Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of claudins in homeostasis

Abstract

Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.

Key points

  • Claudins are a family of transmembane proteins that assemble into tight junction strands and thus restrict the paracellular pathway.

  • Whereas some claudins exclusively form paracellular barriers, others confer ion selectivity with or without water permeability by forming paracellular channels.

  • Each nephron segment has its own specific claudin expression pattern that complements the specific set of transcellular channels and transporters.

  • Mutations in several claudins (claudin-2, claudin-10, claudin-16 and claudin-19) cause human hereditary diseases that affect kidney function and compromise calcium homeostasis. Common genetic variants in the claudin-2 and claudin-14 genes are risk factors for nephrolithiasis.

  • Factors (such as hormones or cytokines) and processes (transcriptional, post-translational) that regulate renal claudin expression, as well as the role of claudin dysregulation in kidney disease, are only just emerging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Claudin structure and tight junction strand formation.
Fig. 2: Claudin distribution along the nephron.
Fig. 3: Properties of renal claudins.
Fig. 4: Major paracellular pathways for divalent cation reabsorption.
Fig. 5: Hormonal regulation of paracellular Na+ reabsorption.
Fig. 6: Number of SNPs per claudin by water, mineral and electrolyte balance category.

Similar content being viewed by others

References

  1. Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Staehelin, L. A., Mukherjee, T. M. & Williams, A. W. Fine structure of frozen-etched tight junctions. Naturwissenschaften 56, 142 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. Claude, P. & Goodenough, D. A. Fracture faces of zonulae occludentes from ‘tight’ and ‘leaky’ epithelia. J. Cell Biol. 58, 390–400 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kühn, K. & Reale, E. Junctional complexes of the tubular cells in the human kidney as revealed with freeze-fracture. Cell Tissue Res. 160, 193–205 (1975).

    Article  PubMed  Google Scholar 

  5. Taugner, R., Boll, U., Zahn, P. & Forssmann, W. G. Cell junctions in the epithelium of Bowman’s capsule. Cell Tissue Res. 172, 431–446 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Claude, P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J. Membr. Biol. 39, 219–232 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Roesinger, B., Schiller, A. & Taugner, R. A freeze-fracture study of tight junctions in the pars convoluta and pars recta of the renal proximal tubule. Cell Tissue Res. 186, 121–133 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Schiller, A. & Taugner, R. Are there specialized junctions in the pars maculata of the distal tubule? Cell Tissue Res. 200, 337–344 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Schiller, A. & Taugner, R. Junctions between interstitial cells of the renal medulla: a freeze-fracture study. Cell Tissue Res. 203, 231–240 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. Schiller, A., Taugner, R. & Kriz, W. The thin limbs of Henle’s loop in the rabbit. A freeze fracture study. Cell Tissue Res. 207, 249–265 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Schiller, A., Forssmann, W. G. & Taugner, R. The tight junctions of renal tubules in the cortex and outer medulla. A quantitative study of the kidneys of six species. Cell Tissue Res. 212, 395–413 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Schiller, A. & Taugner, R. Heterogeneity of tight junctions along the collecting duct in the renal medulla. A freeze-fracture study in rat and rabbit. Cell Tissue Res. 223, 603–614 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Kottra, G. & Fromter, E. Functional properties of the paracellular pathway in some leaky epithelia. J. Exp. Biol. 106, 217–229 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Muto, S. Physiological roles of claudins in kidney tubule paracellular transport. Am. J. Physiol. Ren. Physiol. 312, F9–F24 (2017).

    Article  CAS  Google Scholar 

  15. Boulpaep, E. L. & Seely, J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am. J. Physiol. 221, 1084–1096 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Greger, R. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflug. Arch. 390, 30–37 (1981).

    Article  CAS  Google Scholar 

  17. Schneeberger, E. E. & Lynch, R. D. Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 262, L647–L661 (1992).

    CAS  PubMed  Google Scholar 

  18. Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K. & Tsukita, S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141, 1539–1550 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Günzel, D. & Yu, A. S. L. Claudins and the modulation of tight junction permeability. Physiol. Rev. 93, 525–569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Suzuki, H. et al. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344, 304–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Li, J., Angelow, S., Linge, A., Zhuo, M. & Yu, A. S. L. Claudin-2 pore function requires an intramolecular disulfide bond between two conserved extracellular cysteines. Am. J. Physiol. Cell Physiol. 305, C190–C196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki, H., Tani, K., Tamura, A., Tsukita, S. & Fujiyoshi, Y. Model for the architecture of claudin-based paracellular ion channels through tight junctions. J. Mol. Biol. 427, 291–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Heinemann, U. & Schuetz, A. Structural features of tight-junction proteins. Int. J. Mol. Sci. 20, 6020 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Müller, D. et al. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am. J. Hum. Genet. 73, 1293–1301 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alzahrani, A. S. et al. A novel claudin-10 mutation with a unique mechanism in two unrelated families with HELIX syndrome. Kidney Int. 100, 415–429 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Ikari, A. et al. Phosphorylation of paracellin-1 at Ser217 by protein kinase A is essential for localization in tight junctions. J. Cell Sci. 119, 1781–1789 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. D’Souza, T., Indig, F. E. & Morin, P. J. Phosphorylation of claudin-4 by PKCepsilon regulates tight junction barrier function in ovarian cancer cells. Exp. Cell Res. 313, 3364–3375 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aono, S. & Hirai, Y. Phosphorylation of claudin-4 is required for tight junction formation in a human keratinocyte cell line. Exp. Cell Res. 314, 3326–3339 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ikari, A. et al. Claudin-16 is directly phosphorylated by protein kinase A independently of a vasodilator-stimulated phosphoprotein-mediated pathway. J. Cell Physiol. 214, 221–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Van Itallie, C. M., Gambling, T. M., Carson, J. L. & Anderson, J. M. Palmitoylation of claudins is required for efficient tight-junction localization. J. Cell Sci. 118, 1427–1436 (2005).

    Article  PubMed  Google Scholar 

  32. Heiler, S., Mu, W., Zöller, M. & Thuma, F. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun. Signal. 13, 29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rajagopal, N., Irudayanathan, F. J. & Nangia, S. Palmitoylation of claudin-5 proteins influences their lipid domain affinity and tight junction assembly at the blood-brain barrier interface. J. Phys. Chem. B 123, 983–993 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Hempel, C. et al. Assembly of tight junction strands: claudin-10b and claudin-3 form homo-tetrameric building blocks that polymerise in a channel-independent manner. J. Mol. Biol. 432, 2405–2427 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Kiuchi-Saishin, Y. et al. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J. Am. Soc. Nephrol. 13, 875–886 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Reyes, J. L. et al. The renal segmental distribution of claudins changes with development. Kidney Int. 62, 476–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L., Chou, C.-L. & Knepper, M. A. A comprehensive map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Limbutara, K., Chou, C. L. & Knepper, M. A. Quantitative proteomics of all 14 renal tubule segments in rat. J. Am. Soc. Nephrol. 31, 1255–1266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hinze, C. et al. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med. 14, 103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J. W., Chou, C. L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tesch, F. et al. Super-resolved local recruitment of CLDN5 to filtration slits implicates a direct relationship with podocyte foot process effacement. J. Cell Mol. Med. 25, 7631–7641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Pei, L. et al. Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J. Clin. Invest. 126, 2509–2518 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Beggs, M. R. et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc. Natl Acad. Sci. USA 118, e2111247118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Breiderhoff, T. et al. Claudin-10a deficiency shifts proximal tubular Cl permeability to cation selectivity via claudin-2 redistribution. J. Am. Soc. Nephrol. 33, 699–717 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonschior, H. et al. Nanoscale segregation of channel and barrier claudins enables paracellular ion flux. Nat. Commun. 13, 4985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sonntag, S. R. et al. Diuretic state affects ascending thin limb tight junctions. Am. J. Physiol. Ren. Physiol. 314, F190–F195 (2018).

    Article  Google Scholar 

  52. Breiderhoff, T. et al. Deletion of claudin-10 rescues claudin-16–deficient mice from hypomagnesemia and hypercalciuria. Kidney Int. 93, 580–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Milatz, S. et al. Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. Proc. Natl Acad. Sci. USA 114, E219–E227 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Prot-Bertoye, C. et al. Differential localization patterns of claudin 10, 16, and 19 in human, mouse, and rat renal tubular epithelia. Am. J. Physiol. Ren. Physiol. 321, F207–F224 (2021).

    Article  CAS  Google Scholar 

  55. Quintanova, C. et al. Unrecognized role of claudin‐10b in basolateral membrane infoldings of the thick ascending limb. Ann. N. Y. Acad. Sci. 1517, 266–278 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Li, W. Y., Huey, C. L. & Yu, A. S. L. Expression of claudin-7 and -8 along the mouse nephron. Am. J. Physiol. Ren. Physiol. 286, F1063–F1071 (2004).

    Article  CAS  Google Scholar 

  57. Ziemens, A. et al. Claudin 19 is regulated by extracellular osmolality in rat kidney inner medullary collecting duct cells. Int. J. Mol. Sci. 20, 4401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Otani, T. et al. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J. Cell Biol. 218, 3372–3396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Furuse, M. et al. Reconstitution of functional tight junctions with individual claudin subtypes in epithelial cells. Cell Struct. Funct. 48, 1–17 (2023).

    Article  PubMed  Google Scholar 

  60. Inai, T., Kobayashi, J. & Shibata, Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur. J. Cell Biol. 78, 849–855 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Milatz, S. et al. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim. Biophys. Acta 1798, 2048–2057 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Shashikanth, N. et al. Tight junction channel regulation by interclaudin interference. Nat. Commun. 13, 3780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borovac, J. et al. Claudin-4 forms a paracellular barrier, revealing the interdependence of claudin expression in the loose epithelial cell culture model opossum kidney cells. Am. J. Physiol. Cell Physiol. 303, C1278–C1291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lanaspa, M. A., Andres-Hernando, A., Rivard, C. J., Dai, Y. & Berl, T. Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells. Proc. Natl Acad. Sci. USA 105, 15797–15802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lashhab, R. et al. The kidney anion exchanger 1 affects tight junction properties via claudin-4. Sci. Rep. 9, 3099 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yu, A. S. L., Enck, A. H., Lencer, W. I. & Schneeberger, E. E. Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J. Biol. Chem. 278, 17350–17359 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Angelow, S., Schneeberger, E. E. & Yu, A. S. L. Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2. J. Membr. Biol. 215, 147–159 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Miyamoto, T. et al. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J. Cell Biol. 169, 527–538 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Angelow, S., El-Husseini, R., Kanzawa, S. A. & Yu, A. S. L. Renal localization and function of the tight junction protein, claudin-19. Am. J. Physiol. Ren. Physiol. 293, F166–F177 (2007).

    Article  CAS  Google Scholar 

  70. Hou, J. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 118, 619–628 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Amasheh, S. et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci. 115, 4969–4976 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Colegio, O. R., Van Itallie, C. M., McCrea, H. J., Rahner, C. & Anderson, J. M. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. Cell Physiol. 283, C142–C147 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Van Itallie, C. M. et al. Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am. J. Physiol. Ren. Physiol. 291, F1288–F1299 (2006).

    Article  Google Scholar 

  74. Günzel, D. et al. Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J. Cell Sci. 122, 1507–1517 (2009).

    Article  PubMed  Google Scholar 

  75. Fujita, H. et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol. Biol. Cell 19, 1912–1921 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Curry, J. N. et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J. Clin. Invest. 130, 1948–1960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Curry, J. N., Tokuda, S., McAnulty, P. & Yu, A. S. L. Combinatorial expression of claudins in the proximal renal tubule and its functional consequences. Am. J. Physiol. Ren. Physiol. 318, F1138–F1146 (2020).

    Article  CAS  Google Scholar 

  78. Plain, A. et al. Claudin-12 knockout mice demonstrate reduced proximal tubule calcium permeability. Int. J. Mol. Sci. 21, 2074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ikari, A. et al. Tight junctional localization of claudin-16 is regulated by syntaxin 8 in renal tubular epithelial cells. J. Biol. Chem. 289, 13112–13123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl Acad. Sci. USA 106, 15350–15355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gong, Y. et al. Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization. Mol. Biol. Cell 26, 4333–4346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krug, S. M. et al. Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol. Life Sci. 69, 2765–2778 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Sewerin, S. et al. Defective claudin-10 causes a novel variation of HELIX syndrome through compromised tight junction strand assembly. Genes Dis. 9, 1301–1314 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hou, J., Renigunta, A., Yang, J. & Waldegger, S. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc. Natl Acad. Sci. USA 107, 18010–18015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosenthal, R. et al. Claudin-2, a component of the tight junction, forms a paracellular water channel. J. Cell Sci. 123, 1913–1921 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Muto, S. et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc. Natl Acad. Sci. USA 107, 8011–8016 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schnermann, J., Huang, Y. & Mizel, D. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1. Am. J. Physiol. Ren. Physiol. 305, F1352–F1364 (2013).

    Article  CAS  Google Scholar 

  88. Wilmes, A., Aschauer, L., Limonciel, A., Pfaller, W. & Jennings, P. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicol. Appl. Pharmacol. 279, 163–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Rosenthal, R. et al. Water channels and barriers formed by claudins. Ann. N. Y. Acad. Sci. 1397, 100–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Rosenthal, R. et al. Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2. Acta Physiol. 228, e13334 (2020).

    Article  CAS  Google Scholar 

  91. Ben-Yosef, T. et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum. Mol. Genet. 12, 2049–2061 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Sato, T. et al. Parathyroid hormone controls paracellular Ca2+ transport in the thick ascending limb by regulating the tight-junction protein claudin14. Proc. Natl Acad. Sci. USA 114, E3344–E3353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gong, Y. et al. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 31, 1999–2012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Raya-Sandino, A. et al. Claudin-23 strengthens the colonic epithelial barrier by regulating claudin-3 and -4 proteins in the tight junction plasma membrane. FASEB J. 36, R2002 (2022).

    Article  Google Scholar 

  95. Sassi, A. et al. Interaction between epithelial sodium channel γ-subunit and claudin-8 modulates paracellular sodium permeability in renal collecting duct. J. Am. Soc. Nephrol. 31, 1009–1023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sassi, A. et al. Expression of claudin-8 is induced by aldosterone in renal collecting duct principal cells. Am. J. Physiol. Ren. Physiol. 321, F645–F655 (2021).

    Article  CAS  Google Scholar 

  97. Gong, Y. et al. KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. Proc. Natl Acad. Sci. USA 112, 4340–4345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tanaka, H. et al. Intestinal deletion of claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut 64, 1529–1538 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Alexandre, M. D., Lu, Q. & Chen, Y. H. Overexpression of claudin-7 decreases the paracellular Cl conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J. Cell Sci. 118, 2683–2693 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Hou, J., Gomes, A. S., Paul, D. L. & Goodenough, D. A. Study of claudin function by RNA interference. J. Biol. Chem. 281, 36117–36123 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Tatum, R. et al. WNK4 phosphorylates ser206 of claudin-7 and promotes paracellular Cl permeability. FEBS Lett. 581, 3887–3891 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Tatum, R. et al. Renal salt wasting and chronic dehydration in claudin-7-deficient mice. Am. J. Physiol. Ren. Physiol. 298, F24–F34 (2010).

    Article  CAS  Google Scholar 

  103. Saito, A. C. et al. Occludin and tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function. Mol. Biol. Cell 32, 722–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu, A. S. L. Paracellular transport as a strategy for energy conservation by multicellular organisms? Tissue Barriers 5, e1301852 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yu, A. S. L. Paracellular transport and energy utilization in the renal tubule. Curr. Opin. Nephrol. Hypertens. 26, 398–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Rosenthal, R. et al. Claudin-2-mediated cation and water transport share a common pore. Acta Physiol. 219, 521–536 (2017).

    Article  CAS  Google Scholar 

  107. Berry, C. A. Water permeability and pathways in the proximal tubule. Am. J. Physiol. 245, F279–F294 (1983).

    CAS  PubMed  Google Scholar 

  108. Barry, P. H. & Diamond, J. M. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64, 763–872 (1984).

    Article  CAS  PubMed  Google Scholar 

  109. Günzel, D. Is there a molecular basis for solvent drag in the renal proximal tubule? Pflug. Arch. 475, 277–281 (2023).

    Article  Google Scholar 

  110. Grantham, J. J., Kurg, M. B. & Obloff, J. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J. Clin. Invest. 49, 1815–1826 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rau, W. S. & Frömter, E. Electrical properties of the medullary collecting ducts of the golden hamster kidney. I. The transepithelial potential difference. Pflug. Arch. 351, 99–111 (1974).

    Article  CAS  Google Scholar 

  112. Koeppen, B. & Giebisch, G. Cellular electrophysiology of potassium transport in the mammalian cortical collecting tubule. Pflug. Arch. 405 (Suppl. 1), S143–S146 (1985).

    Article  Google Scholar 

  113. Rector, F. C. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am. J. Physiol. 244, F461–F471 (1983).

    PubMed  Google Scholar 

  114. Ikari, A. et al. Activation of a polyvalent cation-sensing receptor decreases magnesium transport via claudin-16. Biochim. Biophys. Acta 1778, 283–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Gong, Y. & Hou, J. Claudin-14 underlies Ca++-sensing receptor-mediated Ca++ metabolism via NFAT-microRNA-based mechanisms. J. Am. Soc. Nephrol. 25, 745–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Gong, Y., Himmerkus, N., Plain, A., Bleich, M. & Hou, J. Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J. Am. Soc. Nephrol. 26, 663–676 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Lee, J. J. et al. Activation of the calcium sensing receptor increases claudin-14 expression via a PLC -p38-Sp1 pathway. FASEB J. 35, e21982 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Dimke, H. et al. Activation of the Ca2+-sensing receptor increases renal claudin-14 expression and urinary Ca2+ excretion. Am. J. Physiol. Ren. Physiol. 304, F761–F769 (2013).

    Article  CAS  Google Scholar 

  119. Oh, I. H. et al. Thick ascending limb claudins are altered to increase calciuria and magnesiuria in metabolic acidosis. Am. J. Physiol. Ren. Physiol. 320, F418–F428 (2021).

    Article  CAS  Google Scholar 

  120. Balkovetz, D. F., Chumley, P. & Amlal, H. Downregulation of claudin-2 expression in renal epithelial cells by metabolic acidosis. Am. J. Physiol. Ren. Physiol. 297, F604–F611 (2009).

    Article  CAS  Google Scholar 

  121. Kim, G. H. Renal mechanisms for hypercalciuria induced by metabolic acidosis. Am. J. Nephrol. 53, 839–846 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Ferreira, P. G. et al. Renal claudin-14 expression is not required for regulating Mg2+ balance in mice. Am. J. Physiol. Ren. Physiol. 320, F897–F907 (2021).

    Article  CAS  Google Scholar 

  123. De Baaij, J. H. F., Hoenderop, J. G. J. & Bindels, R. J. M. Regulation of magnesium balance: lessons learned from human genetic disease. Clin. Kidney J. 5 (Suppl. 1), i15–i24 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Moor, M. B. & Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Ren. Physiol. 310, F1337–F1350 (2016).

    Article  CAS  Google Scholar 

  125. Amasheh, S. et al. Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem. Biophys. Res. Commun. 378, 45–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Molina-Jijón, E. et al. Aldosterone signaling regulates the over-expression of claudin-4 and -8 at the distal nephron from type 1 diabetic rats. PLoS ONE 12, e0177362 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fan, J., Tatum, R., Hoggard, J. & Chen, Y. H. Claudin-7 modulates Cl and Na+ homeostasis and WNK4 expression in renal collecting duct cells. Int. J. Mol. Sci. 20, 3798 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fujii, N. et al. Hypotonic stress-induced down-regulation of claudin-1 and -2 mediated by dephosphorylation and clathrin-dependent endocytosis in renal tubular epithelial cells. J. Biol. Chem. 291, 24787–24799 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ikari, A., Takiguchi, A., Atomi, K., Sato, T. & Sugatani, J. Decrease in claudin-2 expression enhances cell migration in renal epithelial Madin-Darby canine kidney cells. J. Cell Physiol. 226, 1471–1478 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Canuto, L. P. & Collares-Buzato, C. B. Increased osmolality enhances the tight junction-mediated barrier function in a cultured renal epithelial cell line. Cell Biol. Int. 43, 73–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Ikari, A. et al. Hyperosmolarity-induced down-regulation of claudin-2 mediated by decrease in PKCβ-dependent GATA-2 in MDCK cells. J. Cell Physiol. 230, 2776–2787 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Ikari, A. et al. Hyperosmolarity-induced up-regulation of claudin-4 mediated by NADPH oxidase-dependent H2O2 production and Sp1/c-Jun cooperation. Biochim. Biophys. Acta 1833, 2617–2627 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Hinze, C. et al. GRHL2 is required for collecting duct epithelial barrier function and renal osmoregulation. J. Am. Soc. Nephrol. 29, 857–868 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Ziemba, J. B. & Matlaga, B. R. Epidemiology and economics of nephrolithiasis. Investig. Clin. Urol. 58, 299–306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, Y. G. et al. Tight junction CLDN2 gene is a direct target of the vitamin D receptor. Sci. Rep. 5, 10652 (2015).

    Google Scholar 

  137. Kladnitsky, O., Rozenfeld, J., Azulay-Debby, H., Efrati, E. & Zelikovic, I. The claudin-16 channel gene is transcriptionally inhibited by 1,25-dihydroxyvitamin D. Exp. Physiol. 100, 79–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Loupy, A. et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J. Clin. Investig. 122, 3355–3367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bourdeau, J. E. & Burg, M. B. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle’s loop. Am. J. Physiol. 239, 121–126 (1980).

    Google Scholar 

  140. Friedman, P. A. Basal and hormone-activated calcium absorption in mouse renal thick ascending limbs. Am. J. Physiol. 254, F62–F70 (1988).

    CAS  PubMed  Google Scholar 

  141. Motoyama, H. I. & Friedman, P. A. Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am. J. Physiol. Ren. Physiol. 283, F399–F406 (2002).

    Article  CAS  Google Scholar 

  142. Nelson, J. W. et al. Local and downstream actions of proximal tubule angiotensin II signaling on Na+ transporters in the mouse nephron. Am. J. Physiol. Ren. Physiol. 321, F69–F81 (2021).

    Article  CAS  Google Scholar 

  143. Poulsen, S. B., Limbutara, K., Fenton, R. A., Pisitkun, T. & Christensen, B. M. RNA sequencing of kidney distal tubule cells reveals multiple mediators of chronic aldosterone action. Physiol. Genom. 50, 343–354 (2018).

    Article  CAS  Google Scholar 

  144. Le Moellic, C. et al. Aldosterone and tight junctions: modulation of claudin-4 phosphorylation in renal collecting duct cells. Am. J. Physiol. Cell Physiol. 289, C1513–C1521 (2005).

    Article  PubMed  Google Scholar 

  145. Salhadar, K. et al. Phosphoproteomic identification of vasopressin/cAMP/protein kinase A-dependent signaling in kidney. Mol. Pharmacol. 99, 358–369 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mutig, K. et al. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am. J. Physiol. Ren. Physiol. 293, F1166–F1177 (2007).

    Article  CAS  Google Scholar 

  147. Gunaratne, R. et al. Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells. Proc. Natl Acad. Sci. USA 107, 15653–15658 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Himmerkus, N. et al. AVP dynamically increases paracellular Na+ permeability and transcellular NaCl transport in the medullary thick ascending limb of Henle’s loop. Pflug. Arch. 469, 149–158 (2017).

    Article  CAS  Google Scholar 

  149. Breiderhoff, T. et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc. Natl Acad. Sci. USA 109, 14241–14246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Askari, M. et al. Identification of a missense variant in CLDN2 in obstructive azoospermia. J. Hum. Genet. 64, 1023–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Evan, A. P., Coe, F. L., Lingeman, J., Bledsoe, S. & Worcester, E. M. Randall’s plaque in stone formers originates in ascending thin limbs. Am. J. Physiol. Ren. Physiol. 315, F1236–F1242 (2018).

    Article  CAS  Google Scholar 

  152. Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Figueres, L. et al. Hypomagnesemia, hypocalcemia, and tubulointerstitial nephropathy caused by claudin-16 autoantibodies. J. Am. Soc. Nephrol. 33, 1402–1410 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Hou, J. et al. Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J. Biol. Chem. 282, 17114–17122 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Blanchard, A. et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 59, 2206–2215 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Will, C. et al. Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am. J. Physiol. Ren. Physiol. 298, F1152–F1161 (2010).

    Article  CAS  Google Scholar 

  157. Wilcox, E. R. et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104, 165–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Guha, M. et al. Polymorphisms in CaSR and CLDN14 genes associated with increased risk of kidney stone disease in patients from the Eastern part of India. PLoS ONE 10, e0130790 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ure, M. E. et al. A variant in a cis-regulatory element enhances claudin-14 expression and is associated with pediatric-onset hypercalciuria and kidney stones. Hum. Mutat. 38, 649–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Arcidiacono, T. et al. Claudin-14 gene polymorphisms and urine calcium excretion. Clin. J. Am. Soc. Nephrol. 13, 1542–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Elshamaa, M. F. et al. Genetic polymorphisms in CLDN14 (rs219780) and ALP (rs1256328) genes are associated with risk of nephrolithiasis in Egyptian children. Turk. J. Urol. 47, 73–80 (2021).

    Article  PubMed  Google Scholar 

  163. Ullah, I. et al. Association study of CLDN14 variations in patients with kidney stones. Open Life Sci. 17, 81–92 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, L. et al. A genetic polymorphism in the WDR72 gene is associated with calcium nephrolithiasis in the Chinese Han population. Front. Genet. 13, 897051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bongers, E. M. H. F. et al. A novel hypokalemic-alkalotic salt-losing tubulopathy in patients with CLDN10 mutations. J. Am. Soc. Nephrol. 28, 3118–3128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Klar, J. et al. Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage. PLoS Genet 13, e1006897 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hadj-Rabia, S. et al. Multiplex epithelium dysfunction due to CLDN10 mutation: the HELIX syndrome. Genet. Med. 20, 190–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Meyers, N. et al. Hypokalemia associated with a claudin 10 mutation: a case report. Am. J. Kidney Dis. 73, 425–428 (2019).

    Article  PubMed  Google Scholar 

  169. Milatz, S. A novel claudinopathy based on claudin-10 mutations. Int. J. Mol. Sci. 20, 5396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Faivre, A., Scholz, C. C. & De Seigneux, S. Hypoxia in chronic kidney disease: towards a paradigm shift? Nephrol. Dial. Transpl. 36, 1782–1790 (2021).

    Article  CAS  Google Scholar 

  171. Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hasegawa, K. et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing claudin-1 overexpression in podocytes. Nat. Med. 19, 1496–1504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, B. et al. VDR/Atg3 axis regulates slit diaphragm to tight junction transition via p62-mediated autophagy pathway in diabetic nephropathy. Diabetes 70, 2639–2651 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Gong, Y., Sunq, A., Roth, R. A. & Hou, J. Inducible expression of claudin-1 in glomerular podocytes generates aberrant tight junctions and proteinuria through slit diaphragm destabilization. J. Am. Soc. Nephrol. 28, 106–117 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Fujita, H., Hamazaki, Y., Noda, Y., Oshima, M. & Minato, N. Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS ONE 7, e52272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gong, Y. et al. The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation. Proc. Natl Acad. Sci. USA 111, E3766–E3774 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Susa, K. et al. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum. Mol. Genet. 23, 5052–5060 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Gheith, O., Farouk, N., Nampoory, N., Halim, M. A. & Al-Otaibi, T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J. Nephropharmacol. 5, 49 (2016).

    PubMed  Google Scholar 

  179. Mongelli-Sabino, B. M., Canuto, L. P. & Collares-Buzato, C. B. Acute and chronic exposure to high levels of glucose modulates tight junction-associated epithelial barrier function in a renal tubular cell line. Life Sci. 188, 149–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Molina-Jijón, E., Rodríguez-Muñoz, R., Namorado, M. D. C., Pedraza-Chaverri, J. & Reyes, J. L. Oxidative stress induces claudin-2 nitration in experimental type 1 diabetic nephropathy. Free. Radic. Biol. Med. 72, 162–175 (2014).

    Article  PubMed  Google Scholar 

  181. Rosas-Martínez, L. et al. Hyperglycemic levels in early stage of diabetic nephropathy affect differentially renal expression of claudins-2 and -5 by oxidative stress. Life Sci. 268, 119003 (2021).

    Article  PubMed  Google Scholar 

  182. Sun, H. et al. Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease. Nat. Commun. 13, 1600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Amoozadeh, Y., Dan, Q., Xiao, J., Waheed, F. & Szászi, K. Tumor necrosis factor-α induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am. J. Physiol. Cell Physiol. 309, C38–C50 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Amoozadeh, Y. et al. Tumor necrosis factor-α increases claudin-1, 4, and 7 expression in tubular cells: role in permeability changes. J. Cell Physiol. 232, 2210–2220 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Meurer, M. & Höcherl, K. Deregulated renal magnesium transport during lipopolysaccharide-induced acute kidney injury in mice. Pflug. Arch. 471, 619–631 (2019).

    Article  CAS  Google Scholar 

  186. Meurer, M. & Höcherl, K. Renal ischemia-reperfusion injury impairs renal calcium, magnesium, and phosphate handling in mice. Pflug. Arch. 471, 901–914 (2019).

    Article  CAS  Google Scholar 

  187. Dan, Q. et al. Claudin-2 suppresses GEF-H1, RHOA, and MRTF, thereby impacting proliferation and profibrotic phenotype of tubular cells. J. Biol. Chem. 294, 15446–15465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tabariès, S. & Siegel, P. M. The role of claudins in cancer metastasis. Oncogene 36, 1176–1190 (2017).

    Article  PubMed  Google Scholar 

  189. Hwang, S. J., Yang, Q., Meigs, J. B., Pearce, E. N. & Fox, C. S. A genome-wide association for kidney function and endocrine-related traits in the NHLBI’s Framingham Heart Study. BMC Med. Genet. 8 (Suppl. 1), S10 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Lechpammer, M. et al. The diagnostic and prognostic utility of claudin expression in renal cell neoplasms. Mod. Pathol. 21, 1320–1329 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zhang, C. et al. Identification of a claudin-low subtype in clear cell renal cell carcinoma with implications for the evaluation of clinical outcomes and treatment efficacy. Front. Immunol. 13, 1020729 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mihajlovic, M. et al. Role of vitamin D in maintaining renal epithelial barrier function in uremic conditions. Int. J. Mol. Sci. 18, 2531 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Giménez, I. & Forbush, B. Short-term stimulation of the renal Na-K-Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J. Biol. Chem. 278, 26946–26951 (2003).

    Article  PubMed  Google Scholar 

  198. Weber, S. et al. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis maps to chromosome 3q27 and is associated with mutations in the PCLN-1 gene. Eur. J. Hum. Genet. 8, 414–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  199. Müller, D. et al. Unusual clinical presentation and possible rescue of a novel claudin-16 mutation. J. Clin. Endocrinol. Metab. 91, 3076–3079 (2006).

    Article  PubMed  Google Scholar 

  200. Bardet, C. et al. Claudin-16 deficiency impairs tight junction function in ameloblasts, leading to abnormal enamel formation. J. Bone Min. Res. 31, 498–513 (2016).

    Article  CAS  Google Scholar 

  201. Vall-Palomar, M., Madariaga, L. & Ariceta, G. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Pediatr. Nephrol. 36, 3045–3055 (2021).

    Article  PubMed  Google Scholar 

  202. Godron, A. et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin. J. Am. Soc. Nephrol. 7, 801–809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yamaguti, P. M. et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J. Med. Genet. 54, 26–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Ye, M. et al. Glomerular localization and expression of Angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J. Am. Soc. Nephrol. 17, 3067–3075 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Gurley, S. B. et al. AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 13, 469–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Graham, S. E. et al. Sex-specific and pleiotropic effects underlying kidney function identified from GWAS meta-analysis. Nat. Commun. 10, 1847 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Piontek for providing Fig. 1a image and M. Fromm and M. A. Knepper for valuable discussion. The work of the authors is funded by the Deutsche Forschungsgemeinschaft (grant ID 318374368).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Dorothee Günzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Katalin Szaszi and Pascal Houillier for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Kidney Cell Explorer: https://cello.shinyapps.io/kidneycellexplorer/

Kidney Interactive Transcriptomics: https://humphreyslab.com/SingleCell/

Kidney Tubules Expression Atlas: https://esbl.nhlbi.nih.gov/KTEA/

Mouse Renal Epithelial Cell Atlas: https://esbl.nhlbi.nih.gov/MRECA/Nephron/

Nephroseq: https://www.nephroseq.org/resource/login.html

OMIM: https://omim.org

RNA-seq Analysis of Microdissected Rat Kidney Tubule Segments: https://esbl.nhlbi.nih.gov/helixweb/Database/NephronRNAseq/All_transcripts.html

REC dehydration database: https://endotheliomics.shinyapps.io/rec_dehydration/

Single-cell transcriptomics: https://shiny.mdc-berlin.de/humAKI/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meoli, L., Günzel, D. The role of claudins in homeostasis. Nat Rev Nephrol 19, 587–603 (2023). https://doi.org/10.1038/s41581-023-00731-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00731-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing