018).

    Article  CAS  Google Scholar 

  147. Eerhart, M. J. et al. Complement blockade in recipients prevents delayed graft function and delays antibody-mediated rejection in a nonhuman primate model of kidney transplantation. Transplantation 106, 60–71 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chun, N. et al. Complement dependence of murine costimulatory blockade-resistanT cellular cardiac allograft rejection. Am. J. Transpl. 17, 2810–2819 (2017).

    Article  CAS  Google Scholar 

  149. Vo, A. A. et al. A phase I/II placebo-controlled trial of C1-inhibitor for prevention of antibody-mediated rejection in HLA sensitized patients. Transplantation 99, 299–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Montgomery, R. A. et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am. J. Transpl. 16, 3468–3478 (2016).

    Article  CAS  Google Scholar 

  151. Wahrmann, M. et al. Effect of the anti-C1s humanized antibody TNT009 and its parental mouse variant TNT003 on HLA antibody-induced complement activation-a preclinical in vitro study. Am. J. Transpl. 17, 2300–2311 (2017).

    Article  CAS  Google Scholar 

  152. Eskandary, F. et al. Anti-C1s monoclonal antibody BIVV009 in late antibody-mediated kidney allograft rejection-results from a first-in-patient phase 1 trial. Am. J. Transpl. 18, 916–926 (2018).

    Article  CAS  Google Scholar 

  153. Huang, E., Maldonado, A. Q., Kjellman, C. & Jordan, S. C. Imlifidase for the treatment of anti-HLA antibody-mediated processes in kidney transplantation. Am. J. Transpl. 22, 691–697 (2022).

    Article  CAS  Google Scholar 

  154. Jordan, S. C. et al. Imlifidase desensitization in crossmatch-positive, highly sensitized kidney transplant recipients: results of an international phase 2 trial (Highdes). Transplantation 105, 1808–1817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jordan, S. C., Lorant, T. & Choi, J. IgG endopeptidase in highly sensitized patients undergoing transplantation. N. Engl. J. Med. 377, 1693–1694 (2017).

    Article  PubMed  Google Scholar 

  156. Al-Salama, Z. T. Imlifidase: first approval. Drugs 80, 1859–1864 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05369975 (2023).

  158. Lorant, T. et al. Safety, immunogenicity, pharmacokinetics, and efficacy of degradation of anti-HLA antibodies by IdeS (imlifidase) in chronic kidney disease patients. Am. J. Transpl. 18, 2752–2762 (2018).

    Article  CAS  Google Scholar 

  159. Howard, J. F. Jr et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology 92, e2661–e2673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wiebe, C. et al. HLA-DR/DQ molecular mismatch: a prognostic biomarker for primary alloimmunity. Am. J. Transpl. 19, 1708–1719 (2019).

    Article  CAS  Google Scholar 

  161. Davis, S. et al. Tacrolimus intrapatient variability, time in therapeutic range, and risk of de novo donor-specific antibodies. Transplantation 104, 881–887 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Davis, S. et al. Adequate tacrolimus exposure modulates the impact of HLA class II molecular mismatch: a validation study in an American cohort. Am. J. Transpl. 21, 322–328 (2021).

    Article  CAS  Google Scholar 

  163. Wiebe, C. et al. Class II eplet mismatch modulates tacrolimus trough levels required to prevent donor-specific antibody development. J. Am. Soc. Nephrol. 28, 3353–3362 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05917522 (2023).

  165. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03644667 (2023).

Download references

Acknowledgements

The authors acknowledge and thank all the kidney allograft recipients and their families who have participated in clinical trials aimed at eliminating antibody rejection and improving outcomes. We also want to acknowledge the team members of the Kidney Transplant Program, Transplant Immunotherapy Program, Transplant Immunology Laboratory, and HLA Laboratory at Cedars-Sinai Medical Center for their commitment to improving lives through transplantation. P.S.H. is supported by R01AI141434 and M.C.H. is supported by T32 AI078892.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data and wrote the article. S.J. and P.S.H. made substantial contributions to discussions of the content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Stanley Jordan.

Ethics declarations

Competing interests

S.J. has grants and consulting fees from Hansa Biopharma, CSL-Behring, Regeneron, Sana Biotechnology and Argenx. P.S.H. and M.C.H. declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks G. Böhmig, T. Jouve and J. Kwun for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody recycling

A cellular process in which antibodies bound to FcRn are endocytosed and then released back into the circulation without undergoing degradation.

Idiotypic

An idiotype is the distinctive amino acid sequence within the variable region that makes any immunoglobulin (or T cell receptor) unique. Anti-idiotypic antibodies are specifically reactive to these idiotypes.

Somatic hypermutation

A process within B cells in which point mutations accumulate in the V regions of antibody light and heavy chains to enhance antibody affinity for a given antigen.

Transitional B cells

Immature B cells that have recently left the bone marrow.

Type 1 anti-CD20

Examples include rituximab and ofatumumab. These antibodies cause redistribution of CD20 into lipid rafts within the plasma membrane, which can enhance their effector mechanisms, but are more susceptible to internalization and proteolytic degradation than type 2 anti-CD20 monoclonal antibodies.

Type 2 anti-CD20

Obinutuzumab. Compared with the type 1 counterparts, this antibody shows enhanced binding to FcγRIII and enhanced antibody-dependent cytotoxicity function, as well as reduced internalization, which might enhance its efficacy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heeger, P.S., Haro, M.C. & Jordan, S. Translating B cell immunology to the treatment of antibody-mediated allograft rejection. Nat Rev Nephrol 20, 218–232 (2024). https://doi.org/10.1038/s41581-023-00791-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00791-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing