Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial food spoilage: impact, causative agents and control strategies

Abstract

Microbial food spoilage is a major contributor to food waste and, hence, to the negative environmental sustainability impacts of food production and processing. Globally, it is estimated that 15–20% of food is wasted, with waste, by definition, occurring after primary production and harvesting (for example, in households and food service establishments). Although the causative agents of food spoilage are diverse, many microorganisms are major contributors across different types of foods. For example, the genus Pseudomonas causes spoilage in various raw and ready-to-eat foods. Aerobic sporeformers (for example, members of the genera Bacillus, Paenibacillus and Alicyclobacillus) cause spoilage across various foods and beverages, whereas anaerobic sporeformers (for example, Clostridiales) cause spoilage in a range of products that present low-oxygen environments. Fungi are also important spoilage microorganisms, including in products that are not susceptible to bacterial spoilage due to their low water activity or low pH. Strategies that can reduce spoilage include improved control of spoilage microorganisms in raw material and environmental sources as well as application of microbicidal or microbiostatic strategies (for example, to products and packaging). Emerging tools (for example, systems models and improved genomic tools) represent an opportunity for rational design of systems, processes and products that minimize microbial food spoilage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of microbial food spoilage.
Fig. 2: Causative spoilage microorganisms and spoilage symptoms associated with various food products.
Fig. 3: Introduction routes of spoilage microorganisms.
Fig. 4: Modelling tools and digital twins, and their application to predict spoilage, shelf life and intervention effectiveness along the food production and processing continuum.

Similar content being viewed by others

References

  1. Gram, L. et al. Food spoilage—interactions between food spoilage bacteria. Int. J. Food Microbiol. 78, 79–97 (2002).

    Article  PubMed  Google Scholar 

  2. Snyder, A. B., Churey, J. J. & Worobo, R. W. Association of fungal genera from spoiled processed foods with physicochemical food properties and processing conditions. Food Microbiol. 83, 211–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Martin, N. H., Murphy, S. C., Ralyea, R. D., Wiedmann, M. & Boor, K. J. When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. J. Dairy. Sci. 94, 3176–3183 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. United Nations. UN: 17% of all food available at consumer levels is wasted. UN Environment Programme https://www.unep.org/news-and-stories/press-release/un-17-all-food-available-consumer-levels-wasted (2021).

  5. Food and Agriculture Organization of the United Nations. Food wastage footprint: full cost-accounting. Food and Agriculture Organization https://www.fao.org/3/i3991e/i3991e.pdf (2014).

  6. Quested, T., Ingle, R. & Parry, A. Household food and drink waste in the United Kingdom 2012. wrap https://wrap.org.uk/sites/default/files/2020-12/Household-Food-and-Drink-Waste-in-the-United-Kingdom-2012.pdf (2013).

  7. Bilska, B., Tomaszewska, M. & Kołożyn-Krajewska, D. Analysis of the behaviors of Polish consumers in relation to food waste. Sustainability 12, 304 (2020).

    Article  Google Scholar 

  8. Bjorkroth, K. J. & Korkeala, H. J. Lactobacillus fructivorans spoilage of tomato ketchup. J. Food Prot. 60, 505–509 (1997).

    Article  PubMed  Google Scholar 

  9. Adams, D. M., Barach, J. T. & Speck, M. L. Heat resistant proteases produced in milk by psychrotrophic bacteria of dairy origin. J. Dairy. Sci. 58, 828–834 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Stoeckel, M. et al. Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int. Dairy. J. 59, 20–28 (2016).

    Article  CAS  Google Scholar 

  11. Circella, E. et al. Pseudomonas azotoformans belonging to Pseudomonas fluorescens group as causative agent of blue coloration in carcasses of slaughterhouse rabbits. Animals 10, 256 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ben Mhenni, N., Alberghini, G., Giaccone, V., Truant, A. & Catellani, P. Prevalence and antibiotic resistance phenotypes of Pseudomonas spp. in fresh fish fillets. Foods 12, 950 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Prinčič, L., Orsi, R. H., Martin, N. H., Wiedmann, M. & Trmčić, A. Phenotypic and genomic characterization of Klebsiella pneumoniae ssp. pneumoniae and Rahnella inusitata strains reveals no clear association between genetic content and ropy phenotype. J. Dairy. Sci. 107, 1370–1385 (2023).

    Article  PubMed  Google Scholar 

  14. Snyder, A. B. & Worobo, R. W. Fungal spoilage in food processing. J. Food Prot. 81, 1035–1040 (2018).

    Article  PubMed  Google Scholar 

  15. Malfeito-Ferreira, M. & Silva, A. C. in Yeasts in the Production of Wine (eds Romano, P., Ciani, M. & Fleet, G. H.) 375–394 (Springer, 2019).

  16. Raposo, A., Pérez, E., de Faria, C. T., Ferrús, M. A. & Carrascosa, C. in Foodborne Pathogens and Antibiotic Resistance (ed. Singh, O. V.) 41–71 (Wiley, 2016).

  17. Wiedmann, M., Weilmeier, D., Dineen, S. S., Ralyea, R. & Boor, K. J. Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl. Env. Microbiol. 66, 2085–2095 (2000).

    Article  CAS  Google Scholar 

  18. Parlapani, F. F. et al. Growth and volatile organic compound production of Pseudomonas fish spoiler strains on fish juice agar model substrate at different temperatures. Microorganisms 11, 189 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Munsch, P., Geoffroy, V. A., Alatossava, T. & Meyer, J. M. Application of siderotyping for characterization of Pseudomonas tolaasii and “Pseudomonas reactans” isolates associated with brown blotch disease of cultivated mushrooms. Appl. Env. Microbiol. 66, 4834–4841 (2000).

    Article  CAS  Google Scholar 

  20. Hansen, K. M. J. & Bautista, D. A. in Encyclopedia of Food Microbiology (eds Robinson, R. K., Batt, C. A. & Patel, P. D.) 2051–2056 (Academic, 1999).

  21. Marsili, R. in Encyclopedia of Dairy Sciences 2nd edn (ed. Fuquay, J. W.) 533–551 (Academic, 2011).

  22. Machado, S. G. et al. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Front. Microbiol. 8, 302 (2017).

  23. García-López, M. L., Santos, J. A., Otero, A. & Rodríguez-Calleja, J. M. in Encyclopedia of Food Microbiology 2nd edn (ed. Batt, C. A. & Tortorello, M. L.) 261–268 (Academic, 2014).

  24. Betts, G. in Food Spoilage Microorganisms (ed. Blackburn, C. D. W.) 668–693 (Woodhead, 2006).

  25. Kameník, J. The microbiology of meat spoilage: a review. Maso Int. J. Food Sci. Technol. 1, 3–10 (2013).

    Google Scholar 

  26. Tournas, V. H. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit. Rev. Microbiol. 31, 33–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Alegbeleye, O., Odeyemi, O. A., Strateva, M. & Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2, 100122 (2022).

    Article  CAS  Google Scholar 

  28. Dalgaard, P., Mejlholm, O., Christiansen, T. J. & Huss, H. H. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett. Appl. Microbiol. 24, 373–378 (1997).

    Article  Google Scholar 

  29. Säde, E., Murros, A. & Björkroth, J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 34, 252–258 (2013).

    Article  PubMed  Google Scholar 

  30. Heyndrickx, M. The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Appl. Environ. Soil Sci. https://doi.org/10.1155/2011/561975 (2011).

  31. Wells-Bennik, M. H. et al. Bacterial spores in food: survival, emergence, and outgrowth. Annu. Rev. Food Sci. Technol. 7, 457–482 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Carlin, F. Origin of bacterial spores contaminating foods. Food Microbiol. 28, 177–182 (2011).

    Article  PubMed  Google Scholar 

  33. Martin, N. H., Torres-Frenzel, P. & Wiedmann, M. Invited review: controlling dairy product spoilage to reduce food loss and waste. J. Dairy. Sci. 104, 1251–1261 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Trmčić, A., Martin, N. H., Boor, K. J. & Wiedmann, M. A standard bacterial isolate set for research on contemporary dairy spoilage. J. Dairy. Sci. 98, 5806–5817 (2015).

    Article  PubMed  Google Scholar 

  35. Gopal, N. et al. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front. Microbiol. 6, 1418 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. André, S., Zuber, F. & Remize, F. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey. Int. J. Food Microbiol. 165, 134–143 (2013).

    Article  PubMed  Google Scholar 

  37. Scheldeman, P., Herman, L., Foster, S. & Heyndrickx, M. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J. Appl. Microbiol. 101, 542–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Durak, M. Z., Churey, J. J., Danyluk, M. D. & Worobo, R. W. Identification and haplotype distribution of Alicyclobacillus spp. from different juices and beverages. Int. J. Food Microbiol. 142, 286–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Sourri, P., Tassou, C. C., Nychas, G.-J. E. & Panagou, E. Z. Fruit juice spoilage by Alicyclobacillus: detection and control methods—a comprehensive review. Foods 11, 747 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roth, K. et al. Alicyclobacillus mali sp. nov., Alicyclobacillus suci sp. nov. and Alicyclobacillus fructus sp. nov., thermoacidophilic sporeforming bacteria isolated from fruit beverages. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.005016 (2021).

  41. Cui, X., Joannou, C. L., Hughes, M. N. & Cammack, R. The bacteriocidal effects of transition metal complexes containing the NO+ group on the food-spoilage bacterium Clostridium sporogenes. FEMS Microbiol. Lett. 98, 67–70 (1992).

    Article  CAS  Google Scholar 

  42. Palevich, N. et al. Comparative genomics of Clostridium species associated with vacuum-packed meat spoilage. Food Microbiol. 95, 103687 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Broda, D. M., Boerema, J. A. & Brightwell, G. Sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats, as determined by PCR amplification procedure. J. Appl. Microbiol. 107, 178–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Wambui, J., Cernela, N., Stevens, M. J. A. & Stephan, R. Whole genome sequence-based identification of Clostridium estertheticum complex strains supports the need for taxonomic reclassification within the species Clostridium estertheticum. Front. Microbiol. 12, 727022 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Haas, K. N. & Blanchard, J. L. Reclassification of the Clostridium clostridioforme and Clostridium sphenoides clades as Enterocloster gen. nov. and Lacrimispora gen. nov., including reclassification of 15 taxa. Int. J. Syst. Evol. Microbiol. 70, 23–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Weigand, M. R. et al. Implications of genome-based discrimination between Clostridium botulinum Group I and Clostridium sporogenes strains for bacterial taxonomy. Appl. Env. Microbiol. 81, 5420–5429 (2015).

    Article  CAS  Google Scholar 

  47. Smith, T. J., Schill, K. M. & Williamson, C. H. D. Navigating the complexities involving the identification of botulinum neurotoxins (BoNTs) and the taxonomy of BoNT-producing Clostridia. Toxins 15, 545 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Húngaro, H. M., Caturla, M. Y. R., Horita, C. N., Furtado, M. M. & Sant’Ana, A. S. Blown pack spoilage in vacuum-packaged meat: a review on clostridia as causative agents, sources, detection methods, contributing factors and mitigation strategies. Trends Food Sci. Technol. 52, 123–138 (2016).

    Article  Google Scholar 

  49. Qian, C., Martin, N. H., Wiedmann, M. & Trmčić, A. Development of a risk assessment model to predict the occurrence of late blowing defect in Gouda cheese and evaluate potential intervention strategies. J. Dairy. Sci. 105, 2880–2894 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Ivy, R. A. & Wiedmann, M. in Encyclopedia of Food Microbiology 2nd edn (eds Batt, C. A. & Tortorello, M. L.) 468–473 (Academic, 2014).

  51. Ávila, M. et al. Inhibitory activity of aromatic plant extracts against dairy-related Clostridium species and their use to prevent the late blowing defect of cheese. Food Microbiol. 110, 104185 (2023).

    Article  PubMed  Google Scholar 

  52. Gililland, J. R. & Vaughn, R. H. Characteristics of butyric acid bacteria from olives. J. Bacteriol. 46, 315–322 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fleming, H. P., Daeschel, M. A., McFeeters, R. F. & Pierson, M. D. Butyric acid spoilage of fermented cucumbers. J. Food Sci. 54, 636–639 (1989).

    Article  CAS  Google Scholar 

  54. Gleeson, D., O’Connell, A. & Jordan, K. Review of potential sources and control of thermoduric bacteria in bulk-tank milk. Ir. J. Agric. Food Res. 52, 217–227 (2013).

    Google Scholar 

  55. Frank, J. & Yousef, A. in Standard Methods for the Examination of Dairy Products (ed. Frank, J. F.) (American Public Health Association, 2004).

  56. Buehner, K. P., Anand, S. & Garcia, A. Prevalence of thermoduric bacteria and spores on 10 Midwest dairy farms. J. Dairy. Sci. 97, 6777–6784 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Ribeiro Júnior, J. C., Tamanini, R., de Oliveira, A. L. M., Alfieri, A. A. & Beloti, V. Genetic diversity of thermoduric spoilage microorganisms of milk from Brazilian dairy farms. J. Dairy. Sci. 101, 6927–6936 (2018).

    Article  PubMed  Google Scholar 

  58. Suzuki, K. in Brewing Microbiology (ed. Hill, A. E.) 141–173 (Woodhead, 2015).

  59. Wang, J. et al. The inhibition of cell-free supernatants of several lactic acid bacteria on the selected psychrophilic spoilage bacteria in liquid whole egg. Food Control. 123, 107753 (2021).

    Article  CAS  Google Scholar 

  60. Maes, S. et al. Identification and spoilage potential of the remaining dominant microbiota on food contact surfaces after cleaning and disinfection in different food industries. J. Food Prot. 82, 262–275 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Cerf, O. & Condron, R. Coxiella burnetii and milk pasteurization: an early application of the precautionary principle? Epidemiol. Infect. 134, 946–951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feng, C.-H., Drummond, L. & Sun, D.-W. Modelling the growth parameters of lactic acid bacteria and total viable count in vacuum-packaged Irish cooked sausages cooled by different methods. Int. J. Food Sci. Technol. 49, 2659–2667 (2014).

    Article  CAS  Google Scholar 

  63. Suo, B., Chen, X. & Wang, Y. Recent research advances of lactic acid bacteria in sourdough: origin, diversity, and function. Curr. Opin. Food Sci. 37, 66–75 (2021).

    Article  CAS  Google Scholar 

  64. Yu, A. O., Leveau, J. H. J. & Marco, M. L. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Env. Microbiol. Rep. 12, 16–29 (2020).

    Article  CAS  Google Scholar 

  65. Shaw, B. G. & Harding, C. D. Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int. J. Syst. Evol. Microbiol. 39, 217–223 (1989).

    Google Scholar 

  66. Williams, A. M., Fryer, J. L. & Collins, M. D. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol. Lett. 68, 109–113 (1990).

    Article  CAS  Google Scholar 

  67. Pothakos, V., Stellato, G., Ercolini, D. & Devlieghere, F. Processing environment and ingredients are both sources of Leuconostoc gelidum, which emerges as a major spoiler in ready-to-eat meals. Appl. Environ. Microbiol. 81, 3529–3641 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pothakos, V., Devlieghere, F., Villani, F., Björkroth, J. & Ercolini, D. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 109, 66–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Pothakos, V. & Björkroth, J. in Lactic Acid Bacteria: Microbiological and Functional Aspects (eds Vinderola, G., Ouwehand, A., Salminen, S. & Wright, A. V.) 303–315 (CRC, 2019).

  70. Zheng, J. et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Qiao, N. et al. After the storm—perspectives on the taxonomy of Lactobacillaceae. J. Dairy. Sci. Commun. 3, 222–227 (2022).

    Google Scholar 

  72. US Food and Drug Administration. Food defect levels handbook. US Food and Drug Administration https://www.fda.gov/food/ingredients-additives-gras-packaging-guidance-documents-regulatory-information/food-defect-levels-handbook (1995).

  73. Fleet, G. H. in The Yeasts 5th edn (eds Kurtzman, C. P., Fell, J. W. & Boekhout, T.) 53–63 (Elsevier, 2011).

  74. Axel, C., Zannini, E. & Arendt, E. K. Mold spoilage of bread and its biopreservation: a review of current strategies for bread shelf life extension. Crit. Rev. Food Sci. Nutr. 57, 3528–3542 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Dagnas, S. & Membré, J.-M. Predicting and preventing mold spoilage of food products. J. Food Prot. 76, 538–551 (2013).

    Article  PubMed  Google Scholar 

  76. Sautour, M., Rouget, A., Dantigny, P., Divies, C. & Bensoussan, M. Prediction of conidial germination of Penicillium chrysogenum as influenced by temperature, water activity and pH. Lett. Appl. Microbiol. 32, 131–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Rico, E., Houbraken, J. & Samson, R. in Compendium of Methods for the Microbiological Examination of Foods (eds Salfinger, Y. & Tortorello, M. L.) 387–397 (American Public Health Association, 2015).

  78. Begum, M., Hocking, A. D. & Miskelly, D. Inactivation of food spoilage fungi by ultra violet (UVC) irradiation. Int. J. Food Microbiol. 129, 74–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Cai, S. & Snyder, A. B. Genomic characterization of polyextremotolerant black yeasts isolated from food and food production environments. Front. Fungal Biol. 3, 928622 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liauw, C. M. et al. The effect of surface hydrophobicity on the attachment of fungal conidia to substrates of polyvinyl acetate and polyvinyl alcohol. J. Polym. Env. 28, 1450–1464 (2020).

    Article  CAS  Google Scholar 

  81. Huis in’t Veld, J. H. J. Microbial and biochemical spoilage of foods: an overview. Int. J. Food Microbiol. 33, 1–18 (1996).

    Article  PubMed  Google Scholar 

  82. Alles, A. A., Wiedmann, M. & Martin, N. H. Rapid detection and characterization of postpasteurization contaminants in pasteurized fluid milk. J. Dairy. Sci. 101, 7746–7756 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Kim, K. H. et al. In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosens. Bioelectron. 200, 113908 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Lee-Rangel, H. A. et al. Application of an electronic nose and HS-SPME/GC-MS to determine volatile organic compounds in fresh Mexican cheese. Foods 11, 1887 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujioka, K. Comparison of cheese aroma intensity measured using an electronic nose (e-nose) non-destructively with the aroma intensity scores of a sensory evaluation: a pilot study. Sensors 21, 8368 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Soni, A., Dixit, Y., Reis, M. M. & Brightwell, G. Hyperspectral imaging and machine learning in food microbiology: developments and challenges in detection of bacterial, fungal, and viral contaminants. Compr. Rev. Food Sci. Food Saf. 21, 3717–3745 (2022).

    Article  PubMed  Google Scholar 

  87. Nieminen, T. T., Dalgaard, P. & Björkroth, J. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. Int. J. Food Microbiol. 218, 86–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Hong, C. & Moorman, G. Plant pathogens in irrigation water: challenges and opportunities. Crit. Rev. Plant. Sci. 24, 189–208 (2005).

    Article  Google Scholar 

  89. Lamichhane, J. R. & Bartoli, C. Plant pathogenic bacteria in open irrigation systems: what risk for crop health? Plant Pathol. https://doi.org/10.1111/ppa.12371 (2015).

  90. Jones, L. A., Worobo, R. W. & Smart, C. D. Plant-pathogenic oomycetes, Escherichia coli strains, and Salmonella spp. frequently found in surface water used for irrigation of fruit and vegetable crops in New York State. Appl. Env. Microbiol. 80, 4814–4820 (2014).

    Article  Google Scholar 

  91. Murphy, S. I. et al. Bedding and bedding management practices are associated with mesophilic and thermophilic spore levels in bulk tank raw milk. J. Dairy. Sci. 102, 6885–6900 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Suthaparan, A. et al. Suppression of cucumber powdery mildew by supplemental UV-B radiation in greenhouses can be augmented or reduced by background radiation quality. Plant. Dis. 98, 1349–1357 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Sundin, G. W., Jones, A. L. & Fulbright, D. W. Copper resistance in Pseudomonas syringae pv. syringae from cherry orchards and its associated transfer in vitro and in planta with a plasmid. Phytopathology 79, 861–865 (1989).

    Article  CAS  Google Scholar 

  94. Stahr, M. N. & Quesada-Ocampo, L. M. Effects of water temperature, inoculum concentration and age, and sanitizers on infection of Ceratocystis fimbriata, causal agent of black rot in sweetpotato. Plant. Dis. 105, 1365–1372 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, Y., Naber, M. R. & Crosby, T. W. Effects of wound-healing management on potato post-harvest storability. Agronomy 10, 512 (2020).

    Article  Google Scholar 

  96. Rankin, S. A., Bradley, R. L., Miller, G. & Mildenhall, K. B. A 100-year review: a century of dairy processing advancements—pasteurization, cleaning and sanitation, and sanitary equipment design. J. Dairy. Sci. 100, 9903–9915 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Gil, M., Tudela, J. A., Martínez-Sánchez, A. & Luna, M. C. Harvest maturity indicators of leafy vegetables. Stewart Postharvest Rev. 8, 1–9 (2012).

    Google Scholar 

  98. Hernández, A. et al. Spoilage yeasts: what are the sources of contamination of foods and beverages? Int. J. Food Microbiol. 286, 98–110 (2018).

    Article  PubMed  Google Scholar 

  99. Stellato, G., De Filippis, F., La Storia, A. & Ercolini, D. Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy processing environment. Appl. Env. Microbiol. 81, 7893–7904 (2015).

    Article  CAS  Google Scholar 

  100. Stellato, G. et al. Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Appl. Env. Microbiol. 82, 4045–4054 (2016).

    Article  CAS  Google Scholar 

  101. Wagner, E. M. et al. Identification of biofilm hotspots in a meat processing environment: detection of spoilage bacteria in multi-species biofilms. Int. J. Food Microbiol. 328, 108668 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Zwirzitz, B. et al. Co-occurrence of Listeria spp. and spoilage associated microbiota during meat processing due to cross-contamination events. Front. Microbiol. 12, 632935 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bremer, P., Flint, S., Brooks, J. & Palmer, J. in Biofilms in the Dairy Industry (eds Teh, K. H., Flint, S., Brooks, J. & Knight, G.) 1–16 (Wiley-Blackwell, 2015).

  104. Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J. & Lombó, F. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9, 898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. DeFlorio, W. et al. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr. Rev. Food Sci. Food Saf. 20, 3093–3134 (2021).

    Article  PubMed  Google Scholar 

  106. Coughlan, L. M., Cotter, P. D., Hill, C. & Alvarez-Ordóñez, A. New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front. Microbiol. 7, 1641 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sperber, W. H. in Compendium of the Microbiological Spoilage of Foods and Beverages (eds Sperber, W. H. & Doyle, M. P.) 1–40 (Springer, 2009).

  108. Cai, S., Phinney, D. M., Heldman, D. R. & Snyder, A. B. All treatment parameters affect environmental surface sanitation efficacy, but their relative importance depends on the microbial target. Appl. Environ. Microbiol. 87, e01748-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brown, K. L. & Wray, S. in Hygiene in Food Processing 2nd edn (eds Lelieveld, H. L. M., Holah, J. T. & Napper, D.) 174–202 (Woodhead, 2014).

  110. Oliveira, M., Tiwari, B. K. & Duffy, G. Emerging technologies for aerial decontamination of food storage environments to eliminate microbial cross-contamination. Foods 9, 1779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Masotti, F., Cattaneo, S., Stuknytė, M. & De Noni, I. Airborne contamination in the food industry: an update on monitoring and disinfection techniques of air. Trends Food Sci. Technol. 90, 147–156 (2019).

    Article  CAS  Google Scholar 

  112. Kosikowski, F. V. & Brown, D. P. Influence of carbon dioxide and nitrogen on microbial populations and shelf life of cottage cheese and sour cream. J. Dairy. Sci. 56, 12–18 (1973).

    Article  CAS  Google Scholar 

  113. Hotchkiss, J. H., Werner, B. G. & Lee, E. Y. C. Addition of carbon dioxide to dairy products to improve quality: a comprehensive review. Compr. Rev. Food Sci. Food Saf. 5, 158–168 (2006).

    Article  CAS  Google Scholar 

  114. Gribble, A., Mills, J. & Brightwell, G. The spoilage characteristics of Brochothrix thermosphacta and two psychrotolerant Enterobacteriacae in vacuum packed lamb and the comparison between high and low pH cuts. Meat Sci. 97, 83–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Guynot, M. E., Ramos, A. J., Sanchis, V. & Marín, S. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5–5.5). Int. J. Food Microbiol. 101, 161–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Ross, T. & McMeekin, T. A. Predictive microbiology. Int. J. Food Microbiol. 23, 241–264 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Stavropoulou, E. & Bezirtzoglou, E. Predictive modeling of microbial behavior in food. Foods 8, 654 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reichler, S. J. et al. A century of gray: a genomic locus found in 2 distinct Pseudomonas spp. is associated with historical and contemporary color defects in dairy products worldwide. J. Dairy. Sci. 102, 5979–6000 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Jääskeläinen, E. et al. Production of buttery-odor compounds and transcriptome response in Leuconostoc gelidum subsp. gasicomitatum LMG18811T during growth on various carbon sources. Appl. Env. Microbiol. 81, 1902–1908 (2015).

    Article  Google Scholar 

  120. Połaska, M., Dekowska, A. & Sokolowska, B. Isolation and identification of guaiacol producing Alicyclobacillus fastidiosus strains from orchards in Poland. Acta Biochim. Pol. 68, 301–307 (2021).

    PubMed  Google Scholar 

  121. Benson, A. K. et al. Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Appl. Env. Microbiol. 80, 5178–5194 (2014).

    Article  Google Scholar 

  122. Cauchie, E. et al. Assessment of spoilage bacterial communities in food wrap and modified atmospheres-packed minced pork meat samples by 16S rDNA metagenetic analysis. Front. Microbiol. 10, 3074 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. McHugh, A. J. et al. Mesophilic sporeformers identified in whey powder by using shotgun metagenomic sequencing. Appl. Env. Microbiol. 84, e01305-18 (2018).

    Article  Google Scholar 

  124. Brown, E., Dessai, U., McGarry, S. & Gerner-Smidt, P. Use of whole-genome sequencing for food safety and public health in the United States. Foodborne Pathog. Dis. 16, 441–450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tiwari, B. K. et al. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 57, 5987–6000 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Lau, S., Trmcic, A., Martin, N. H., Wiedmann, M. & Murphy, S. I. Development of a Monte Carlo simulation model to predict pasteurized fluid milk spoilage due to post-pasteurization contamination with Gram-negative bacteria. J. Dairy. Sci. 105, 1978–1998 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Nielsen, L. et al. Development of predictive models evaluating the spoilage-delaying effect of a bioprotective culture on different yeast species in yogurt. J. Dairy. Sci. 104, 9570–9582 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Koutsoumanis, K., Tsaloumi, S., Aspridou, Z., Tassou, C. & Gougouli, M. Application of Quantitative Microbiological Risk Assessment (QMRA) to food spoilage: principles and methodology. Trends Food Sci. Technol. 114, 189–197 (2021).

    Article  CAS  Google Scholar 

  129. Lau, S., Wiedmann, M. & Adalja, A. Consumer perceptions of QR code technology for enhanced fluid milk shelf-life information provision in a retail setting. J. Dairy. Sci. Commun. 3, 393–397 (2022).

    CAS  Google Scholar 

  130. Li, T. & Messer, K. D. To scan or not to scan: the question of consumer behavior and QR codes on food packages. J. Agric. Resour. Econ. 44, 311–327 (2019).

    CAS  Google Scholar 

  131. Chen, Y., Pinegar, L., Immonen, J. & Powell, K. M. Conversion of food waste to renewable energy: a techno-economic and environmental assessment. J. Clean. Prod. 385, 135741 (2023).

    Article  Google Scholar 

  132. Aschemann-Witzel, J. et al. Defining upcycled food: the dual role of upcycling in reducing food loss and waste. Trends Food Sci. Technol. 132, 132–137 (2023).

    Article  CAS  Google Scholar 

  133. Gedi, M. A. et al. in Routledge Handbook of Food Waste (eds Reynolds, C., Soma, T., Spring, C. & Lazell, J.) 413–427 (Routledge, 2020).

  134. Luong, T. S. V., Moir, C., Bowman, J. P. & Chandry, P. S. Heat resistance and genomics of spoilage Alicyclobacillus spp. isolated from fruit juice and fruit-based beverages. Food Microbiol. 94, 103662 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Pérez-Cacho, P. R., Danyluk, M. D. & Rouseff, R. GC–MS quantification and sensory thresholds of guaiacol in orange juice and its correlation with Alicyclobacillus spp. Food Chem. 129, 45–50 (2011).

    Article  Google Scholar 

  136. Orr, R. V., Shewfelt, R. L., Huang, C. J., Tefera, S. & Beuchat, L. R. Detection of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory and chromatographic analyses, and comparison with spore and vegetative cell populations. J. Food Prot. 63, 1517–1522 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Stratford, M. et al. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Int. J. Food Microbiol. 166, 126–134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, H. & Sun, H. Potential use of electronic tongue coupled with chemometrics analysis for early detection of the spoilage of Zygosaccharomyces rouxii in apple juice. Food Chem. 290, 152–158 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Björkroth, J., Dicks, L. M. T., Endo, A. & H.Holzapfel, W. in Lactic Acid Bacteria: Bacteria and Taxonomy (eds Holzapfel, W. H. & Wood, B. J. B.) 391–404 (Wiley, 2014).

  140. Hamamoto, T., Kaneda, M., Horikoshi, K. & Kudo, T. Characterization of a protease from a psychrotroph, Pseudomonas fluorescens 114. Appl. Env. Microbiol. 60, 3878–3880 (1994).

    Article  CAS  Google Scholar 

  141. Wells-Bennik, M. H. J. et al. Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int. J. Food Microbiol. 291, 161–172 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Brumm, P. J., De Maayer, P., Mead, D. A. & Cowan, D. A. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies. Front. Microbiol. 6, 430 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kakagianni, M., Gougouli, M. & Koutsoumanis, K. P. Development and application of Geobacillus stearothermophilus growth model for predicting spoilage of evaporated milk. Food Microbiol. 57, 28–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Bellassi, P., Fontana, A., Callegari, M. L., Cappa, F. & Morelli, L. Microbacterium paulum sp. nov., isolated from microfiltered milk. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.005119 (2021).

  145. Bellassi, P., Cappa, F., Fontana, A. & Morelli, L. Phenotypic and genotypic investigation of two representative strains of Microbacterium species isolated from micro-filtered milk: growth capacity and spoilage-potential assessment. Front. Microbiol. 11, 554178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schmidt, V. S. J., Kaufmann, V., Kulozik, U., Scherer, S. & Wenning, M. Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland. Int. J. Food Microbiol. 154, 1–9 (2012).

    Article  PubMed  Google Scholar 

  147. Comi, G., Andyanto, D., Manzano, M. & Iacumin, L. Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiol. 58, 16–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Parra, R. & Magan, N. Modelling the effect of temperature and water activity on growth of Aspergillus niger strains and applications for food spoilage moulds. J. Appl. Microbiol. 97, 429–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Charneco, G. O. et al. Bacteriophages in the dairy industry: a problem solved? Annu. Rev. Food Sci. Technol. 14, 367–385 (2023).

    Article  Google Scholar 

  150. Jones, R. A. C. & Naidu, R. A. Global dimensions of plant virus diseases: current status and future perspectives. Ann. Rev. Virol. 6, 387–409 (2019).

    Article  CAS  Google Scholar 

  151. Hasegawa, D. K. & Del Pozo-Valdivia, A. I. Epidemiology and economic impact of impatiens necrotic spot virus: a resurging pathogen affecting lettuce in the Salinas Valley of California. Plant. Dis. 107, 1192–1201 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Evanowski, R. L., Kent, D. J., Wiedmann, M. & Martin, N. H. Milking time hygiene interventions on dairy farms reduce spore counts in raw milk. J. Dairy. Sci. 103, 4088–4099 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Ralyea, R. D., Wiedmann, M. & Boor, K. J. Bacterial tracking in a dairy production system using phenotypic and ribotyping methods. J. Food Prot. 61, 1336–1340 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from the Walmart Foundation (Award number: 43546289); the funder was not involved in the study design, writing of this article or the decision to submit it for publication. The authors thank R. Lee for valuable support with citations and manuscript preparation, and L. Qian for help with preparation of Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Martin Wiedmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks John Bowman; Panagiotis Skandamis, who co-reviewed with Konstantinos Papadimitriou; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, A.B., Martin, N. & Wiedmann, M. Microbial food spoilage: impact, causative agents and control strategies. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01037-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01037-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology