Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epithelial–mesenchymal transition in tissue repair and degeneration

Abstract

Epithelial–mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EMT processes in development and disease.
Fig. 2: Molecular mechanisms of transcriptional EMT regulation.
Fig. 3: EMT and tissue repair.
Fig. 4: Adult EMT: repair versus degeneration.
Fig. 5: Targeting EMT to attenuate fibrosis.
Fig. 6: Transient EMT activation can promote repair process in non-regenerative tissues.

Similar content being viewed by others

References

  1. Nieto, M. A., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Stone, R. C. et al. Epithelial–mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365, 495–506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, J. et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Neumann, D. P., Goodall, G. J. & Gregory, P. A. Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin. Cell Dev. Biol. 75, 50–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Skrypek, N., Goossens, S., De Smedt, E., Vandamme, N. & Berx, G. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet. 33, 943–959 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Sample, R. A., Nogueira, M. F., Mitra, R. D. & Puram, S. V. Epigenetic regulation of hybrid epithelial–mesenchymal cell states in cancer. Oncogene 42, 2237–2248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morin, C., Moyret-Lalle, C., Mertani, H. C., Diaz, J.-J. & Marcel, V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim. Biophys. Acta Rev. Cancer 1877, 188718 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2, 84–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Stanisavljevic, J., Porta-de-la-Riva, M., Batlle, R., de Herreros, A. G. & Baulida, J. The p65 subunit of NF-κB and PARP1 assist Snail1 in activating fibronectin transcription. J. Cell Sci. 124, 4161–4171 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Hsu, D. S.-S. et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell 26, 534–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Aghdassi, A. et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61, 439–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Lehmann, W. et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 7, 10498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feldker, N. et al. Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J. 39, e103209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leptin, M. twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev. 5, 1568–1576 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Z. F. & Behringer, R. R. twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Ocaña, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    Article  PubMed  Google Scholar 

  20. Yeo, S.-Y. et al. A positive feedback loop bi-stably activates fibroblasts. Nat. Commun. 9, 3016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850 (2013).

    Article  PubMed  Google Scholar 

  22. Probst, S. et al. Spatiotemporal sequence of mesoderm and endoderm lineage segregation during mouse gastrulation. Development 148, dev193789 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Burtscher, I. & Lickert, H. Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development 136, 1029–1038 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Nowotschin, S., Hadjantonakis, A.-K. & Campbell, K. The endoderm: a divergent cell lineage with many commonalities. Development 146, dev150920 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scheibner, K. et al. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat. Cell Biol. 23, 692–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jägle, S. et al. SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet. 13, e1007109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Piacentino, M. L., Li, Y. & Bronner, M. E. Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest. Curr. Opin. Cell Biol. 66, 43–50 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Y. et al. In vivo quantitative imaging provides insights into trunk neural crest migration. Cell Rep. 26, 1489–1500.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E Davies, J. et al. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adh. Migr. 10, 310–321 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Turco, M. Y. & Moffett, A. Development of the human placenta. Development 146, dev163428 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. DaSilva-Arnold, S., James, J. L., Al-Khan, A., Zamudio, S. & Illsley, N. P. Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial-mesenchymal transition. Placenta 36, 1412–1418 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greenbaum, S. et al. A spatially resolved timeline of the human maternal–fetal interface. Nature 619, 595–605 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kudo-Saito, C., Shirako, H., Takeuchi, T. & Kawakami, Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15, 195–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Du, L. et al. Mesenchymal-to-epithelial transition in the placental tissues of patients with preeclampsia. Hypertens. Res. 40, 67–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Harmon, A. C. et al. The role of inflammation in the pathology of preeclampsia. Clin. Sci. 130, 409–419 (2016).

    Article  CAS  Google Scholar 

  38. Simões-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development 142, 242–257 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baggiolini, A. et al. Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16, 314–322 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Tang, W., Li, Y., Li, A. & Bronner, M. E. Clonal analysis and dynamic imaging identify multipotency of individual Gallus gallus caudal hindbrain neural crest cells toward cardiac and enteric fates. Nat. Commun. 12, 1894 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buitrago-Delgado, E., Nordin, K., Rao, A., Geary, L. & LaBonne, C. NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells. Science 348, 1332–1335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zalc, A. et al. Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science 371, eabb4776 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9536 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Fan, X. et al. TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation. eLife 10, e62873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Acloque, H. et al. Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev. Cell 21, 546–558 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thiery, J. P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M. & Fuster, V. Epithelial- and endothelial- to mesenchymal transition: from cardiovascular development to disease. Circulation 125, 1795–1808 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakajima, Y., Yamagishi, T., Hokari, S. & Nakamura, H. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat. Rec. 258, 119–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Haensel, D. & Dai, X. Epithelial-to-mesenchymal transition in cutaneous wound healing: where we are and where we are heading. Dev. Dyn. 247, 473–480 (2018).

    Article  PubMed  Google Scholar 

  50. Savagner, P. et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J. Cell. Physiol. 202, 858–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hudson, L. G. et al. Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). J. Dermatol. Sci. 56, 19–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arnoux, V., Nassour, M., L’Helgoualc’h, A., Hipskind, R. A. & Savagner, P. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol. Biol. Cell 19, 4738–4749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw, T. J. & Martin, P. Wound repair: a showcase for cell plasticity and migration. Curr. Opin. Cell Biol. 42, 29–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Nunan, R. et al. Ephrin-Bs drive junctional downregulation and actin stress fiber disassembly to enable wound re-epithelialization. Cell Rep. 13, 1380–1395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vega, S. et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18, 1131–1143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shimizu, H. et al. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am. J. Physiol. Cell Physiol. 299, C1110–C1117 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, L. et al. p53 upregulated by HIF-1α promotes hypoxia-induced G2/M arrest and renal fibrosis in vitro and in vivo. J. Mol. Cell Biol. 11, 371–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Tang, C. et al. p53 in kidney injury and repair: mechanism and therapeutic potentials. Pharmacol. Ther. 195, 5–12 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Yao, C. et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 203, 707–717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, W.-S. et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing Puma. Cell 123, 641–653 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Rodríguez-Aznar, E. & Nieto, M. A. Repression of puma by scratch2 is required for neuronal survival during embryonic development. Cell Death Differ. 18, 1196–1207 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kurrey, N. K. et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27, 2059–2068 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Escrivà, M. et al. Repression of PTEN phosphatase by snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol. Cell. Biol. 28, 1528–1540 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Calcinotto, A. et al. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 99, 1047–1078 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Ansieau, S. et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Cakouros, D. et al. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol. Cell. Biol. 32, 1433–1441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, S.-H. et al. Blocking of p53-Snail binding, promoted by oncogenic K-Ras, recovers p53 expression and function. Neoplasia 11, 22–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Siemens, H. et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions. Cell Cycle 10, 4256–4271 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Shetty, S. K. et al. p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis. Am. J. Pathol. 187, 1016–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, J., Lee, J., Kim, U., Park, J.-K. & Um, H.-D. Slug promotes p53 and p21 protein degradation by inducing Mdm2 expression in HCT116 colon cancer cells. Oncol. Lett. 22, 681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu, P. et al. The transcription factor Slug represses p16Ink4a and regulates murine muscle stem cell aging. Nat. Commun. 10, 2568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jopling, C., Boue, S. & Izpisua Belmonte, J. C. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Merrell, A. J. & Stanger, B. Z. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 17, 413–425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peter, M. E. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8, 843–852 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Boyerinas, B., Park, S.-M., Hau, A., Murmann, A. E. & Peter, M. E. The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer 17, F19–F36 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Cimadamore, F., Amador-Arjona, A., Chen, C., Huang, C.-T. & Terskikh, A. V. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc. Natl Acad. Sci. USA 110, E3017–E3026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chua, H. L. et al. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Díaz-López, A., Moreno-Bueno, G. & Cano, A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag. Res. 6, 205–216 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Gill, J. G. et al. Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 29, 764–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Brabletz, S. & Brabletz, T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zander, M. A., Cancino, G. I., Gridley, T., Kaplan, D. R. & Miller, F. D. The Snail transcription factor regulates the numbers of neural precursor cells and newborn neurons throughout mammalian life. PLoS ONE 9, e104767 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gupta, B. et al. The transcription factor ZEB1 regulates stem cell self-renewal and cell fate in the adult hippocampus. Cell Rep. 36, 109588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shimozaki, K., Clemenson, G. D. & Gage, F. H. Paired related homeobox protein 1 is a regulator of stemness in adult neural stem/progenitor cells. J. Neurosci. 33, 4066–4075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. García-Arrarás, J. E. et al. Cell dedifferentiation and epithelial to mesenchymal transitions during intestinal regeneration in H. glaberrima. BMC Dev. Biol. 11, 61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tanaka, E. M. & Reddien, P. W. The cellular basis for animal regeneration. Dev. Cell 21, 172–185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanaka, E. M. The molecular and cellular choreography of appendage regeneration. Cell 165, 1598–1608 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Joven, A., Elewa, A. & Simon, A. Model systems for regeneration: salamanders. Development 146, dev167700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362, eaaq0681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lin, T.-Y. et al. Fibroblast dedifferentiation as a determinant of successful regeneration. Dev. Cell 56, 1541–1551.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Berger, K. et al. Origin of regenerating tubular cells after acute kidney injury. Proc. Natl Acad. Sci. USA 111, 1533–1538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chang-Panesso, M. et al. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501–5517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu, C.-P. et al. FoxM1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by targeting Snai1. Mol. Med. Rep. 16, 5181–5188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, X., Kiyokawa, H., Dennewitz, M. B. & Costa, R. H. The forkhead box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc. Natl Acad. Sci. USA 99, 16881–16886 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Oh, S.-H., Swiderska-Syn, M., Jewell, M. L., Premont, R. T. & Diehl, A. M. Liver regeneration requires Yap1-TGFβ-dependent epithelial–mesenchymal transition in hepatocytes. J. Hepatol. 69, 359–367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Volckaert, T. et al. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J. Clin. Invest. 121, 4409–4419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, P., Piao, X. & Bonaldo, P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 130, 605–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Gaudet, A. D., Popovich, P. G. & Ramer, M. S. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflammation 8, 110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cattin, A.-L. et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 162, 1127–1139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Parfejevs, V., Antunes, A. T. & Sommer, L. Injury and stress responses of adult neural crest-derived cells. Dev. Biol. 444, S356–S365 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Jessen, K. R. & Mirsky, R. The success and failure of the schwann cell response to nerve injury. Front. Cell. Neurosci. 13, 33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clements, M. P. et al. The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96, 98–114.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Parfejevs, V. et al. Injury-activated glial cells promote wound healing of the adult skin in mice. Nat. Commun. 9, 236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jessen, K. R. & Arthur-Farraj, P. Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 67, 421–437 (2019).

    Article  PubMed  Google Scholar 

  107. Johnston, A. P. W. et al. Dedifferentiated Schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell 19, 433–448 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Klatt Shaw, D. et al. Localized EMT reprograms glial progenitors to promote spinal cord repair. Dev. Cell 56, 613–626.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mokalled, M. H. et al. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354, 630–634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tang, W. J., Watson, C. J., Olmstead, T., Allan, C. H. & Kwon, R. Y. Single-cell resolution of MET- and EMT-like programs in osteoblasts during zebrafish fin regeneration. iScience 25, 103784 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, F. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26, 27–33.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Katsuno, Y. et al. Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci. Signal. 12, eaau8544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Ferguson, M. W. J. & O’Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Phil. Trans. R. Soc. Lond. B 359, 839–850 (2004).

    Article  CAS  Google Scholar 

  115. Larson, B. J., Longaker, M. T. & Lorenz, H. P. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126, 1172–1180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Darby, I. A., Laverdet, B., Bonté, F. & Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Estes, J. M. et al. Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differ. Res. Biol. Divers. 56, 173–181 (1994).

    CAS  Google Scholar 

  118. Cass, D. L. et al. Wound size and gestational age modulate scar formation in fetal wound repair. J. Pediatr. Surg. 32, 411–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Walmsley, G. G. et al. Scarless wound healing: chasing the holy grail. Plast. Reconstr. Surg. 135, 907–917 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Moore, A. L. et al. Scarless wound healing: transitioning from fetal research to regenerative healing. Wiley Interdiscip. Rev. Dev. Biol. 7, wdev.309 (2018).

    Article  Google Scholar 

  121. Xue, M. & Jackson, C. J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4, 119–136 (2015).

    Article  Google Scholar 

  122. Longaker, M. T. et al. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann. Surg. 213, 292–296 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. West, D. C., Shaw, D. M., Lorenz, P., Adzick, N. S. & Longaker, M. T. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int. J. Biochem. Cell Biol. 29, 201–210 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Beanes, S. R. et al. Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition. Plast. Reconstr. Surg. 109, 160–170 (2002).

    Article  PubMed  Google Scholar 

  125. Koudouna, E. et al. Recapitulation of normal collagen architecture in embryonic wounded corneas. Sci. Rep. 10, 13815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dang, C. M. et al. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio. Plast. Reconstr. Surg. 111, 2273–2285 (2003).

    Article  PubMed  Google Scholar 

  127. Hinz, B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 47, 54–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Wei, S. C. & Yang, J. Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol. 26, 111–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Rice, A. J. et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cowin, A. J., Brosnan, M. P., Holmes, T. M. & Ferguson, M. W. Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev. Dyn. 212, 385–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Liechty, K. W., Kim, H. B., Adzick, N. S. & Crombleholme, T. M. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J. Pediatr. Surg. 35, 866–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Liechty, K. W., Adzick, N. S. & Crombleholme, T. M. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12, 671–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Occleston, N. L., Laverty, H. G., O’Kane, S. & Ferguson, M. W. J. Prevention and reduction of scarring in the skin by transforming growth factor beta 3 (TGFβ3): from laboratory discovery to clinical pharmaceutical. J. Biomater. Sci. Polym. Ed. 19, 1047–1063 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Gordon, A. et al. Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair Regen. 16, 70–79 (2008).

    Article  PubMed  Google Scholar 

  135. Peranteau, W. H. et al. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J. Invest. Dermatol. 128, 1852–1860 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. López-Novoa, J. M. & Nieto, M. A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol. Med. 1, 303–314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Burns, J. S. & Manda, G. Metabolic pathways of the warburg effect in health and disease: perspectives of choice, chain or chance. Int. J. Mol. Sci. 18, 2755 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chen, Z., Liu, M., Li, L. & Chen, L. Involvement of the Warburg effect in non-tumor diseases processes. J. Cell. Physiol. 233, 2839–2849 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Youssef, K. K. & Nieto, M. A. Glucose metabolism takes center stage in epithelial-mesenchymal plasticity. Dev. Cell 53, 133–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Bhattacharya, D., Azambuja, A. P. & Simoes-Costa, M. Metabolic reprogramming promotes neural crest migration via Yap/Tead signaling. Dev. Cell 53, 199–211.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oginuma, M. et al. A gradient of glycolytic activity coordinates fgf and wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bulusu, V. et al. Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40, 331–341.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Luengo, A. et al. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol. Cell 81, 691–707.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Enzo, E. et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349–1370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haensel, D. et al. Defining epidermal basal cell states during skin homeostasis and wound healing using single-cell transcriptomics. Cell Rep. 30, 3932–3947.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Scott, C. A., Carney, T. J. & Amaya, E. Aerobic glycolysis is important for zebrafish larval wound closure and tail regeneration. Wound Repair Regen. 30, 665–680 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sinclair, J. W. et al. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen. Med. 6, 55 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fukuda, R. et al. Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish. EMBO Rep. 21, e49752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Honkoop, H. et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 8, e50163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Dong, C. et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316–331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, M., Quek, L.-E., Sultani, G. & Turner, N. Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer Metab. 4, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, Y. et al. Insulin/Snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis. Nat. Commun. 9, 2751 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Liu, Y. et al. Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. J. Clin. Invest. 130, 2992–3004 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Brabletz, S., Schuhwerk, H., Brabletz, T. & Stemmler, M. P. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 40, e108647 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, J., Liu, S., Heallen, T. & Martin, J. F. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat. Rev. Cardiol. 15, 672–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Panciera, T. et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moya, I. M. & Halder, G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 20, 211–226 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Patel, S. H., Camargo, F. D. & Yimlamai, D. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology 152, 533–545 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Noce, V. et al. YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis. 10, 768 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Xu, J. et al. Involvement of the Hippo pathway in regeneration and fibrogenesis after ischaemic acute kidney injury: YAP is the key effector. Clin. Sci. 130, 349–363 (2016).

    Article  CAS  Google Scholar 

  166. McNeill, H. & Reginensi, A. Lats1/2 regulate Yap/Taz to control nephron progenitor epithelialization and inhibit myofibroblast formation. J. Am. Soc. Nephrol. 28, 852–861 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis–a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Chu, A. S. et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53, 1685–1695 (2011).

    Article  PubMed  Google Scholar 

  174. Yang, W. et al. Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology 74, 2774–2790 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Boutet, A. et al. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 25, 5603–5613 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Borges, F. T. et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 24, 385–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-β-smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27, 3117–3128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Seo, E. et al. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis. Sci. Rep. 6, 31931 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Anorga, S. et al. Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype. FASEB J. 32, 2644–2657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Qi, R. et al. Snai1-induced partial epithelial-mesenchymal transition orchestrates p53-p21-mediated G2/M arrest in the progression of renal fibrosis via NF-κB-mediated inflammation. Cell Death Dis. 12, 44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    Article  PubMed  Google Scholar 

  184. Rowe, R. G. et al. Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol. Cell. Biol. 31, 2392–2403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mooring, M. et al. Hepatocyte stress increases expression of yes-associated protein and transcriptional coactivator with PDZ-binding motif in hepatocytes to promote parenchymal inflammation and fibrosis. Hepatology 71, 1813–1830 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Sabin, K. Z., Jiang, P., Gearhart, M. D., Stewart, R. & Echeverri, K. AP-1cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun. Biol. 2, 91 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Solanas, G. et al. E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression. J. Cell Sci. 121, 2224–2234 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Peiró, S. et al. Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res. 34, 2077–2084 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Duffield, J. S., Lupher, M., Thannickal, V. J. & Wynn, T. A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fattet, L. et al. Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev. Cell 54, 302–316.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zheng, Z. et al. Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death Dis. 12, 754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  195. Seifert, A. W. et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561–565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Walton, K. L., Johnson, K. E. & Harrison, C. A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front. Pharmacol. 8, 461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Györfi, A. H., Matei, A.-E. & Distler, J. H. W. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol. 68–69, 8–27 (2018).

    Article  PubMed  Google Scholar 

  199. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, J. H. et al. Smad7 inhibits fibrotic effect of TGF-beta on renal tubular epithelial cells by blocking Smad2 activation. J. Am. Soc. Nephrol. 13, 1464–1472 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Chung, A. C. K. et al. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs. Mol. Ther. 21, 388–398 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Hamzavi, J. et al. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J. Cell. Mol. Med. 12, 2130–2144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Allison, S. J. Fibrosis: targeting EMT to reverse renal fibrosis. Nat. Rev. Nephrol. 11, 565 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Feng, Y.-L., Chen, D.-Q., Vaziri, N. D., Guo, Y. & Zhao, Y.-Y. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med. Res. Rev. 40, 54–78 (2020).

    Article  PubMed  Google Scholar 

  206. Yi, H. et al. Metformin attenuates renal fibrosis in a mouse model of adenine-induced renal injury through inhibiting TGF-β1 signaling pathways. Front. Cell Dev. Biol. 9, 603802 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Wang, Y., Wu, Z. & Hu, L. The regulatory effects of metformin on the [SNAIL/miR-34]:[ZEB/miR-200] system in the epithelial-mesenchymal transition (EMT) for colorectal cancer (CRC). Eur. J. Pharmacol. 834, 45–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Oba, S. et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE 5, e13614 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Xiong, M. et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am. J. Physiol. Renal Physiol. 302, F369–F379 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Brennan, E. P. et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J. Am. Soc. Nephrol. 24, 627–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, B. et al. Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis. Mol. Ther. 24, 1290–1301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yang, S. et al. Participation of miR-200 in pulmonary fibrosis. Am. J. Pathol. 180, 484–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yue, H.-Y. et al. Hepatocyte nuclear factor 4alpha attenuates hepatic fibrosis in rats. Gut 59, 236–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Nishikawa, T. et al. Resetting the transcription factor network reverses terminal chronic hepatic failure. J. Clin. Invest. 125, 1533–1544 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cicchini, C. et al. Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver Int. 35, 302–310 (2015).

    Article  PubMed  Google Scholar 

  217. Morimoto, A. et al. An HNF4α-microRNA-194/192 signaling axis maintains hepatic cell function. J. Biol. Chem. 292, 10574–10585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Cicchini, C. et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim. Biophys. Acta Gene Regul. Mech. 1849, 919–929 (2015).

    Article  CAS  Google Scholar 

  219. Dey, A., Varelas, X. & Guan, K.-L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat. Rev. Drug Discov. 19, 480–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jin, J. et al. Inhibition of yes-associated protein by verteporfin ameliorates unilateral ureteral obstruction-induced renal tubulointerstitial inflammation and fibrosis. Int. J. Mol. Sci. 21, 8184 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, X. et al. A therapeutic silencing RNA targeting hepatocyte TAZ prevents and reverses fibrosis in nonalcoholic steatohepatitis in mice. Hepatol. Commun. 3, 1221–1234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ide, S. et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. eLife 10, e68603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Huber, M. A. et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wu, Y. et al. Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Liu, H. et al. High uric acid-induced epithelial-mesenchymal transition of renal tubular epithelial cells via the TLR4/NF-kB signaling pathway. Am. J. Nephrol. 46, 333–342 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Peng, L. et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 11, 978 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Alyaseer, A. A. A., de Lima, M. H. S. & Braga, T. T. The role of NLRP3 inflammasome activation in the epithelial to mesenchymal transition process during the fibrosis. Front. Immunol. 11, 883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Zhang, L.-L. et al. Angiotensin(1-7) attenuated angiotensin II-induced hepatocyte EMT by inhibiting NOX-derived H2O2-activated NLRP3 inflammasome/IL-1β/Smad circuit. Free Radic. Biol. Med. 97, 531–543 (2016).

    Article  CAS  PubMed  Google Scholar 

  232. Kang, H., Kim, H., Lee, S., Youn, H. & Youn, B. Role of metabolic reprogramming in epithelialmesenchymal transition (EMT). Int. J. Mol. Sci. 20, 2042 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Zhao, X., Kwan, J. Y. Y., Yip, K., Liu, P. P. & Liu, F.-F. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug Discov. 19, 57–75 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Li, J. et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight 5, e129034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Renal Physiol. 313, F561–F575 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Soto-Heredero, G., Gómez de Las Heras, M. M., Gabandé-Rodríguez, E., Oller, J. & Mittelbrunn, M. Glycolysis – a key player in the inflammatory response. FEBS J. 287, 3350–3369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Storer, M. A. et al. Acquisition of a unique mesenchymal precursor-like blastema state underlies successful adult mammalian digit tip regeneration. Dev. Cell 52, 509–524.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Reginelli, A. D., Wang, Y. Q., Sassoon, D. & Muneoka, K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121, 1065–1076 (1995).

    Article  CAS  PubMed  Google Scholar 

  240. Han, M., Yang, X., Farrington, J. E. & Muneoka, K. Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development 130, 5123–5132 (2003).

    Article  CAS  PubMed  Google Scholar 

  241. Maden, M. & Varholick, J. A. Model systems for regeneration: the spiny mouse, Acomys cahirinus. Development 147, dev167718 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Okamura, D. M. et al. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 24, 103269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gawriluk, T. R. et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals. Nat. Commun. 7, 11164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bedelbaeva, K. et al. Epithelial–mesenchymal transition: an organizing principle of mammalian regeneration. Front. Cell Dev. Biol. 11, 1101480 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Strunz, M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11, 3559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  249. Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    Article  PubMed  Google Scholar 

  251. Aharonov, A. et al. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat. Cell Biol. 22, 1346–1356 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. González-Iglesias, A. & Nieto, M. A. Proliferation and EMT trigger heart repair. Nat. Cell Biol. 22, 1291–1292 (2020).

    Article  PubMed  Google Scholar 

  253. Goldman, D. Müller glial cell reprogramming and retina regeneration. Nat. Rev. Neurosci. 15, 431–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Sharma, P. et al. Oct4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish. Life Sci. Alliance 2, e201900548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Sharma, P. et al. Biphasic role of TGF-β signaling during Müller glia reprogramming and retinal regeneration in zebrafish. iScience 23, 100817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Ramachandran, R., Fausett, B. V. & Goldman, D. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat. Cell Biol. 12, 1101–1107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ueki, Y. et al. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. Proc. Natl Acad. Sci. USA 112, 13717–13722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Jorstad, N. L. et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548, 103–107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Fernández-Ruiz, I. ERBB2–YAP crosstalk mediates cardiac regeneration in mice. Nat. Rev. Cardiol. 18, 4 (2021).

    Article  PubMed  Google Scholar 

  260. Emiliani, V. et al. Optogenetics for light control of biological systems. Nat. Rev. Methods Primers 2, 55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Blanpain, C. & Fuchs, E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 344, 1242281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. de Sousa, E., Melo, F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24, 54–64 (2019).

    Article  Google Scholar 

  265. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  266. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Mahmoudi, S., Xu, L. & Brunet, A. Turning back time with emerging rejuvenation strategies. Nat. Cell Biol. 21, 32–43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Chondronasiou, D. et al. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  272. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Alonso-Curbelo, D. et al. A gene–environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Shahbazi, M. N. & Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 20, 878–887 (2018).

    Article  CAS  PubMed  Google Scholar 

  275. Pei, D., Shu, X., Gassama-Diagne, A. & Thiery, J. P. Mesenchymal–epithelial transition in development and reprogramming. Nat. Cell Biol. 21, 44–53 (2019).

    Article  CAS  PubMed  Google Scholar 

  276. Hamidi, S. et al. Mesenchymal-epithelial transition regulates initiation of pluripotency exit before gastrulation. Development 147, dev184960 (2020).

    Article  CAS  PubMed  Google Scholar 

  277. Ismagulov, G., Hamidi, S. & Sheng, G. Epithelial-mesenchymal transition drives three-dimensional morphogenesis in mammalian early development. Front. Cell Dev. Biol. 9, 639244 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Chen, A. F. et al. GRHL2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naive pluripotency. Cell Stem Cell 23, 226–238.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Vallier, L., Alexander, M. & Pedersen, R. A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509 (2005).

    Article  CAS  PubMed  Google Scholar 

  280. Xu, R.-H. et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3, 196–206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Dias, A. et al. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. eLife 9, e56615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Dong, J. et al. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biol. 19, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Younossi, Z. et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69, 2672–2682 (2019).

    Article  PubMed  Google Scholar 

  285. Kwapisz, O. et al. Fatty acids and a high-fat diet induce epithelial-mesenchymal transition by activating tgfβ and β-catenin in liver cells. Int. J. Mol. Sci. 22, 1272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Loft, A. et al. Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metab. 33, 1685–1700.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  287. Subbalakshmi, A. R. et al. The ELF3 transcription factor is associated with an epithelial phenotype and represses epithelial-mesenchymal transition. J. Biol. Eng. 17, 17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Beaven, S. W. et al. Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab. 18, 106–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Ganesan, R., Mallets, E. & Gomez-Cambronero, J. The transcription factors Slug (SNAI2) and Snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion. Mol. Oncol. 10, 663–676 (2016).

    Article  CAS  PubMed  Google Scholar 

  290. Boor, P. & Floege, J. Renal allograft fibrosis: biology and therapeutic targets. Am. J. Transplant. 15, 863–886 (2015).

    Article  CAS  PubMed  Google Scholar 

  291. Bedi, S., Vidyasagar, A. & Djamali, A. Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplant. Rev. 22, 1–5 (2008).

    Article  Google Scholar 

  292. Vongwiwatana, A., Tasanarong, A., Rayner, D. C., Melk, A. & Halloran, P. F. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am. J. Transplant. 5, 1367–1374 (2005).

    Article  CAS  PubMed  Google Scholar 

  293. Robertson, H., Ali, S., McDonnell, B. J., Burt, A. D. & Kirby, J. A. Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J. Am. Soc. Nephrol. 15, 390–397 (2004).

    Article  PubMed  Google Scholar 

  294. Rygiel, K. A. et al. T cell-mediated biliary epithelial-to-mesenchymal transition in liver allograft rejection. Liver Transplant. 16, 567–576 (2010).

    Article  Google Scholar 

  295. Straub, J. M. et al. Radiation-induced fibrosis: mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol. 141, 1985–1994 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Almeida, C. et al. The role of alveolar epithelium in radiation-induced lung injury. PLoS ONE 8, e53628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Nagarajan, D., Melo, T., Deng, Z., Almeida, C. & Zhao, W. ERK/GSK3β/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic. Biol. Med. 52, 983–992 (2012).

    Article  CAS  PubMed  Google Scholar 

  298. Choi, S.-H. et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin. Cancer Res. 21, 3716–3726 (2015).

    Article  CAS  PubMed  Google Scholar 

  299. Sleijfer, S. Bleomycin-induced pneumonitis. Chest 120, 617–624 (2001).

    Article  CAS  PubMed  Google Scholar 

  300. Della Latta, V., Cecchettini, A., Del Ry, S. & Morales, M. A. Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol. Res. 97, 122–130 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Nieto laboratory for discussion and comments on the manuscript. This work was supported by grants from the Spanish Ministries of Science and Innovation (MCI PID2021-125682NB-I00), from the AECC Scientific Foundation (FC_AECC PROYE19073NIE), Instituto de Salud Carlos III (CIBERER, CB19/07/00038 to M.A.N.) and Generalitat Valenciana (Prometeo 2021/45) to M.A.N., who also acknowledges financial support from the Spanish State Research Agency, through the Severo Ochoa Program for Centres of Excellence in R&D (CEX2021-001165-S). K.K.Y. holds an investigator contract from the AECC Scientific Foundation (Ayudas AECC investigador 2022).

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the manuscript and generated the figures.

Corresponding author

Correspondence to M. Angela Nieto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Guojun Sheng, Jing Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Apicobasal polarity

A term that alludes to the polarization of epithelial cells into a basal pole that faces and adheres to the basal membrane and an apical pole that faces the outside of the body or the lumen of internal cavities.

Blastema

Mass of proliferative and undifferentiated progenitor-like cells that appears in response to injury to initiate tissue repair.

Cell senescence

Irreversible cell cycle arrest.

Clara cells

Population of non-ciliated secretory cells in the lung bronchiolar epithelium that have an essential role in repair after injury.

Embryo tail bud

Mass of embryonic undifferentiated, multipotent and proliferative cells that resides in the most caudal part of chordate embryos.

Ephrin B1

Ephrin B1, encoded by the EFNB1 gene, is a member of the ephrin family, ligands of EPH-related receptor tyrosine kinases.

Epimorphosis

The dedifferentiation of somatic adult cells into phenotypes reminiscent of those that occur during embryonic development in response to injury and their extensive cell proliferation before undergoing redifferentiation to replace the damaged tissues.

Ferroptosis

Iron-dependent programmed cell death induced by the accumulation of lipid peroxides at the cell membrane.

Genetic fate mapping

Stable and inheritable labelling of a cell (or group of cells). Genetic fate mapping is used in embryonic development to define cell lineages and to define the cells of origin in cancer evolution.

Inflammasome

Cytoplasmic multiprotein complex that senses both endogenous and exogenous stimuli and, as a response, mediates proteolytic cleavage and secretion of pro-inflammatory cytokines.

Leader cells

Term used to define cells located at the edge of neural crest or other migratory streams, which can instruct migration directionality.

Myofibroblasts

Specialized fibroblasts with high contractile capacity. Myofibroblasts initially form to protect adult tissues after stress and damage, but during chronic damage they accumulate and cause excessive extracellular matrix deposition, scarring and tissue degeneration.

Octamer-binding transcription factor 4

(OCT4). A transcription factor that promotes self-renewal and the maintenance of pluripotency in embryonic stem cells or multipotency in some progenitors. It is also one of the four ‘Yamaka factors’, used for somatic cell reprogramming into induced pluripotent stem cells.

Pluripotency

The ability of given cells to give rise to multiple cell types. It is commonly used to refer to the ability of a cell to give rise to cells of the three primary germ cell layers: ectoderm, mesoderm and endoderm.

Pre-eclampsia

A disorder characterized by persistent high blood pressure during pregnancy, leading to multiple organ dysfunction. Untreated or severe pre-eclampsia can lead to serious complications to the mother and fetus.

Primitive streak

A structure that forms in the early embryo amniotes in which multiple epiblast cells ingress to allow gastrulation and formation of the three germ layers.

Trophoblasts

Cells that form the outer layer of the blastocyst, which has an essential role in embryo implantation and placenta formation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, K.K., Nieto, M.A. Epithelial–mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00733-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00733-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing