Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants

Abstract

The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.

Key points

  • Monogenic systemic lupus erythematosus (SLE) commonly results from defects in degradation or increased sensing of nucleic acids and have led to the development of in vivo models of disease and mechanistic exploration of pathogenesis.

  • The study of high frequency and variably penetrant common variants must be integrated with the study of low frequency, highly penetrant rare, ultra-rare and novel variants to clarify the genetic contribution to disease.

  • Common variants identified through genome-wide association studies (GWAS) highlight a role for complement, immune complex handling, endosomal Toll-like receptors, type I interferon signalling, B cell tolerance and B cell receptor signalling pathways in SLE.

  • The use of online transcriptomic databases to integrate GWAS data highlighted an increased expression of SLE-associated genes in age-associated B cells (ABCs).

  • ABCs are expanded peripherally in patients with SLE, especially in those with lupus nephritis, and in the kidney during episodes of lupus nephritis.

  • Therapeutic regimens that target CD19+ B cells are highly effective at depletion of ABCs, which express high levels of CD19, and had a promising effect in a small study of patients with refractory SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mapped common variants identified by SLE GWAS.
Fig. 2: Cell-specific expression of SLE GWAS genes.
Fig. 3: Cell-specific expression of genes characteristic of ABCs.
Fig. 4: Human ABC phenotypes and their clinical correlates in SLE.
Fig. 5: Formation and key molecular phenotype of ABCs and their interactions.
Fig. 6: Therapeutic targets of ABCs.

References

  1. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2, 16039 (2016).

    Article  PubMed  Google Scholar 

  2. Taylor, K. E. et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 7, e1001311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rose, A. M. & Bell, L. C. Epistasis and immunity: the role of genetic interactions in autoimmune diseases. Immunology 137, 131–138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Scharer, C. D. et al. Epigenetic programming underpins B cell dysfunction in human SLE. Nat. Immunol. 20, 1071–1082 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aune, T. M. et al. Expression of long non-coding RNAs in autoimmunity and linkage to enhancer function and autoimmune disease risk genetic variants. J. Autoimmun. 81, 99–109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Groopman, E. E., Povysil, G., Goldstein, D. B. & Gharavi, A. G. Rare genetic causes of complex kidney and urological diseases. Nat. Rev. Nephrol. 16, 641–656 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Almlof, J. C. et al. Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Hum. Genet. 138, 141–150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Charras, A. et al. Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE. Rheumatology 62, SI210–SI225 (2023).

    Article  PubMed  Google Scholar 

  11. Dasdemir, S. et al. Genetic screening of early-onset patients with systemic lupus erythematosus by a targeted next-generation sequencing gene panel. Lupus 31, 330–337 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Delgado-Vega, A. M. et al. Whole exome sequencing of patients from multicase families with systemic lupus erythematosus identifies multiple rare variants. Sci. Rep. 8, 8775 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ellyard, J. I. et al. Identification of a pathogenic variant in TREX1 in early-onset cerebral systemic lupus erythematosus by whole-exome sequencing. Arthritis Rheumatol. 66, 3382–3386 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, S. H. et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat. Commun. 10, 2201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lea-Henry, T. N. et al. Increased burden of rare variants in genes of the endosomal Toll-like receptor pathway in patients with systemic lupus erythematosus. Lupus 30, 1756–1763 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Li, G. et al. Genetic heterogeneity of pediatric systemic lupus erythematosus with lymphoproliferation. Medicine 99, e20232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramos, P. S., Shedlock, A. M. & Langefeld, C. D. Genetics of autoimmune diseases: insights from population genetics. J. Hum. Genet. 60, 657–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caielli, S., Wan, Z. & Pascual, V. Systemic lupus erythematosus pathogenesis: interferon and beyond. Annu. Rev. Immunol. 41, 533–560 (2023).

    Article  PubMed  Google Scholar 

  20. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakano, M. et al. Distinct transcriptome architectures underlying lupus establishment and exacerbation. Cell 185, 3375–3389.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pickering, M. C., Botto, M., Taylor, P. R., Lachmann, P. J. & Walport, M. J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 76, 227–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Arason, G. J., Jorgensen, G. H. & Ludviksson, B. R. Primary immunodeficiency and autoimmunity: lessons from human diseases. Scand. J. Immunol. 71, 317–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santer, D. M., Wiedeman, A. E., Teal, T. H., Ghosh, P. & Elkon, K. B. Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes. J. Immunol. 188, 902–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Gaipl, U. S. et al. Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis Rheum. 50, 640–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Sturfelt, G. & Truedsson, L. Complement in the immunopathogenesis of rheumatic disease. Nat. Rev. Rheumatol. 8, 458–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Mitander, A. et al. Complement consumption in systemic lupus erythematosus leads to decreased opsonophagocytosis in vitro. J. Rheumatol. 45, 1557–1564 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosazza, T., Warner, J. & Sollberger, G. NET formation – mechanisms and how they relate to other cell death pathways. FEBS J. 288, 3334–3350 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Yeh, T. M., Chang, H. C., Liang, C. C., Wu, J. J. & Liu, M. F. Deoxyribonuclease-inhibitory antibodies in systemic lupus erythematosus. J. Biomed. Sci. 10, 544–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hartl, J. et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J. Exp. Med. 218, e20201138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lind, N. A., Rael, V. E., Pestal, K., Liu, B. & Barton, G. M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. 22, 224–235 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soni, C. et al. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity 52, 1022–1038.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fillatreau, S., Manfroi, B. & Dorner, T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat. Rev. Rheumatol. 17, 98–108 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Giltiay, N. V. et al. Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. J. Exp. Med. 210, 2773–2789 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson, S. W. et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J. Exp. Med. 213, 733–750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nundel, K. et al. Cell-intrinsic expression of TLR9 in autoreactive B cells constrains BCR/TLR7-dependent responses. J. Immunol. 194, 2504–2512 (2015).

    Article  PubMed  Google Scholar 

  48. Leibler, C. et al. Genetic dissection of TLR9 reveals complex regulatory and cryptic proinflammatory roles in mouse lupus. Nat. Immunol. 23, 1457–1469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A, 296–312 (2015).

    Article  PubMed  Google Scholar 

  51. Fremond, M. L. et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J. Allergy Clin. Immunol. Pract. 9, 803–818.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Rutsch, F. et al. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am. J. Hum. Genet. 96, 275–282 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee-Kirsch, M. A. et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am. J. Hum. Genet. 79, 731–737 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Young, G. R. et al. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 491, 774–778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Okude, H., Ori, D. & Kawai, T. Signaling through nucleic acid sensors and their roles in inflammatory diseases. Front. Immunol. 11, 625833 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Green, N. M. et al. Murine B cell response to TLR7 ligands depends on an IFN-β feedback loop. J. Immunol. 183, 1569–1576 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Bader-Meunier, B. et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin. Arthritis Rheum. 43, 217–219 (2013).

    Article  PubMed  Google Scholar 

  61. He, Y. et al. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance. J. Exp. Med. 219, e20211004 (2022).

  62. Thouenon, R., Moreno-Corona, N., Poggi, L., Durandy, A. & Kracker, S. Activated PI3Kinase Delta syndrome – a multifaceted disease. Front. Pediatr. 9, 652405 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li, G. M. et al. A mutation in PIK3CD gene causing pediatric systemic lupus erythematosus: a case report. Medicine 98, e15329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, J. et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 98, 1107–1113 (1996).

  65. Belot, A. et al. Protein kinase cδ deficiency causes Mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 65, 2161–2171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oliveira, J. B. The expanding spectrum of the autoimmune lymphoproliferative syndromes. Curr. Opin. Pediatr. 25, 722–729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Noguchi, A. & Takahashi, T. Overview of symptoms and treatment for lysinuric protein intolerance. J. Hum. Genet. 64, 849–858 (2019).

    Article  PubMed  Google Scholar 

  68. Butbul Aviel, Y. et al. Prolidase deficiency associated with systemic lupus erythematosus (SLE): single site experience and literature review. Pediatr. Rheumatol. Online J. 10, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lipinski, P. et al. Long-term outcome of patients with alpha-mannosidosis – a single center study. Mol. Genet. Metab. Rep. 30, 100826 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Winkelstein, J. A. et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 79, 155–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, L. et al. Loss-of-function variants in SAT1 cause X-linked childhood-onset systemic lupus erythematosus. Ann. Rheum. Dis. 81, 1712–1721 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Mizui, M. Implications of polyamine metabolism for the pathogenesis of SLE: from cases of monogenic lupus with SAT1 gene loss-of-function. 21st Century Pathol. 2(5), 130 (2022).

    Google Scholar 

  73. Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391–395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Hon, C. C. et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543, 199–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, L. Population-specific long-range linkage disequilibrium in the human genome and its influence on identifying common disease variants. Sci. Rep. 9, 11380 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Slatkin, M. Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vosa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morris, D. L. et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am. J. Hum. Genet. 91, 778–793 (2012).

  81. Ghodke-Puranik, Y. & Niewold, T. B. Immunogenetics of systemic lupus erythematosus: a comprehensive review. J. Autoimmun. 64, 125–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sandling, J. K. et al. Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing. Ann. Rheum. Dis. 80, 109–117 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Teruel, M. & Alarcon-Riquelme, M. E. The genetic basis of systemic lupus erythematosus: what are the risk factors and what have we learned. J. Autoimmun. 74, 161–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Shang, S. et al. A novel gene CDC27 causes SLE and is associated with the disease activity. Front. Immunol. 13, 876963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang, S. H., Stanley, M. & Vinuesa, C. G. Rare genetic variants in systemic autoimmunity. Immunol. Cell Biol. 98, 490–499 (2020).

    Article  PubMed  Google Scholar 

  86. Jones, S. A. et al. Rare variants in non-coding regulatory regions of the genome that affect gene expression in systemic lupus erythematosus. Sci. Rep. 9, 15433 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. French, C. E. et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive Care Med. 45, 627–636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duan, R. et al. Correction to: a de novo frameshift mutation in TNFAIP3 impairs A20 deubiquitination function to cause neuropsychiatric systemic lupus erythematosus. J. Clin. Immunol. 40, 1062–1063 (2020).

    Article  PubMed  Google Scholar 

  89. Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xie, C. et al. A de novo PACSIN1 gene variant found in childhood lupus reveals a role for PACSIN1/TRAF4 complex in Toll-like receptor 7 activation. Arthritis Rheumatol. 75, 1058–1071 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rehm, H. L. et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi, S. W., Mak, T. S. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lewandowski, L. et al. Determining a polygenic risk score in pediatric systemic lupus erythematosus [abstract]. Arthritis Rheumatol. 71 (Suppl. 10), 1965 (2019).

    Google Scholar 

  95. Polderman, T. J. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, Y. F. et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat. Commun. 12, 772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tangtanatakul, P. et al. Meta-analysis of genome-wide association study identifies FBN2 as a novel locus associated with systemic lupus erythematosus in Thai population. Arthritis Res. Ther. 22, 185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 496–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Isnardi, I. et al. Complement receptor 2/CD21 human naive B cells contain mostly autoreactive unresponsive clones. Blood 115, 5026–5036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Holla, P. et al. Shared transcriptional profiles of atypical B cells suggest common drivers of expansion and function in malaria, HIV, and autoimmunity. Sci. Adv. 7, eabg8384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thorarinsdottir, K. et al. CD21−/low B cells associate with joint damage in rheumatoid arthritis patients. Scand. J. Immunol. 90, e12792 (2019).

    Article  PubMed  Google Scholar 

  102. Vidal-Pedrola, G. et al. Characterization of age-associated B cells in early drug-naive rheumatoid arthritis patients. Immunology 168, 640–653 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hao, Y., O’Neill, P., Naradikian, M. S., Scholz, J. L. & Cancro, M. P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karnell, J. L. et al. Role of CD11c+ T-bet+ B cells in human health and disease. Cell Immunol. 321, 40–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Mouat, I. C. & Horwitz, M. S. Age-associated B cells in viral infection. PLoS Pathog. 18, e1010297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, Y. et al. T-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupus. Arthritis Res. Ther. 19, 225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rubtsov, A. V., Rubtsova, K., Kappler, J. W. & Marrack, P. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunol. Res. 55, 210–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rubtsova, K., Rubtsov, A. V., van Dyk, L. F., Kappler, J. W. & Marrack, P. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proc. Natl Acad. Sci. USA 110, E3216–E3224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ambegaonkar, A. A., Holla, P., Dizon, B. L., Sohn, H. & Pierce, S. K. Atypical B cells in chronic infectious diseases and systemic autoimmunity: puzzles with many missing pieces. Curr. Opin. Immunol. 77, 102227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mouat, I. C. et al. Gammaherpesvirus infection drives age-associated B cells toward pathogenicity in EAE and MS. Sci. Adv. 8, eade6844 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Naradikian, M. S. et al. Cutting edge: IL-4, IL-21, and IFN-γ interact to govern T-bet and CD11c expression in TLR-activated B cells. J. Immunol. 197, 1023–1028 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Ricker, E. et al. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice. Nat. Commun. 12, 4813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu, B. et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 184, 1790–1803.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Keller, B. et al. The expansion of human T-bethighCD21low B cells is T cell dependent. Sci. Immunol. 6, eabh0891 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Zumaquero, E. et al. IFNγ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 8, e41641 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Manni, M. et al. Regulation of age-associated B cells by IRF5 in systemic autoimmunity. Nat. Immunol. 19, 407–419 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou, S. et al. A novel humanized cutaneous lupus erythematosus mouse model mediated by IL-21-induced age-associated B cells. J. Autoimmun. 123, 102686 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Rubtsova, K. et al. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J. Clin. Invest. 127, 1392–1404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Han, X. et al. Modulating T-bet-promoted energy metabolism in pathogenic age/autoimmune-associated B cells ameliorates lupus autoimmunity. Arthritis Rheumatol. 75, 1203–1215 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Maul, R. W. et al. Transcriptome and IgH repertoire analyses show that CD11chi B cells are a distinct population with similarity to B cells arising in autoimmunity and infection. Front. Immunol. 12, 649458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Frasca, D., Romero, M., Garcia, D., Diaz, A. & Blomberg, B. B. Hyper-metabolic B cells in the spleens of old mice make antibodies with autoimmune specificities. Immun. Ageing 18, 9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ramesh, A. et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc. Natl Acad. Sci. USA 117, 22932–22943 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trivedi, N. et al. Liver is a generative site for the B cell response to Ehrlichia muris. Immunity 51, 1088–1101 e1085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhang, C. et al. Novel loss-of-function mutations in TNFAIP3 gene in patients with lupus nephritis. Clin. Kidney J. 15, 2027–2038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc. Natl Acad. Sci. USA 99, 5545–5550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, R. et al. Human T-bet governs the generation of a distinct subset of CD11chighCD21low B cells. Sci. Immunol. 7, eabq3277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Levack, R. C., Newell, K. L., Popescu, M., Cabrera-Martinez, B. & Winslow, G. M. CD11c+ T-bet+ B cells require IL-21 and IFN-γ from type 1 T follicular helper cells and intrinsic Bcl-6 expression but develop normally in the absence of T-bet. J. Immunol. 205, 1050–1058 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Gao, X. et al. ZEB2 regulates the development of CD11c+ atypical B cells. Preprint at bioRxiv https://doi.org/10.1101/2022.09.01.506173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gu, S. et al. The transcription factor Zeb2 drives differentiation of age-associated B cells. Preprint at bioRxiv https://doi.org/10.1101/2021.07.24.453633 (2021).

  135. Hurtado, C. et al. Altered B cell phenotype and CD27+ memory B cells are associated with clinical features and environmental exposure in Colombian systemic lupus erythematosus patients. Front. Med. 9, 950452 (2022).

    Article  Google Scholar 

  136. Barnas, J. L. et al. B cell activation and plasma cell differentiation are promoted by IFN-λ in systemic lupus erythematosus. J. Immunol. 207, 2660–2672 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Wei, C. et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 178, 6624–6633 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Wu, C. et al. Lupus-associated atypical memory B cells are mTORC1-hyperactivated and functionally dysregulated. Ann. Rheum. Dis. 78, 1090–1100 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. You, X. et al. Double negative B cell is associated with renal impairment in systemic lupus erythematosus and acts as a marker for nephritis remission. Front. Med. 7, 85 (2020).

    Article  Google Scholar 

  140. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jacobi, A. M. et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum. 58, 1762–1773 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Wehr, C. et al. A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 113, 161–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Rincon-Arevalo, H. et al. Deep phenotyping of CD11c+ B cells in systemic autoimmunity and controls. Front. Immunol. 12, 635615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhu, L. et al. Altered frequencies of memory B cells in new-onset systemic lupus erythematosus patients. Clin. Rheumatol. 37, 205–212 (2018).

    Article  PubMed  Google Scholar 

  145. Sosa-Hernandez, V. A. et al. CD11c+ T-bet+ CD21hi B cells are negatively associated with renal impairment in systemic lupus erythematosus and act as a marker for nephritis remission. Front. Immunol. 13, 892241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ramskold, D. et al. B cell alterations during BAFF inhibition with belimumab in SLE. EBioMedicine 40, 517–527 (2019).

    Article  PubMed  Google Scholar 

  147. Faustini, F. et al. Rituximab in systemic lupus erythematosus: transient effects on autoimmunity associated lymphocyte phenotypes and implications for immunogenicity. Front. Immunol. 13, 826152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Nellore, A. et al. A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity 56, 847–863.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Hocevar, S. et al. PEGylated gold nanoparticles target age-associated B cells in vivo. ACS Nano 16, 18119–18132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Levack, R. C. et al. Adenosine receptor 2a agonists target mouse CD11c+T-bet+ B cells in infection and autoimmunity. Nat. Commun. 13, 452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fadista, J., Manning, A. K., Florez, J. C. & Groop, L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202–1205 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Alarcon-Riquelme, M. E. et al. Genome-wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol. 68, 932–943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Armstrong, D. L. et al. GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun. 15, 347–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chung, S. A. et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 7, e1001323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Demirci, F. Y. et al. Identification of a new susceptibility locus for systemic lupus erythematosus on chromosome 12 in individuals of European ancestry. Arthritis Rheumatol. 68, 174–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13BLK and ITGAM–ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. International Consortium for Systemic Lupus Erythematosus Genetics,et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  Google Scholar 

  162. Joo, Y. B. et al. Publisher Correction: Genetic variants in systemic lupus erythematosus susceptibility loci, XKR6 and GLT1D1 are associated with childhood-onset SLE in a Korean cohort. Sci. Rep. 8, 11713 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Julià, A. et al. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus. Arthritis Res. Ther. 20, 100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 40, 211–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, Y. H., Bae, S. C., Choi, S. J., Ji, J. D. & Song, G. G. Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol. Biol. Rep. 39, 10627–10635 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Leffers, H. C. B. et al. Established risk loci for systemic lupus erythematosus at NCF2, STAT4, TNPO3, IRF5 and ITGAM associate with distinct clinical manifestations: a Danish genome-wide association study. Jt. Bone Spine 89, 105357 (2022).

    Article  CAS  Google Scholar 

  168. Lessard, C. J. et al. Identification of a systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans. Arthritis Rheumatol. 68, 1197–1209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Morris, D. L. et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat. Genet. 48, 940–946 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Okada, Y. et al. A genome-wide association study identified AFF1 as a susceptibility locus for systemic lupus eyrthematosus in Japanese. PLoS Genet. 8, e1002455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Song, Q. et al. Genome-wide association study on Northern Chinese identifies KLF2, DOT1L and STAB2 associated with systemic lupus erythematosus. Rheumatology 60, 4407–4417 (2021).

    Article  PubMed  Google Scholar 

  173. Yang, J. et al. ELF1 is associated with systemic lupus erythematosus in Asian populations. Hum. Mol. Genet. 20, 601–607 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 6, e1000841 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 92, 41–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, Y. M. et al. Shared genetic study gives insights into the shared and distinct pathogenic immunity components of IgA nephropathy and SLE. Mol. Genet. Genomics 296, 1017–1026 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Yin, X. et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann. Rheum. Dis. 80, 632–640 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Wangriatisak, K. et al. The expansion of activated naive DNA autoreactive B cells and its association with disease activity in systemic lupus erythematosus patients. Arthritis Res. Ther. 23, 179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote the manuscript. C.G.V. and T.W. reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Carola G. Vinuesa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks F. Hiepe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinGen: https://clinicalgenome.org

GENEVESTIGATOR: https://genevestigator.com/

GWAS Catalog: https://www.ebi.ac.uk/gwas/

Supplementary information

Glossary

Burden analyses

Using a gene-based approach, these analyses evaluate the aggregate burden of variants in a gene, comparing disease and control cohorts.

Epistasis

The interaction between independently inherited genes leading to a change in the phenotypic expression.

Expressivity

The degree to which a particular genotype is expressed phenotypically, reflecting individual variability owing to the environment, modifier genes and epigenetics.

Neutrophil extracellular traps

(NETs). Net-like structures primarily composed of chromatin and antimicrobial proteins released by dying neutrophils.

Pleiotropy

Denotes that a genetic variation can affect multiple phenotypic traits.

Statistical fine mapping

A process of refinement after a genome-wide association study to identify variants that are likely to be causal; includes rigorous quality control, high confidence in genotyped single nucleotide polymorphisms and analysis of a population large enough to identify genes in linkage disequilibrium.

Trios

Refer to an affected proband and their parents.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinuesa, C.G., Shen, N. & Ware, T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 19, 558–572 (2023). https://doi.org/10.1038/s41581-023-00732-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00732-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing