Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The wound microbiota: microbial mechanisms of impaired wound healing and infection

Abstract

The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of acute and chronic wounds.
Fig. 2: The wound infection ‘continuum’.
Fig. 3: Factors that contribute to wound infections.

Similar content being viewed by others

References

  1. Shah, J. B. The history of wound care. J. Am. Col. Certif. Wound Spec. 3, 65–66 (2011).

    PubMed  Google Scholar 

  2. Broughton, G. II, Janis, J. E. & Attinger, C. E. A brief history of wound care. Plast. Reconstr. Surg. 117, 6S–11S (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Sen, C. K. Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care 8, 39–48 (2019). A comprehensive, regularly updated analysis of the economic and health burden of human wounds.

    Article  Google Scholar 

  4. Nussbaum, S. R. et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21, 27–32 (2018).

    Article  PubMed  Google Scholar 

  5. Guo, S. & Dipietro, L. A. Factors affecting wound healing. J. Dent. Res. 89, 219–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, G. et al. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe 29, 777–791.e6 (2021). Murine and human studies demonstrate the regenerative role of the microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uberoi, A. et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29, 1235–1248.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flowers, L. & Grice, E. A. The skin microbiota: balancing risk and reward. Cell Host Microbe 28, 190–200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gardner, S. E. & Frantz, R. A. Wound bioburden and infection-related complications in diabetic foot ulcers. Biol. Res. Nurs. 10, 44–53 (2008).

    Article  PubMed  Google Scholar 

  11. Swanson, T. et al. IWII Wound Infection in Clinical Practice consensus document: 2022 update. J. Wound Care 31, S10–S21 (2022).

    Article  PubMed  Google Scholar 

  12. Bowler, P. G., Duerden, B. I. & Armstrong, D. G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14, 244–269 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartow-McKenney, C. et al. The microbiota of traumatic, open fracture wounds is associated with mechanism of injury. Wound Repair Regen. 26, 127–135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fukuta, Y., Chua, H., Phe, K., Poythress, E. L. & Brown, C. A. Infectious diseases management in wound care settings: common causative organisms and frequently prescribed antibiotics. Adv. Skin Wound Care 35, 535–543 (2022).

    Article  PubMed  Google Scholar 

  15. Gardner, S. E., Frantz, R. A. & Doebbeling, B. N. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 9, 178–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Cheong, J. Z. A. et al. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME J. 15, 2012–2027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Quinn, R. A. et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci. Adv. 4, eaau1908 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Walter, J., Maldonado-Gomez, M. X. & Martinez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 49, 129–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Mallon, C. A., Elsas, J. D. V. & Salles, J. F. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Harris-Tryon, T. A. & Grice, E. A. Microbiota and maintenance of skin barrier function. Science 376, 940–945 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Cheung, G. Y. C., Bae, J. S. & Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12, 547–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parlet, C. P., Brown, M. M. & Horswill, A. R. Commensal staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol. 27, 497–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding, X. et al. Challenges and innovation in treating chronic and acute wound infections: from basic science to clinical practice. Burns Trauma 10, tkac014 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rahim, K. et al. Bacterial contribution in chronicity of wounds. Microb. Ecol. 73, 710–721 (2016).

    Article  PubMed  Google Scholar 

  25. Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Romano-Bertrand, S. et al. Dynamics of the surgical microbiota along the cardiothoracic surgery pathway. Front. Microbiol. 5, 787 (2014).

    PubMed  Google Scholar 

  27. Holder-Murray, J. et al. Time-dependent displacement of commensal skin microbes by pathogens at the site of colorectal surgery. Clin. Infect. Dis. 73, e2754–e2762 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Gupta, S. et al. Cutaneous surgical wounds have distinct microbiomes from intact skin. Microbiol. Spectr. 11, e0330022 (2023).

    Article  PubMed  Google Scholar 

  29. Wolcott, R. D. et al. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen. 24, 163–174 (2016). One of the largest studies to date profiling the microbiota of chronic wounds using molecular approaches.

    Article  PubMed  Google Scholar 

  30. Loesche, M. et al. Temporal stability in chronic wound microbiota is associated with poor healing. J. Invest. Dermatol. 137, 237–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Tipton, C. D. et al. Temporal dynamics of relative abundances and bacterial succession in chronic wound communities. Wound Repair Regen. 25, 673–679 (2017).

    Article  PubMed  Google Scholar 

  32. Kalan, L. R. et al. Strain- and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy. Cell Host Microbe 25, 641–655.e5 (2019). Shotgun metagenomic study of diabetic foot ulcers identifies microbial features associated with healing outcomes, including strain-level diversity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sloan, T. J. et al. Examining diabetic heel ulcers through an ecological lens: microbial community dynamics associated with healing and infection. J. Med. Microbiol. 68, 230–240 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Min, K. R. et al. Association between baseline abundance of Peptoniphilus, a Gram-positive anaerobic coccus, and wound healing outcomes of DFUs. PLoS ONE 15, e0227006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verbanic, S., Shen, Y., Lee, J., Deacon, J. M. & Chen, I. A. Microbial predictors of healing and short-term effect of debridement on the microbiome of chronic wounds. NPJ Biofilms Microbiomes 6, 21 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Citron, D. M., Goldstein, E. J., Merriam, C. V., Lipsky, B. A. & Abramson, M. A. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 45, 2819–2828 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Malone, M. et al. Next generation DNA sequencing of tissues from infected diabetic foot ulcers. EBioMedicine 21, 142–149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gardner, S. E., Hillis, S. L., Heilmann, K., Segre, J. A. & Grice, E. A. The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 62, 923–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dunyach-Remy, C. et al. Pressure ulcers microbiota dynamics and wound evolution. Sci. Rep. 11, 18506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hannigan, G. D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 6, e01578-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Verbanic, S., Deacon, J. M. & Chen, I. A. The chronic wound phageome: phage diversity and associations with wounds and healing outcomes. Microbiol. Spectr. 10, e0277721 (2022).

    Article  PubMed  Google Scholar 

  42. Chellan, G. et al. Spectrum and prevalence of fungi infecting deep tissues of lower-limb wounds in patients with type 2 diabetes. J. Clin. Microbiol. 48, 2097–2102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kalan, L. et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. mBio 7, e01058-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barratt, J. L., Harkness, J., Marriott, D., Ellis, J. T. & Stark, D. Importance of nonenteric protozoan infections in immunocompromised people. Clin. Microbiol. Rev. 23, 795–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olaniyi, R., Pozzi, C., Grimaldi, L. & Bagnoli, F. Staphylococcus aureus-associated skin and soft tissue infections: anatomical localization, epidemiology, therapy and potential prophylaxis. Curr. Top. Microbiol. Immunol. 409, 199–227 (2017).

    CAS  PubMed  Google Scholar 

  46. Schierle, C. F., De la Garza, M., Mustoe, T. A. & Galiano, R. D. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen. 17, 354–359 (2009).

    Article  PubMed  Google Scholar 

  47. Byrd, A. L. et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 9, eaal4651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Foster, T. J., Geoghegan, J. A., Ganesh, V. K. & Hook, M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12, 49–62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foster, T. J. & Hook, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Thammavongsa, V., Kim, H. K., Missiakas, D. & Schneewind, O. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol. 13, 529–543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Falahee, P. C. et al. α-Toxin regulates local granulocyte expansion from hematopoietic stem and progenitor cells in Staphylococcus aureus-infected wounds. J. Immunol. 199, 1772–1782 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Nakagawa, S. et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe 22, 667–677.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sotto, A. et al. Virulence potential of Staphylococcus aureus strains isolated from diabetic foot ulcers a new paradigm. Diabetes Care 31, 2318–2324 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Novick, R. P. et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12, 3967–3975 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morfeldt, E., Taylor, D., Vongabain, A. & Arvidson, S. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J. 14, 4569–4577 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheung, A. L., Koomey, J. M., Butler, C. A., Projan, S. J. & Fischetti, V. A. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc. Natl Acad. Sci. USA 89, 6462–6466 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheung, A. L. et al. Diminished virulence of a sar/agr mutant of Staphylococcus aureus in the rabbit model of endocarditis. J. Clin. Invest. 94, 1815–1822 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suligoy, C. M. et al. Mutation of Agr is associated with the adaptation of Staphylococcus aureus to the host during chronic osteomyelitis. Front. Cell. Infect. Microbiol. 8, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bischoff, M. et al. Microarray-based analysis of the Staphylococcus aureus σB regulon. J. Bacteriol. 186, 4085–4099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bischoff, M., Entenza, J. M. & Giachino, P. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J. Bacteriol. 183, 5171–5179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tuchscherr, L. et al. Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections. PLoS Pathog. 11, e1004870 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jacquet, R. et al. Dual gene expression analysis identifies factors associated with Staphylococcus aureus virulence in diabetic mice. Infect. Immun. 87, e00163-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Frees, D., Gerth, U. & Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol. 304, 142–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Thurlow, L. R., Stephens, A. C., Hurley, K. E. & Richardson, A. R. Lack of nutritional immunity in diabetic skin infections promotes Staphylococcus aureus virulence. Sci. Adv. 6, eabc5569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Klopsfenstein, N., Hibbs, K., Blackman, A. & Serezani, C. H. Prostaglandin E2 production is required for phagocyte CXCR2-mediated skin host defense in obese and hyperglycemic mice. Preprint at bioRxiv https://doi.org/10.1101/2022.10.02.510554 (2022).

    Article  Google Scholar 

  66. Vitko, N. P., Grosser, M. R., Khatri, D., Lance, T. R. & Richardson, A. R. Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. mBio 7, e00296-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. de Oliveira, J. M. F. & Lisboa, L. D. Hospital-acquired infections due to Gram-negative bacteria. N. Engl. J. Med. 363, 1482–1483 (2010).

    Article  PubMed  Google Scholar 

  68. Kirketerp-Moller, K. et al. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 46, 2717–2722 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Malone, M. et al. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J. Wound Care 26, 20–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, G. et al. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen. 18, 467–477 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gloag, E. S. et al. Pseudomonas aeruginosa interstrain dynamics and selection of hyperbiofilm mutants during a chronic infection. mBio 10, e01698-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Morgan, S. J. et al. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLoS Pathog. 15, e1007511 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goldufsky, J. et al. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen. 23, 557–564 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Turner, K. H., Everett, J., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 10, e1004518 (2014). This study uses murine models and transposon sequencing to discern the genetic requirements of acute and chronic wound fitness and virulence of P. aeruginosa.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Everett, J. et al. Arginine is a critical substrate for the pathogenesis of Pseudomonas aeruginosa in burn wound infections. mBio 8, e02160-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Radzieta, M. et al. A multiomics approach to identify host-microbe alterations associated with infection severity in diabetic foot infections: a pilot study. NPJ Biofilms Microbiomes 7, 29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roberts, S., Scott, J. R., Husmann, L. K. & Zurawski, C. A. Murine models of Streptococcus pyogenes infection.Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc09d05s02 (2006).

    Article  PubMed  Google Scholar 

  78. Currie, B. J. Group A streptococcal infections of the skin: molecular advances but limited therapeutic progress. Curr. Opin. Infect. Dis. 19, 132–138 (2006).

    Article  PubMed  Google Scholar 

  79. Walker, M. J. et al. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin. Microbiol. Rev. 27, 264–301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Siemens, N., Patenge, N., Otto, J., Fiedler, T. & Kreikemeyer, B. Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing. J. Biol. Chem. 286, 21612–21622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ringdahl, U. et al. Molecular co-operation between protein PAM and streptokinase for plasmin acquisition by Streptococcus pyogenes. J. Biol. Chem. 273, 6424–6430 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Vu, H. M. et al. Group A Streptococcus-induced activation of human plasminogen is required for keratinocyte wound retraction and rapid clot dissolution. Front. Cardiovasc. Med. 8, 667554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Towers, R. J. et al. Fibronectin-binding protein gene recombination and horizontal transfer between group A and G streptococci. J. Clin. Microbiol. 42, 5357–5361 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mazade, M. A. & Edwards, M. S. Impairment of type III group B Streptococcus-stimulated superoxide production and opsonophagocytosis by neutrophils in diabetes. Mol. Genet. Metab. 73, 259–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Di Palo, B. et al. Adaptive response of Group B Streptococcus to high glucose conditions: new insights on the CovRS regulation network. PLoS ONE 8, e61294 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Keogh, R. A. et al. Group B Streptococcus adaptation promotes survival in a hyperinflammatory diabetic wound environment. Sci. Adv. 8, eadd3221 (2022). Dual-RNA sequencing approach to identify mechanisms of GBS pathogenesis in diabetic wound healing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Macdonald, K. E., Boeckh, S., Stacey, H. J. & Jones, J. D. The microbiology of diabetic foot infections: a meta-analysis. BMC Infect. Dis. 21, 770 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dowd, S. E. et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 8, 43 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Frick, I. M. et al. Identification of a novel protein promoting the colonization and survival of Finegoldia magna, a bacterial commensal and opportunistic pathogen. Mol. Microbiol. 70, 695–708 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karlsson, C. et al. SufA — a novel subtilisin-like serine proteinase of Finegoldia magna. Microbiology 153, 4208–4218 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Karlsson, C. et al. SufA — a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation. Microbiology 155, 238–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karlsson, C. et al. SufA of the opportunistic pathogen Finegoldia magna modulates actions of the antibacterial chemokine MIG/CXCL9, promoting bacterial survival during epithelial inflammation. J. Biol. Chem. 284, 29499–29508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Murphy, E. C. & Frick, I. M. Gram-positive anaerobic cocci — commensals and opportunistic pathogens. FEMS Microbiol. Rev. 37, 520–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Neumann, A., Bjorck, L. & Frick, I. M. Finegoldia magna, an anaerobic Gram-positive bacterium of the normal human microbiota, induces inflammation by activating neutrophils. Front. Microbiol. 11, 65 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bjorck, L. Protein L. A novel bacterial cell wall protein with affinity for Ig L chains. J. Immunol. 140, 1194–1197 (1988).

    Article  CAS  PubMed  Google Scholar 

  96. Akerstrom, B. & Bjorck, L. Bacterial surface protein L binds and inactivates neutrophil proteins S100A8/A9. J. Immunol. 183, 4583–4592 (2009).

    Article  PubMed  Google Scholar 

  97. de Chateau, M., Holst, E. & Bjorck, L. Protein PAB, an albumin-binding bacterial surface protein promoting growth and virulence. J. Biol. Chem. 271, 26609–26615 (1996).

    Article  PubMed  Google Scholar 

  98. Nagy, E., Urbán, E. & Nord, C. E. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe. Clin. Microbiol. Infect. 9, 475–488 (2003).

    Article  Google Scholar 

  99. Yekani, M. et al. Carbapenem resistance in Bacteroides fragilis: a review of molecular mechanisms. Anaerobe 76, 102606 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Oyston, P. C. & Handley, P. S. Surface components of Bacteroides fragilis involved in adhesion and haemagglutination. J. Med. Microbiol. 34, 51–55 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, S., Lim, K. C., Huang, J., Saidi, R. F. & Sears, C. L. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl Acad. Sci. USA 95, 14979–14984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kaya, D., Aldirmaz Agartan, C. & Yucel, M. Fungal agents as a cause of surgical wound infections: an overview of host factors. Wounds 19, 218–222 (2007).

    PubMed  Google Scholar 

  103. Struck, M. F. & Gille, J. Fungal infections in burns: a comprehensive review. Ann. Burns Fire Disasters 26, 147–153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gil, J., Solis, M., Higa, A. & Davis, S. C. Candida albicans infections: a novel porcine wound model to evaluate treatment efficacy. BMC Microbiol. 22, 45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. von Muller, C. et al. Active neutrophil responses counteract Candida albicans burn wound infection of ex vivo human skin explants. Sci. Rep. 10, 21818 (2020).

    Article  Google Scholar 

  106. Mayer, F. L., Wilson, D. & Hube, B. Candida albicans pathogenicity mechanisms. Virulence 4, 119–128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Phan, Q. T. et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5, e64 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Naglik, J. R., Moyes, D. L., Wachtler, B. & Hube, B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 13, 963–976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alby, K. & Bennett, R. J. Stress-induced phenotypic switching in Candida albicans. Mol. Biol. Cell 20, 3178–3191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schonherr, F. A. et al. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal. Immunol. 10, 1335–1350 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Pinto, A. M., Cerqueira, M. A., Banobre-Lopes, M., Pastrana, L. M. & Sillankorva, S. Bacteriophages for chronic wound treatment: from traditional to novel delivery systems. Viruses 12, 235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Secor, P. R. et al. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe 18, 549–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rice, S. A. et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J. 3, 271–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019). Identification of phage-related mechanism that suppresses host immunity to P. aeruginosa infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chong, K. K. L. et al. Enterococcus faecalis modulates immune activation and slows healing during wound infection. J. Infect. Dis. 216, 1644–1654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Zhao, G. et al. Biofilms and inflammation in chronic wounds. Adv. Wound Care 2, 389–399 (2013).

    Article  Google Scholar 

  118. Orazi, G. & O’Toole, G. A. ‘It takes a village’: mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms. J. Bacteriol. 202, e00530-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shumba, P., Mairpady Shambat, S. & Siemens, N. The role of streptococcal and staphylococcal exotoxins and proteases in human necrotizing soft tissue infections. Toxins 11, 332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ovington, L. Bacterial toxins and wound healing. Ostomy Wound Manag. 49, 8–12 (2003).

    Google Scholar 

  121. Caley, M. P., Martins, V. L. & O’Toole, E. A. Metalloproteinases and wound healing. Adv. Wound Care 4, 225–234 (2015).

    Article  Google Scholar 

  122. Rippon, M. G., Westgate, S. & Rogers, A. A. Implications of endotoxins in wound healing: a narrative review. J. Wound Care 31, 380–392 (2022).

    Article  PubMed  Google Scholar 

  123. Alhede, M. et al. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155, 3500–3508 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Rooijakkers, S. H. M. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. de Haas, C. J. C. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202, 209–215 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Campbell, A. E. et al. Variable staphyloxanthin production by Staphylococcus aureus drives strain-dependent effects on diabetic wound-healing outcomes. Cell Rep. 42, 113281 (2023). This study links S. aureus strain-level variation in the diabetic foot ulcer microbiome to a specific mechanism that impairs wound healing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. von Eiff, C. et al. Intracellular persistence of Staphylococcus aureus small-colony variants within keratinocytes: a cause for antibiotic treatment failure in a patient with Darier’s disease. Clin. Infect. Dis. 32, 1643–1647 (2001).

    Article  Google Scholar 

  129. Read, T. D. & Massey, R. C. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med. 6, 109 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sela, U., Euler, C. W., Correa da Rosa, J. & Fischetti, V. A. Strains of bacterial species induce a greatly varied acute adaptive immune response: the contribution of the accessory genome. PLoS Pathog. 14, e1006726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Deitsch, K. W., Lukehart, S. A. & Stringer, J. R. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat. Rev. Microbiol. 7, 493–503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burke, F. M., McCormack, N., Rindi, S., Speziale, P. & Foster, T. J. Fibronectin-binding protein B variation in Staphylococcus aureus. BMC Microbiol. 10, 160 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. McCarthy, A. J. & Lindsay, J. A. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol. 10, 173 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Beyene, R. T., Derryberry, S. L. Jr & Barbul, A. The effect of comorbidities on wound healing. Surg. Clin. North Am. 100, 695–705 (2020).

    Article  PubMed  Google Scholar 

  135. Sirobhushanam, S. et al. Staphylococcus aureus colonization is increased on lupus skin lesions and is promoted by IFN-mediated barrier disruption. J. Invest. Dermatol. 140, 1066–1074.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Gould, L. et al. Chronic wound repair and healing in older adults: current status and future research. J. Am. Geriatr. Soc. 63, 427–438 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tipton, C. D. et al. Patient genetics is linked to chronic wound microbiome composition and healing. PLoS Pathog. 16, e1008511 (2020). A microbiome genome-wide association study identifies patient genetic determinants of the wound microbiome and healing responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Margolis, D. J. et al. NOS1AP genetic variation is associated with impaired healing of diabetic foot ulcers and diminished response to healing of circulating stem/progenitor cells. Wound Repair Regen. 25, 733–736 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chaney, S. B. et al. Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Wound Repair Regen. 25, 541–549 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lasa, I. & Solano, C. Polymicrobial infections: do bacteria behave differently depending on their neighbours? Virulence 9, 895–897 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mashburn, L. M., Jett, A. M., Akins, D. R. & Whiteley, M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187, 554–566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tan, C. A. Z. et al. Enterococcus faecalis antagonizes Pseudomonas aeruginosa growth in mixed-species interactions. J. Bacteriol. 204, e0061521 (2022).

    Article  PubMed  Google Scholar 

  145. Radlinski, L. et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 15, e2003981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wong, J. J. et al. Escherichia coli BarA-UvrY regulates the pks island and kills staphylococci via the genotoxin colibactin during interspecies competition. PLoS Pathog. 18, e1010766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Antonic, V., Stojadinovic, A., Zhang, B., Izadjoo, M. J. & Alavi, M. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus. Infect. Drug Resist. 6, 175–186 (2013).

    PubMed  PubMed Central  Google Scholar 

  148. Alves, P. M. et al. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog. Dis. 76, 10 (2018).

    Article  Google Scholar 

  149. DeLeon, S. et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. 82, 4718–4728 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Phalak, P. & Henson, M. A. Metabolic modelling of chronic wound microbiota predicts mutualistic interactions that drive community composition. J. Appl. Microbiol. 127, 1576–1593 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Garcia-Perez, A. N. et al. From the wound to the bench: exoproteome interplay between wound-colonizing Staphylococcus aureus strains and co-existing bacteria. Virulence 9, 363–378 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ch’ng, J. H. et al. Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. ISME J. 16, 2015–2026 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Allison, D. L. et al. Candida-bacteria interactions: their impact on human disease. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0030-2016 (2016).

  154. Kong, E. F. et al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. mBio https://doi.org/10.1128/mbio.01365-16 (2016).

  155. Townsend, E. M. et al. Development and characterisation of a novel three-dimensional inter-kingdom wound biofilm model. Biofouling 32, 1259–1270 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Abt, M. C., McKenney, P. T. & Pamer, E. G. Clostridium difficile colitis: pathogenesis and host defence. Nat. Rev. Microbiol. 14, 609–620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. World Health Organization. The Evolving Threat of Antimicrobial Resistance: Options for Action (WHO, 2012).

  158. Lipsky, B. A. et al. Antimicrobial stewardship in wound care: a position paper from the British Society for Antimicrobial Chemotherapy and European Wound Management Association. J. Antimicrob. Chemother. 71, 3026–3035 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Limbago, B. M. et al. Report of the 13th vancomycin-resistant Staphylococcus aureus isolate from the United States. J. Clin. Microbiol. 52, 998–1002 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Pallavali, R. R., Degati, V. L., Lomada, D., Reddy, M. C. & Durbaka, V. R. P. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS ONE 12, e0179245 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Seppala, H., Klaukka, T., Lehtonen, R., Nenonen, E. & Huovinen, P. Outpatient use of erythromycin: link to increased erythromycin resistance in group A streptococci. Clin. Infect. Dis. 21, 1378–1385 (1995).

    Article  CAS  PubMed  Google Scholar 

  162. Hahn, W. O., Werth, B. J., Butler-Wu, S. M. & Rakita, R. M. Multidrug-resistant Corynebacterium striatum associated with increased use of parenteral antimicrobial drugs. Emerg. Infect. Dis. 22, 1908–1914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rudresh, S. M. et al. Non diphtheritic Corynebacteria: an emerging nosocomial pathogen in skin and soft tissue infection. J. Clin. Diagn. Res. 9, DC19–DC21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Rashid, R. et al. Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis. PLoS ONE 12, e0175886 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Mekkawy, A. I. et al. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int. J. Nanomed. 12, 759–777 (2017).

    Article  CAS  Google Scholar 

  167. Frydman, G. H. et al. Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection. Sci. Rep. 10, 13229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kot, B., Sytykiewicz, H., Sprawka, I. & Witeska, M. Effect of manuka honey on biofilm-associated genes expression during methicillin-resistant Staphylococcus aureus biofilm formation. Sci. Rep. 10, 13552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Barros Almeida, I. et al. Smart dressings for wound healing: a review. Adv. Skin Wound Care 34, 1–8 (2021).

    Article  PubMed  Google Scholar 

  170. White, E. K. et al. Wound microbiota-mediated correction of matrix metalloproteinase expression promotes re-epithelialization of diabetic wounds. Preprint at bioRxiv https://doi.org/10.1101/2023.06.30.547263 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172, 784–796.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Monaco, J. L. & Lawrence, W. T. Acute wound healing. An overview. Clin. Plast. Surg. 30, 1–12 (2003).

    Article  PubMed  Google Scholar 

  173. Korting, H. C., Schollmann, C. & White, R. J. Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J. Eur. Acad. Dermatol. Venereol. 25, 130–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Li, J., Chen, J. & Kirsner, R. Pathophysiology of acute wound healing. Clin. Dermatol. 25, 9–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Clark, R. A. F. in Principles of Tissue Engineering 4th Edn (eds Lanza, R., Langer, R. & Vacanti, J.) 1595–1617 (Academic Press, 2014).

  176. Cross, W. W. III & Swiontkowski, M. F. Treatment principles in the management of open fractures. Indian J. Orthop. 42, 377–386 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Frykberg, R. G. & Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care 4, 560–582 (2015).

    Article  Google Scholar 

  178. Rowan, M. P. et al. Burn wound healing and treatment: review and advancements. Crit. Care 19, 243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Grey, J. E., Harding, K. G. & Enoch, S. Venous and arterial leg ulcers. BMJ 332, 347–350 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Mervis, J. S. & Phillips, T. J. Pressure ulcers: pathophysiology, epidemiology, risk factors, and presentation. J. Am. Acad. Dermatol. 81, 881–890 (2019).

    Article  PubMed  Google Scholar 

  181. Gardner, S. E. et al. Diagnostic validity of three swab techniques for identifying chronic wound infection. Wound Repair Regen. 14, 548–557 (2006).

    Article  PubMed  Google Scholar 

  182. Franklin, M. J., Chang, C., Akiyama, T. & Bothner, B. New technologies for studying biofilms. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0016-2014 (2015).

  183. Valm, A. M., Mark Welch, J. L. & Borisy, G. G. CLASI-FISH: principles of combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 35, 496–502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021). A high-resolution transcriptome-imaging approach reveals dynamic and spatial metabolic heterogeneity of P. aeruginosa in planktonic and biofilm cultures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Eriksson, E. et al. Chronic wounds: treatment consensus. Wound Repair Regen. 30, 156–171 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Schultz, G. et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 25, 744–757 (2017).

    Article  PubMed  Google Scholar 

  187. Moya-Lopez, J., Costela-Ruiz, V., Garcia-Recio, E., Sherman, R. A. & De Luna-Bertos, E. Advantages of maggot debridement therapy for chronic wounds: a bibliographic review. Adv. Skin Wound Care 33, 515–525 (2020).

    Article  PubMed  Google Scholar 

  188. Sibbald, R. G. et al. Wound bed preparation 2021. Adv. Skin Wound Care 34, 183–195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Gomez-Ochoa, S. A. et al. Efficacy of phage therapy in preclinical models of bacterial infection: a systematic review and meta-analysis. Lancet Microbe 3, e956–e968 (2022).

    Article  PubMed  Google Scholar 

  190. Valente, L., Prazak, J., Que, Y. A. & Cameron, D. R. Progress and pitfalls of bacteriophage therapy in critical care: a concise definitive review. Crit. Care Explor. 3, e0351 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lenzmeier, T. D. et al. Application of Lactobacillus gasseri 63 AM supernatant to Pseudomonas aeruginosa-infected wounds prevents sepsis in murine models of thermal injury and dorsal excision. J. Med. Microbiol. 68, 1560–1572 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Surmeli, M., Macin, S., Akyon, Y. & Kayikcioglu, A. U. The protective effect of Lactobacillus plantarum against meticillin-resistant Staphylococcus aureus infections: an experimental animal model. J. Wound Care 28, S29–S34 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank current and former members of the Grice lab for critical discussion. E.A.G. was supported by the following grants from the National Institutes of Health: R01NR015639, R01AR079856, R01AI143790. A.M.-V. was supported by the Penn Dermatology Research T32 Training Grant (NIH/NIAMS T32AR007465). A.U. was supported by the Prevent Cancer Foundation Awesome Games Done Quick fellowship and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (1K99AR081404). This work is dedicated to the aunts of the authors, especially Punita Jolly (A.U.) and Ethel Doehrmann (E.A.G.), for their unconditional love, support, and kindness and their inspiring examples to be our best selves even in the worst of times.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elizabeth A. Grice.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Holger Brüggemann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uberoi, A., McCready-Vangi, A. & Grice, E.A. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01035-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01035-z

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology