Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aquaporin water channels: roles beyond renal water handling

Abstract

Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.

Key points

  • Aquaporin water channels are essential for the regulation of body water homeostasis, especially for renal water handling.

  • Beyond their role in canonical water transport, aquaporins have additional functions and facilitate the transport of multiple other small solutes and gases.

  • Aquaporins are involved in the regulation of cellular migration as well as in epithelial cell–cell adhesion and cellular polarity; the mechanisms that underlie these functions involve water transport-dependent and water transport-independent mechanisms.

  • Aquaporins are also involved in intracellular and intercellular signalling through the regulation of various signalling pathways and via extracellular vesicles.

  • Aquaporins are involved in the development and spread of multiple cancers and may have a role as prognostic markers and/or drug targets; moreover, aquaporins can affect the response of cancer cells to standard anticancer treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The topology of aquaporins.
Fig. 2: The selectivity of aquaporins.
Fig. 3: Aquaporins and cell migration.
Fig. 4: Aquaporins in collective cell migration.
Fig. 5: Functions of aquaporins beyond water transport.

Similar content being viewed by others

References

  1. Nejsum, L. N. The renal plumbing system: aquaporin water channels. Cell Mol. Life Sci. 62, 1692–1706 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 372, 1349–1358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Preston, G. M. & Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl Acad. Sci. USA 88, 11110–11114 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agre, P. Aquaporin water channels (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 43, 4278–4290 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kortenoeven, M. L. & Fenton, R. A. Renal aquaporins and water balance disorders. Biochim. Biophys. Acta 1840, 1533–1549 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen, S. et al. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am. J. Physiol. 268, F1023–F1037 (1995).

    CAS  PubMed  Google Scholar 

  7. Preston, G. M., Smith, B. L., Zeidel, M. L., Moulds, J. J. & Agre, P. Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265, 1585–1587 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. King, L. S., Choi, M., Fernandez, P. C., Cartron, J. P. & Agre, P. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N. Engl. J. Med. 345, 175–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ma, T. et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem. 273, 4296–4299 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen, S., DiGiovanni, S. R., Christensen, E. I., Knepper, M. A. & Harris, H. W. Cellular and subcellular immunolocalization of vasopressin- regulated water channel in rat kidney. Proc. Natl Acad. Sci. USA 90, 11663–11667 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen, S. et al. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl Acad. Sci. USA 92, 1013–1017 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moeller, H. B., Aroankins, T. S., Slengerik-Hansen, J., Pisitkun, T. & Fenton, R. A. Phosphorylation and ubiquitylation are opposing processes that regulate endocytosis of the water channel aquaporin-2. J. Cell Sci. 127, 3174–3183 (2014).

    CAS  PubMed  Google Scholar 

  13. Lu, H. A. et al. Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J. Biol. Chem. 282, 28721–28732 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ecelbarger, C. A. et al. Aquaporin-3 water channel localization and regulation in rat kidney. Am. J. Physiol. 269, F663–F672 (1995).

    CAS  PubMed  Google Scholar 

  15. Terris, J., Ecelbarger, C. A., Marples, D., Knepper, M. A. & Nielsen, S. Distribution of aquaporin-4 water channel expression within rat kidney. Am. J. Physiol. 269, F775–F785 (1995).

    CAS  PubMed  Google Scholar 

  16. Ma, T. et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc. Natl Acad. Sci. USA 97, 4386–4391 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma, T. et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J. Clin. Invest. 100, 957–962 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deen, P. M. et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264, 92–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Rosenthal, W. et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359, 233–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Olesen, E. T. B. & Fenton, R. A. Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nat. Rev. Nephrol. 17, 765–781 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Yakata, K. et al. Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim. Biophys. Acta 1768, 688–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ishibashi, K., Tanaka, Y. & Morishita, Y. The role of mammalian superaquaporins inside the cell: an update. Biochim. Biophys. Acta Biomembr. 1863, 183617 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Calvanese, L., Pellegrini-Calace, M. & Oliva, R. In silico study of human aquaporin AQP11 and AQP12 channels. Protein Sci. 22, 455–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morishita, Y., Sakube, Y., Sasaki, S. & Ishibashi, K. Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J. Pharmacol. Sci. 96, 276–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Sonah, H., Deshmukh, R. K., Labbe, C. & Belanger, R. R. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci. Rep. 7, 2771 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Itoh, T. et al. Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem. Biophys. Res. Commun. 330, 832–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ishibashi, K. et al. in Molecular Biology and Physiology of Water and Solute Transport (eds Hohmann, S. & Nielsen, S.) 123–126 (Springer, 2000).

  28. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Jung, J. S., Preston, G. M., Smith, B. L., Guggino, W. B. & Agre, P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648–14654 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Walz, T. et al. The three-dimensional structure of aquaporin-1. Nature 387, 624–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Tornroth-Horsefield, S. et al. Structural mechanism of plant aquaporin gating. Nature 439, 688–694 (2006).

    Article  PubMed  Google Scholar 

  32. Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Eriksson, U. K. et al. Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340, 1346–1349 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sui, H., Han, B.-G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  Google Scholar 

  35. Wang, Y., Schulten, K. & Tajkhorshid, E. What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. Structure 13, 1107–1118 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Nesverova, V. & Tornroth-Horsefield, S. Phosphorylation-dependent regulation of mammalian aquaporins. Cells https://doi.org/10.3390/cells8020082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roche, J. V. & Tornroth-Horsefield, S. Aquaporin protein-protein interactions. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18112255 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reichow, S. L. et al. Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Nat. Struct. Mol. Biol. 20, 1085–1092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, C. & Wang, W. Urea transport mediated by aquaporin water channel proteins. Subcell. Biochem. 73, 227–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Geyer, R. R., Musa-Aziz, R., Qin, X. & Boron, W. F. Relative CO2/NH3 selectivities of mammalian aquaporins 0–9. Am. J. Physiol. Cell Physiol. 304, C985–C994 (2013).

    Article  PubMed  Google Scholar 

  41. Ikeda, M. et al. Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J. Biol. Chem. 277, 39873–39879 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Y. & Tajkhorshid, E. Nitric oxide conduction by the brain aquaporin AQP4. Proteins 78, 661–670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Day, R. E. et al. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta 1840, 1492–1506 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Rojek, A., Praetorius, J., Frokiaer, J., Nielsen, S. & Fenton, R. A. A current view of the mammalian aquaglyceroporins. Annu. Rev. Physiol. 70, 301–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Laforenza, U., Scaffino, M. F. & Gastaldi, G. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One 8, e54474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iena, F. M. & Lebeck, J. Implications of aquaglyceroporin 7 in energy metabolism. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19010154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elkjaer, M. et al. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem. Biophys. Res. Commun. 276, 1118–1128 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Calamita, G., Perret, J. & Delporte, C. Aquaglyceroporins: drug targets for metabolic diseases. Front. Physiol. 9, 851 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez, A. et al. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int. J. Obes. 38, 1213–1220 (2014).

    Article  CAS  Google Scholar 

  50. Prudente, S. et al. A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities. Diabetes 56, 1468–1474 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Mendez-Gimenez, L., Rodriguez, A., Balaguer, I. & Fruhbeck, G. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol. Cell Endocrinol. 397, 78–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Patel, R., Kevin Heard, L., Chen, X. & Bollag, W. B. Aquaporins in the skin. Adv. Exp. Med. Biol. 969, 173–191 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, X. & Bollinger Bollag, W. Aquaporin 3 colocates with phospholipase d2 in caveolin-rich membrane microdomains and is downregulated upon keratinocyte differentiation. J. Invest. Dermatol. 121, 1487–1495 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Huang, P. et al. Aquaglyceroporins and orthodox aquaporins in human adipocytes. Biochim. Biophys. Acta Biomembr. 1864, 183795 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M. & Verkman, A. S. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J. Biol. Chem. 277, 17147–17153 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hara, M., Ma, T. & Verkman, A. S. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J. Biol. Chem. 277, 46616–46621 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Hara, M. & Verkman, A. S. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc. Natl Acad. Sci. USA 100, 7360–7365 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hara-Chikuma, M. & Verkman, A. S. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol. Cell. Biol. 28, 326–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Bollag, W. B., Xie, D., Zheng, X. & Zhong, X. A potential role for the phospholipase D2-aquaporin-3 signaling module in early keratinocyte differentiation: production of a phosphatidylglycerol signaling lipid. J. Invest. Dermatol. 127, 2823–2831 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Endeward, V. et al. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J. 20, 1974–1981 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Musa-Aziz, R., Chen, L. M., Pelletier, M. F. & Boron, W. F. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl Acad. Sci. USA 106, 5406–5411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Endeward, V., Cartron, J. P., Ripoche, P. & Gros, G. RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J. 22, 64–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Reithmeier, R. A. A membrane metabolon linking carbonic anhydrase with chloride/bicarbonate anion exchangers. Blood Cell Mol. Dis. 27, 85–89 (2001).

    Article  CAS  Google Scholar 

  64. Yang, B. & Verkman, A. S. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J. Biol. Chem. 277, 36782–36786 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Iserovich, P. et al. Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer. J. Biol. Chem. 277, 30991–30997 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Weiner, I. D. & Verlander, J. W. Ammonia transport in the kidney by Rhesus glycoproteins. Am. J. Physiol. Renal Physiol. 306, F1107–F1120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zwiazek, J. J., Xu, H., Tan, X., Navarro-Rodenas, A. & Morte, A. Significance of oxygen transport through aquaporins. Sci. Rep. 7, 40411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Y., Cohen, J., Boron, W. F., Schulten, K. & Tajkhorshid, E. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J. Struct. Biol. 157, 534–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Dubyak, G. R. Ion homeostasis, channels, and transporters: an update on cellular mechanisms. Adv. Physiol. Educ. 28, 143–154 (2004).

    Article  PubMed  Google Scholar 

  70. Yool, A. J., Stamer, W. D. & Regan, J. W. Forskolin stimulation of water and cation permeability in aquaporin 1 water channels. Science 273, 1216–1218 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Agre, P., Lee, M. D., Devidas, S. & Guggino, W. B. Aquaporins and ion conductance. Science 275, 1490 (1997). author reply 1492.

    Article  CAS  PubMed  Google Scholar 

  72. Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Hazama, A., Kozono, D., Guggino, W. B., Agre, P. & Yasui, M. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J. Biol. Chem. 277, 29224–29230 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Yasui, M. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Xie, H. et al. Molecular mechanisms of mercury-sensitive aquaporins. J. Am. Chem. Soc. 144, 22229–22241 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Ma, S., Xie, H., Yu, K. & Yang, J. Mechanism of unusual AQP6 activation by mercury binding to a pore-external residue C155. Biochem. Biophys. Res. Commun. 618, 1–7 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, K. et al. Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc. Natl Acad. Sci. USA 102, 2192–2197 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qin, X. & Boron, W. F. Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel. Am. J. Physiol. Cell Physiol. 305, C663–C672 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Anthony, T. L. et al. Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol. Pharmacol. 57, 576–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Henderson, S. W. et al. Proteoliposomes reconstituted with human aquaporin-1 reveal novel single-ion-channel properties. Biophys. Rep. 3, 100100 (2023).

    CAS  Google Scholar 

  81. Saparov, S. M., Kozono, D., Rothe, U., Agre, P. & Pohl, P. Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry. J. Biol. Chem. 276, 31515–31520 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, J., Yool, A. J., Schulten, K. & Tajkhorshid, E. Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1. Structure 14, 1411–1423 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Campbell, E. M., Birdsell, D. N. & Yool, A. J. The activity of human aquaporin 1 as a cGMP-gated cation channel is regulated by tyrosine phosphorylation in the carboxyl-terminal domain. Mol. Pharmacol. 81, 97–105 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Chow, P. H. et al. Inhibition of the Aquaporin-1 cation conductance by selected furan compounds reduces red blood cell sickling. Front. Pharmacol. 12, 794791 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. De Ieso, M. L. et al. Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Sci. Rep. 9, 12635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yanochko, G. M. & Yool, A. J. Regulated cationic channel function in Xenopus oocytes expressing Drosophila big brain. J. Neurosci. 22, 2530–2540 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kourghi, M. et al. Divalent cations regulate the ion conductance properties of diverse classes of aquaporins. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18112323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Byrt, C. S. et al. Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant Cell Environ. 40, 802–815 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, Y. et al. NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc. Natl Acad. Sci. USA 114, 5047–5052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Handa, N. et al. Aquaporin-mediated transport: insights into metalloid trafficking. Physiol. Plant. 174, e13687 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Garneau, A. P. et al. Aquaporins mediate silicon transport in humans. PLoS One 10, e0136149 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jurkic, L. M., Cepanec, I., Pavelic, S. K. & Pavelic, K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: new perspectives for therapy. Nutr. Metab. 10, 2 (2013).

    Article  Google Scholar 

  93. Ushio, K. et al. Boric acid transport activity of human aquaporins expressed in Xenopus oocytes. Physiol. Rep. 10, e15164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kumagai, S. et al. Boric acid transport activity of marine teleost aquaporins expressed in Xenopus oocytes. Physiol. Rep. 11, e15655 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Uluisik, I., Karakaya, H. C. & Koc, A. The importance of boron in biological systems. J. Trace Elem. Med. Biol. 45, 156–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Takano, J. et al. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18, 1498–1509 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Liu, Z. et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl Acad. Sci. USA 99, 6053–6058 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Montiel, V. et al. Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay2176 (2020).

    Article  PubMed  Google Scholar 

  99. Wang, H., Schoebel, S., Schmitz, F., Dong, H. & Hedfalk, K. Characterization of aquaporin-driven hydrogen peroxide transport. Biochim. Biophys. Acta Biomembr. 1862, 183065 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Rodrigues, C. et al. Human aquaporin-5 facilitates hydrogen peroxide permeation affecting adaption to oxidative stress and cancer cell migration. Cancers https://doi.org/10.3390/cancers11070932 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pellavio, G., Martinotti, S., Patrone, M., Ranzato, E. & Laforenza, U. Aquaporin-6 may increase the resistance to oxidative stress of malignant pleural mesothelioma cells. Cells https://doi.org/10.3390/cells11121892 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681–15686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bienert, G. P. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Bertolotti, M. et al. Tyrosine kinase signal modulation: a matter of H2O2 membrane permeability? Antioxid. Redox Signal. 19, 1447–1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Watanabe, S., Moniaga, C. S., Nielsen, S. & Hara-Chikuma, M. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem. Biophys. Res. Commun. 471, 191–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Bestetti, S. et al. Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biol. 28, 101326 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Sorrentino, I. Transfer of H2O2 from mitochondria to the endoplasmic reticulum via aquaporin-11. Redox Biol. 55, 102410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Di Marzo, N., Chisci, E. & Giovannoni, R. The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cells https://doi.org/10.3390/cells7100156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Loitto, V. M., Huang, C., Sigal, Y. J. & Jacobson, K. Filopodia are induced by aquaporin-9 expression. Exp. Cell Res. 313, 1295–1306 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Karlsson, T., Bolshakova, A., Magalhaes, M. A., Loitto, V. M. & Magnusson, K. E. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions. PLoS One 8, e59901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McLennan, R. et al. Neural crest cells bulldoze through the microenvironment using Aquaporin 1 to stabilize filopodia. Development https://doi.org/10.1242/dev.185231 (2020).

    Article  PubMed  Google Scholar 

  114. Hayashi, S. et al. Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair. Biochem. Biophys. Res. Commun. 386, 483–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Hara-Chikuma, M. & Verkman, A. S. Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J. Am. Soc. Nephrol. 17, 39–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Saadoun, S., Papadopoulos, M. C., Hara-Chikuma, M. & Verkman, A. S. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Jensen, H. H., Holst, M. R., Login, F. H., Morgen, J. J. & Nejsum, L. N. Ectopic expression of aquaporin-5 in noncancerous epithelial MDCK cells changes cellular morphology and actin fiber formation without inducing epithelial-to-mesenchymal transition. Am. J. Physiol. Cell Physiol. 314, C654–C661 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Schwab, A. & Stock, C. Ion channels and transporters in tumour cell migration and invasion. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. De Pascalis, C. & Etienne-Manneville, S. Single and collective cell migration: the mechanics of adhesions. Mol. Biol. Cell 28, 1833–1846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Oishi, M. et al. Aquaporin 1 elicits cell motility and coordinates vascular bed formation by downregulating thrombospondin type-1 domain-containing 7A in glioblastoma. Cancer Med. 9, 3904–3917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meng, F. et al. Aqp1 enhances migration of bone marrow mesenchymal stem cells through regulation of FAK and β-catenin. Stem Cells Dev. 23, 66–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. McCoy, E. & Sontheimer, H. Expression and function of water channels (aquaporins) in migrating malignant astrocytes. Glia 55, 1034–1043 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chen, Y. et al. Aquaporin 2 promotes cell migration and epithelial morphogenesis. J. Am. Soc. Nephrol. 23, 1506–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tamma, G. et al. Integrin signaling modulates AQP2 trafficking via Arg-Gly-Asp (RGD) motif. Cell Physiol. Biochem. 27, 739–748 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Xu, H. et al. Aquaporin-3 positively regulates matrix metalloproteinases via PI3K/AKT signal pathway in human gastric carcinoma SGC7901 cells. J. Exp. Clin. Cancer Res. 30, 86 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, J., Wang, Z., Xu, D., Liu, Y. & Gao, Y. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol. Med. Rep. 11, 2882–2888 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Thiagarajah, J. R., Chang, J., Goettel, J. A., Verkman, A. S. & Lencer, W. I. Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc. Natl Acad. Sci. USA 114, 568–573 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stroka, K. M. et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tyteca, D. et al. Regulation of macrophage motility by the water channel aquaporin-1: crucial role of M0/M2 phenotype switch. PLoS One 10, e0117398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nielsen, S., Smith, B. L., Christensen, E. I. & Agre, P. Distribution of Aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl Acad. Sci. USA 90, 7275–7279 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaneko, K. et al. Aquaporin 1 is required for hypoxia-inducible angiogenesis in human retinal vascular endothelial cells. Microvasc. Res. 75, 297–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Hara-Chikuma, M. & Verkman, A. S. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J. Mol. Med. 86, 221–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Login, F. H. et al. Aquaporins differentially regulate cell-cell adhesion in MDCK cells. FASEB J. 33, 6980–6994 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Edamana, S. et al. The cell polarity protein scribble is downregulated by the water channel aquaporin-5 in breast cancer cells. Am. J. Physiol. Cell Physiol. https://doi.org/10.1152/ajpcell.00311.2022 (2022).

    Article  PubMed  Google Scholar 

  136. Jung, H. J., Park, J. Y., Jeon, H. S. & Kwon, T. H. Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6, e28492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bok, D., Dockstader, J. & Horwitz, J. Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions. J. Cell Biol. 92, 213–220 (1982).

    Article  CAS  PubMed  Google Scholar 

  138. Kumari, S. S., Gandhi, J., Mustehsan, M. H., Eren, S. & Varadaraj, K. Functional characterization of an AQP0 missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion. Exp. Eye Res. 116, 371–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Francis, P., Berry, V., Bhattacharya, S. & Moore, A. Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0). Br. J. Ophthalmol. 84, 1376–1379 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Berry, V., Francis, P., Kaushal, S., Moore, A. & Bhattacharya, S. Missense mutations in MIP underlie autosomal dominant ‘polymorphic’ and lamellar cataracts linked to 12q. Nat. Genet. 25, 15–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Petrova, R. S. et al. Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells. Am. J. Physiol. Cell Physiol. 314, C191–C201 (2018).

    Article  PubMed  Google Scholar 

  142. Gold, M. G. et al. AKAP2 anchors PKA with aquaporin-0 to support ocular lens transparency. EMBO Mol. Med. 4, 15–26 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Engel, A., Fujiyoshi, Y., Gonen, T. & Walz, T. Junction-forming aquaporins. Curr. Opin. Struct. Biol. 18, 229–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McAvoy, J. W., Chamberlain, C. G., de Iongh, R. U., Hales, A. M. & Lovicu, F. J. Lens development. Eye 13, 425–437 (1999).

    Article  PubMed  Google Scholar 

  145. Sindhu Kumari, S. & Varadaraj, K. Intact and N- or C-terminal end truncated AQP0 function as open water channels and cell-to-cell adhesion proteins: end truncation could be a prelude for adjusting the refractive index of the lens to prevent spherical aberration. Biochim. Biophys. Acta 1840, 2862–2877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gonen, T., Cheng, Y., Kistler, J. & Walz, T. Aquaporin-0 membrane junctions form upon proteolytic cleavage. J. Mol. Biol. 342, 1337–1345 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Varadaraj, K. & Kumari, S. S. Molecular mechanism of Aquaporin 0-induced fiber cell to fiber cell adhesion in the eye lens. Biochem. Biophys. Res. Commun. 506, 284–289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. & Walz, T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Gonen, T. et al. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Huang, P. et al. Cryo-EM structure supports a role of AQP7 as a junction protein. Nat. Commun. 14, 600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang, B., Brown, D. & Verkman, A. S. The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J. Biol. Chem. 271, 4577–4580 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Furman, C. S. et al. Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc. Natl Acad. Sci. USA 100, 13609–13614 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Silberstein, C. et al. Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am. J. Physiol. Renal Physiol. 287, F501–F511 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Hiroaki, Y. et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. J. Mol. Biol. 355, 628–639 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, H. & Verkman, A. S. Evidence against involvement of aquaporin-4 in cell-cell adhesion. J. Mol. Biol. 382, 1136–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kim, N. H. & Lee, A. Y. Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J. Invest. Dermatol. 130, 2231–2239 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Edamana, S., Login, F. H., Yamada, S., Kwon, T. H. & Nejsum, L. N. Aquaporin water channels as regulators of cell-cell adhesion proteins. Am. J. Physiol. Cell Physiol. 320, C771–C777 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Login, F. H., Palmfeldt, J., Cheah, J. S., Yamada, S. & Nejsum, L. N. Aquaporin-5 regulation of cell-cell adhesion proteins: an elusive “tail” story. Am. J. Physiol. Cell Physiol. 320, C282–C292 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Chatterjee, S. J. & McCaffrey, L. Emerging role of cell polarity proteins in breast cancer progression and metastasis. Breast Cancer 6, 15–27 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Antunes, F. & Brito, P. M. Quantitative biology of hydrogen peroxide signaling. Redox Biol. 13, 1–7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hara-Chikuma, M. et al. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J. Exp. Med. 209, 1743–1752 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hara-Chikuma, M. et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat. Commun. 6, 7454 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Woo, J. et al. The effect of aquaporin 5 overexpression on the Ras signaling pathway. Biochem. Biophys. Res. Commun. 367, 291–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Chae, Y. K. et al. Expression of aquaporin 5 (AQP5) promotes tumor invasion in human non small cell lung cancer. PLoS One 3, e2162 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kang, S. K. et al. Role of human aquaporin 5 in colorectal carcinogenesis. Am. J. Pathol. 173, 518–525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, Z. et al. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J. Pathol. 221, 210–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Smalley, K. S. M. et al. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am J. Pathol. 166, 1541–1554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wu, Z. et al. RNAi-mediated silencing of AQP1 expression inhibited the proliferation, invasion and tumorigenesis of osteosarcoma cells. Cancer Biol. Ther. 16, 1332–1340 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sjohamn, J. & Hedfalk, K. Unraveling aquaporin interaction partners. Biochim. Biophys. Acta 1840, 1614–1623 (2014).

    Article  PubMed  Google Scholar 

  170. Zhurinsky, J., Shtutman, M. & Ben-Ze’ev, A. Plakoglobin and β-catenin: protein interactions, regulation and biological roles. J. Cell Sci. 113, 3127–3139 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  Google Scholar 

  173. Clarke-Bland, C. E., Bill, R. M. & Devitt, A. Emerging roles for AQP in mammalian extracellular vesicles. Biochim. Biophys. Acta Biomembr. 1864, 183826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Simone, L. et al. AQP4 aggregation state is a determinant for glioma cell fate. Cancer Res. 79, 2182–2194 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Simone, L. et al. AQP4-dependent glioma cell features affect the phenotype of surrounding cells via extracellular vesicles. Cell Biosci. 12, 150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lenzini, S., Bargi, R., Chung, G. & Shin, J. W. Matrix mechanics and water permeation regulate extracellular vesicle transport. Nat. Nanotechnol. 15, 217–223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Reichow, S. L. & Gonen, T. Noncanonical binding of calmodulin to aquaporin-0: implications for channel regulation. Structure 16, 1389–1398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rose, K. M. et al. Aquaporin 0-calmodulin interaction and the effect of aquaporin 0 phosphorylation. Biochemistry 47, 339–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Noda, Y. et al. Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett. 568, 139–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Adams, M. E., Mueller, H. A. & Froehner, S. C. In vivo requirement of the alpha-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J. Cell Biol. 155, 113–122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang, Z. & Schey, K. L. Aquaporin-0 interacts with the FERM domain of ezrin/radixin/moesin proteins in the ocular lens. Invest. Ophthalmol. Vis. Sci. 52, 5079–5087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lindsey Rose, K. M. et al. The C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49. Invest. Ophthalmol. Vis. Sci. 47, 1562–1570 (2006).

    Article  PubMed  Google Scholar 

  183. Li, W. et al. Ezrin directly interacts with AQP2 and promotes its endocytosis. J. Cell Sci. 130, 2914–2925 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Chivasso, C. et al. Ezrin is a novel protein partner of Aquaporin-5 in human salivary glands and shows altered expression and cellular localization in Sjögren’s syndrome. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179213 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Monzani, E., Bazzotti, R., Perego, C. & La Porta, C. A. AQP1 is not only a water channel: it contributes to cell migration through Lin7/beta-catenin. PLoS One 4, e6167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Chong, W. et al. Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoII activity. Cell Death Differ. 28, 382–400 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lu, W. & Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell 49, 361–374 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Marlar, S., Jensen, H. H., Login, F. H. & Nejsum, L. N. Aquaporin-3 in cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18102106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jensen, H. H., Login, F. H., Koffman, J. S., Kwon, T. H. & Nejsum, L. N. The role of aquaporin-5 in cancer cell migration: a potential active participant. Int. J. Biochem. Cell Biol. 79, 271–276 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Tomita, Y. et al. Role of Aquaporin 1 signalling in cancer development and progression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18020299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Bruun-Sorensen, A. S., Edamana, S., Login, F. H., Borgquist, S. & Nejsum, L. N. Aquaporins in pancreatic ductal adenocarcinoma. APMIS https://doi.org/10.1111/apm.13184 (2021).

    Article  PubMed  Google Scholar 

  194. Traberg-Nyborg, L. et al. Aquaporin-1 in breast cancer. APMIS https://doi.org/10.1111/apm.13192 (2021).

    Article  PubMed  Google Scholar 

  195. Lee, S. J. et al. AQP5 expression predicts survival in patients with early breast cancer. Ann. Surg. Oncol. 21, 375–383 (2014).

    Article  PubMed  Google Scholar 

  196. Qin, F. et al. Expression of aquaporin1, a water channel protein, in cytoplasm is negatively correlated with prognosis of breast cancer patients. Oncotarget 7, 8143–8154 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Jensen, H. H., Login, F. H., Park, J. Y., Kwon, T. H. & Nejsum, L. N. Immunohistochemical evaluation of activated Ras and Rac1 as potential downstream effectors of aquaporin-5 in breast cancer in vivo. Biochem. Biophys. Res. Commun. 493, 1210–1216 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Direito, I., Paulino, J., Vigia, E., Brito, M. A. & Soveral, G. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. J. Surg. Oncol. 115, 980–996 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Li, X. et al. Effect of AQP-5 silencing by siRNA interference on chemosensitivity of breast cancer cells. Onco Targets Ther. 11, 3359–3368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Shi, X. et al. AQP5 silencing suppresses p38 MAPK signaling and improves drug resistance in colon cancer cells. Tumour Biol. 35, 7035–7045 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Li, Q. et al. Knockdown of aquaporin-5 sensitizes colorectal cancer cells to 5-fluorouracil via inhibition of the Wnt–β-catenin signaling pathway. Biochem. Cell Biol. 96, 572–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Edamana, S., Pedersen, S. F. & Nejsum, L. N. Aquaporin water channels affect the response of conventional anticancer therapies of 3D grown breast cancer cells. Biochem. Biophys. Res. Commun. 639, 126–133 (2022).

    Article  PubMed  Google Scholar 

  203. O’Leary, B. R. et al. Pharmacological ascorbate inhibits pancreatic cancer metastases via a peroxide-mediated mechanism. Sci. Rep. 10, 17649 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Erudaitius, D., Huang, A., Kazmi, S., Buettner, G. R. & Rodgers, V. G. Peroxiporin expression is an important factor for cancer cell susceptibility to therapeutic H2O2: implications for pharmacological ascorbate therapy. PLoS One 12, e0170442 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Welsh, J. L. et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother. Pharmacol. 71, 765–775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Monti, D. A. et al. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One 7, e29794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Alexander, M. S. et al. Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer. Cancer Res. 78, 6838–6851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Dong, X. et al. Aquaporin 3 facilitates chemoresistance in gastric cancer cells to cisplatin via autophagy. Cell Death Discov. 2, 16087 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. RSCB Protein Data Bank. 4CSK. https://www.rcsb.org/structure/4CSK (2014).

Download references

Acknowledgements

This manuscript was supported by the Novo Nordisk Foundation with a Hallas-Møller Ascending Investigator grant (NNF20OC0059487) to L.N.N.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lene N. Nejsum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Susanna Törnroth-Horsefield, Andrea Yool and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PyMOL: https://pymol.org/2/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Login, F.H., Nejsum, L.N. Aquaporin water channels: roles beyond renal water handling. Nat Rev Nephrol 19, 604–618 (2023). https://doi.org/10.1038/s41581-023-00734-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00734-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing