Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure

Abstract

Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multidimensional analysis of HIV-1 reservoir cells.
Fig. 2: Selection and evolution of the HIV-1 reservoir cell pool.
Fig. 3: Immune strategies for targeting HIV-1 reservoir cells.

Similar content being viewed by others

References

  1. UNAIDS. World AIDS Day 2023. UNAIDS https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (2023).

  2. Peluso, M. J. et al. Differential decay of intact and defective proviral DNA in HIV-1-infected individuals on suppressive antiretroviral therapy. JCI Insight 5, https://doi.org/10.1172/jci.insight.132997 (2020).

  3. Gandhi, R. T. et al. Selective decay of intact HIV-1 proviral DNA on antiretroviral therapy. J. Infect. Dis. 223, 225–233 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, G. Q. et al. Clonal expansion of genome-intact HIV-1 in functionally polarized TH1 CD4+ T cells. J. Clin. Invest. 127, 2689–2696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gantner, P. et al. HIV rapidly targets a diverse pool of CD4+ T cells to establish productive and latent infections. Immunity 56, 653–668.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Buzon, M. J. et al. Long-term antiretroviral treatment initiated in primary HIV-1 infection affects the size, composition and decay kinetics of the reservoir of HIV-1 infected CD4 T cells. J. Virol. 88, 10056–10065 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chun, T. W. et al. Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl Acad. Sci. USA 95, 8869–8873 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Estes, J. D. et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med. 23, 1271–1276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ho, Y. C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hiener, B. et al. Identification of genetically intact HIV-1 proviruses in specific CD4+ T cells from effectively treated participants. Cell Rep. 21, 813–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaebler, C. et al. Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir. J. Exp. Med. 216, 2253–2264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dai, J. et al. Human immunodeficiency virus integrates directly into naive resting CD4+ T cells but enters naive cells less efficiently than memory cells. J. Virol. 83, 4528–4537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chavez, L., Calvanese, V. & Verdin, E. HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog. 11, e1004955 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Einkauf, K. B. et al. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell 83, 266–282.e15 (2022). This study provides a global map of transcriptionally active proviruses and demonstrates that these proviruses are selected against during antiretroviral therapy.

    Article  Google Scholar 

  15. Yukl, S. A. et al. HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci. Transl. Med. 10, eaap9927 (2018). This manuscript describes a series of assays to characterize HIV-1 RNA transcripts produced during treatment with antiviral therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pollack, R. A. et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21, 494–506.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lewin, S. R. et al. Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J. Virol. 73, 6099–6103 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pasternak, A. O. et al. Cell-associated HIV-1 RNA predicts viral rebound and disease progression after discontinuation of temporary early ART. JCI Insight 5, e134196 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Veenhuis, R. T. et al. Monocyte-derived macrophages contain persistent latent HIV reservoirs. Nat. Microbiol. 8, 833–844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ganor, Y. et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat. Microbiol. 4, 633–644 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, Y. et al. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy. J. Clin. Invest. 133, e167417 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jiang, C. et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature 585, 261–267 (2020). This work demonstrates persistence of intact HIV-1 in heterochromatin locations in persons with natural, drug-free control of HIV-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turk, G. et al. A possible sterilizing cure of HIV-1 infection without stem cell transplantation. Ann. Intern. Med. 175, 95–100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kwaa, A. K., Garliss, C. C., Ritter, K. D., Laird, G. M. & Blankson, J. N. Elite suppressors have low frequencies of intact HIV-1 proviral DNA. AIDS 34, 641–643 (2020).

    Article  PubMed  Google Scholar 

  25. Saez-Cirion, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211 (2013).

  26. Gay, C. L. et al. Assessing the impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent HIV-1 infection. Sci. Rep. 10, 5134 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vibholm, L. et al. Short-course Toll-like receptor 9 agonist treatment impacts innate immunity and plasma viremia in individuals with human immunodeficiency virus infection. Clin. Infect. Dis. 64, 1686–1695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fidler, S. et al. Antiretroviral therapy alone versus antiretroviral therapy with a kick and kill approach, on measures of the HIV reservoir in participants with recent HIV infection (the RIVER trial): a phase 2, randomised trial. Lancet 395, 888–898 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Gruell, H. et al. Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial. Lancet Microbe 3, e203–e214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pinzone, M. R. et al. Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat. Commun. 10, 728 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruner, K. M. et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature 566, 120–125 (2019). The authors develop a novel droplet digital PCR-based technology for analysing intact HIV-1 proviruses.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gandhi, R. T. et al. Selective decay of intact HIV-1 proviral DNA on antiretroviral therapy. J. Infect. Dis. 223, 225–233 (2020).

    Article  PubMed Central  Google Scholar 

  33. Falcinelli, S. D. et al. Longitudinal dynamics of intact HIV proviral DNA and outgrowth virus frequencies in a cohort of ART-treated individuals. J. Infect. Dis. 224, 92–100 (2020).

    Article  PubMed Central  Google Scholar 

  34. Cho, A. et al. Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing. Proc. Natl Acad. Sci. USA 119, e2117630119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. White, J. A. et al. Complex decay dynamics of HIV virions, intact and defective proviruses, and 2LTR circles following initiation of antiretroviral therapy. Proc. Natl Acad. Sci. USA 119, e2120326119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gandhi, R. T. et al. Varied patterns of decay of intact human immunodeficiency virus type 1 proviruses over 2 decades of antiretroviral therapy. J. Infect. Dis. 227, 1376–1380 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Reeves, D. B. et al. Impact of misclassified defective proviruses on HIV reservoir measurements. Nat. Commun. 14, 4186 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lian, X. et al. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe 31, 83–96.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McMyn, N. F. et al. The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J. Clin. Invest. 133, e171554 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Simonetti, F. R. et al. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J. Clin. Invest. 131, e145254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mendoza, P. et al. Antigen-responsive CD4+ T cell clones contribute to the HIV-1 latent reservoir. J. Exp. Med. 217, https://doi.org/10.1084/jem.20200051 (2020).

  42. Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bui, J. K. et al. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog. 13, e1006283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cohn, L. B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hosmane, N. N. et al. Proliferation of latently infected CD4+ T cells carrying replication-competent HIV-1: potential role in latent reservoir dynamics. J. Exp. Med. 214, 959–972 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galvez, C. et al. Extremely low viral reservoir in treated chronically HIV-1-infected individuals. EBioMedicine 57, 102830 (2020). This manuscript describes a unique cohort of persons with extremely low levels of HIV-1 reservoir cells.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Galvez, C. et al. Altered T-cell subset distribution in the viral reservoir in HIV-1-infected individuals with extremely low proviral DNA (LoViReTs). J. Intern. Med. 292, 308–320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Einkauf, K. B. et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J. Clin. Invest. 129, 988–998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Patro, S. C. et al. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proc. Natl Acad. Sci. USA 116, 25891–25899 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schroder, A. R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Janssens, J., De Wit, F., Parveen, N. & Debyser, Z. Single-cell imaging shows that the transcriptional state of the HIV-1 provirus and its reactivation potential depend on the integration site. mBio 13, e0000722 (2022).

    Article  PubMed  Google Scholar 

  53. Vansant, G. et al. The chromatin landscape at the HIV-1 provirus integration site determines viral expression. Nucleic Acids Res. 48, 7801–7817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lewinski, M. K. et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79, 6610–6619 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, H. C., Martinez, J. P., Zorita, E., Meyerhans, A. & Filion, G. J. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 24, 47–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Fioriniello, S., Marano, D., Fiorillo, F., D’Esposito, M. & Della Ragione, F. Epigenetic factors that control pericentric heterochromatin organization in mammals. Genes 11, 595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, A. S. et al. Integration features of intact latent HIV-1 in CD4+ T cell clones contribute to viral persistence. J. Exp. Med. 218, e20211427 (2021). This work demonstrates preferential persistence of intact HIV-1 proviruses in ZNF genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vogel, M. J. et al. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16, 1493–1504 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. O’Geen, H. et al. Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet. 3, e89 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tchasovnikarova, I. A. et al. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348, 1481–1485 (2015). This study describes the identification of the HUSH complex, which can contribute to silencing of endogenous and exogenous retroviruses.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seczynska, M. & Lehner, P. J. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet. 39, 251–267 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Robbez-Masson, L. et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res. 28, 836–845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Douse, C. H. et al. TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Nat. Commun. 11, 4940 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marini, B. et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 521, 227–231 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Lian, X. et al. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers. Sci. Transl. Med. 13, eabl4097 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Simonetti, F. R. et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc. Natl Acad. Sci. USA 113, 1883–1888 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. White, J. A. et al. Clonally expanded HIV-1 proviruses with 5′-leader defects can give rise to nonsuppressible residual viremia. J. Clin. Invest. 133, e165245 (2023). The authors show that clonally expanded proviruses with deletions in the 5′ long terminal repeat region (5′LTR) can persist long term and produce HIV-1 transcripts during treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Halvas, E. K. et al. HIV-1 viremia not suppressible by antiretroviral therapy can originate from large T cell clones producing infectious virus. J. Clin. Invest. 130, 5847–5857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mohammadi, A. et al. Viral and host mediators of non-suppressible HIV-1 viremia. Nat. Med. 29, 3212–3223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hansen, M. M. K., Martin, B. & Weinberger, L. S. HIV latency: stochastic across multiple scales. Cell Host Microbe 26, 703–705 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Razooky, B. S., Pai, A., Aull, K., Rouzine, I. M. & Weinberger, L. S. A hardwired HIV latency program. Cell 160, 990–1001 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hataye, J. M. et al. Principles governing establishment versus collapse of HIV-1 cellular spread. Cell Host Microbe 26, 748–763.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abdel-Mohsen, M. et al. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat. Med. 26, 1339–1350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Buggert, M. et al. The identity of human tissue-emigrant CD8+ T cells. Cell 183, 1946–1961.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Buggert, M. et al. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. Sci. Immunol. 3, eaar4526 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Collins, D. R. et al. Cytolytic CD8+ T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Sci. Immunol. 8, eade5872 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marras, F. et al. Control of the HIV-1 DNA reservoir is associated in vivo and in vitro with NKp46/NKp30 (CD335 CD337) inducibility and interferon γ production by transcriptionally unique NK cells. J. Virol. 91, e00647–e00717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hartana, C. A. et al. Immune correlates of HIV-1 reservoir cell decline in early-treated infants. Cell Rep. 40, 111126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Garcia-Broncano, P. et al. Early antiretroviral therapy in neonates with HIV-1 infection restricts viral reservoir size and induces a distinct innate immune profile. Sci. Transl. Med. 11, eaax7350 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hua, S. et al. Pegylated interferon-α-induced natural killer cell activation is associated with human immunodeficiency virus-1 DNA decline in antiretroviral therapy-treated HIV-1/hepatitis C virus-coinfected patients. Clin. Infect. Dis. 66, 1910–1917 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Papasavvas, E. et al. NK response correlates with HIV decrease in pegylated IFN-α2a-treated antiretroviral therapy-suppressed subjects. J. Immunol. 203, 705–717 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Olesen, R. et al. Innate immune activity correlates with CD4 T cell-associated HIV-1 DNA decline during latency-reversing treatment with panobinostat. J. Virol. 89, 10176–10189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ivison, G. T. et al. Natural killer cell receptors and ligands are associated with markers of HIV-1 persistence in chronically infected ART suppressed patients. Front. Cell Infect. Microbiol. 12, 757846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, J. T. et al. Latency reversal plus natural killer cells diminish HIV reservoir in vivo. Nat. Commun. 13, 121 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  86. Harper, J. et al. IL-21 and IFNα therapy rescues terminally differentiated NK cells and limits SIV reservoir in ART-treated macaques. Nat. Commun. 12, 2866 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garrido, C. et al. Interleukin-15-stimulated natural killer cells clear HIV-1-infected cells following latency reversal ex vivo. J. Virol. 92, e00235–e00318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun, H. et al. Hepatitis C therapy with interferon-α and ribavirin reduces CD4 T-cell-associated HIV-1 DNA in HIV-1/hepatitis C virus-coinfected patients. J. Infect. Dis. 209, 1315–1420 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Papasavvas, E. et al. Safety, immune, and antiviral effects of pegylated interferon α2b administration in antiretroviral therapy-suppressed individuals: results of pilot clinical trial. AIDS Res. Hum. Retroviruses 37, 433–443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Van der Sluis, R. M. et al. Diverse effects of interferon α on the establishment and reversal of HIV latency. PLoS Pathog. 16, e1008151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gondim, M. V. P. et al. Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Sci. Transl. Med. 13, eabd8179 (2021).

  92. Li, P. et al. Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation. Nat. Med. 22, 807–811 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, Q. et al. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science 371, eabe1707 (2021). This work suggests that HIV-1 protease can induce cell death after CARD8-dependent inflammasome activation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Walker, B. D. & Yu, X. G. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 13, 487–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Takata, H. et al. Delayed differentiation of potent effector CD8+ T cells reducing viremia and reservoir seeding in acute HIV infection. Sci. Transl. Med. 9, eaag1809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Baiyegunhi, O. O. et al. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Nat. Commun. 13, 4041 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stevenson, E. M. et al. HIV-specific T cell responses reflect substantive in vivo interactions with antigen despite long-term therapy. JCI Insight 6, e142640 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Thomas, A. S. et al. T-cell responses targeting HIV Nef uniquely correlate with infected cell frequencies after long-term antiretroviral therapy. PLoS Pathog. 13, e1006629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Statzu, M. et al. CD8+ lymphocytes do not impact SIV reservoir establishment under ART. Nat. Microbiol. 8, 299–308 (2023). In this study, depletion of CD8 T cells does not influence SIV reservoir cell evolution, suggesting that they are unable to effectively target these cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shan, L. et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chun, T. W. et al. Suppression of HIV replication in the resting CD4+ T cell reservoir by autologous CD8+ T cells: implications for the development of therapeutic strategies. Proc. Natl Acad. Sci. USA 98, 253–258 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, S. H. et al. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J. Clin. Invest. 128, 876–889 (2018). This provocative study suggests that HIV-1 reservoir cells may be resistant to CD8 T cell-mediated killing.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ren, Y. et al. BCL-2 antagonism sensitizes cytotoxic T cell-resistant HIV reservoirs to elimination ex vivo. J. Clin. Invest. 130, 2542–2559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hsueh, F. W., Walker, C. M., Blackbourn, D. J. & Levy, J. A. Suppression of HIV replication by CD8+ cell clones derived from HIV-infected and uninfected individuals. Cell Immunol. 159, 271–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Mutascio, S. et al. CD8+ T cells promote HIV latency by remodeling CD4+ T cell metabolism to enhance their survival, quiescence, and stemness. Immunity 56, 1132–1147.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Zanoni, M. et al. Innate, non-cytolytic CD8+ T cell-mediated suppression of HIV replication by MHC-independent inhibition of virus transcription. PLoS Pathog. 16, e1008821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rocca, S. et al. Human immunodeficiency virus (HIV)-antibody repertoire estimates reservoir size and time of antiretroviral therapy initiation in virally suppressed perinatally HIV-infected children. J. Pediatr. Infect. Dis. Soc. 8, 433–438 (2019).

    Article  CAS  Google Scholar 

  109. Keating, S. M. et al. HIV antibody level as a marker of HIV persistence and low-level viral replication. J. Infect. Dis. 216, 72–81 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, S. A. et al. Anti-HIV antibody responses and the HIV reservoir size during antiretroviral therapy. PLoS ONE 11, e0160192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bertagnolli, L. N. et al. Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. Proc. Natl Acad. Sci. USA 117, 32066–32077 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Molinos-Albert, L. M. et al. Anti-V1/V3-glycan broadly HIV-1 neutralizing antibodies in a post-treatment controller. Cell Host Microbe 31, 1275–1287.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Freund, N. T. et al. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci. Transl. Med. 9, eaal2144 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Collora, J. A. et al. Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones. Immunity 55, 1013–1031.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wei, Y. et al. Single-cell epigenetic, transcriptional, and protein profiling of latent and active HIV-1 reservoir revealed that IKZF3 promotes HIV-1 persistence. Immunity 56, 2584–2601.e7 (2023). This study is the first using DOGMA-seq for analysis of HIV-1 reservoir cells.

    Article  CAS  PubMed  Google Scholar 

  116. Weymar, G. H. J. et al. Distinct gene expression by expanded clones of quiescent memory CD4+ T cells harboring intact latent HIV-1 proviruses. Cell Rep. 40, 111311 (2022). In this study, unperturbed single-cell analysis of cells harbouring intact HIV-1 indicates that these cells typically display an effector memory profile.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Clark, I. C. et al. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature 614, 318–325 (2023). This study describes the use of FIND-seq for the analysis of the transcriptional analysis of bulk HIV-infected cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, V. H. et al. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4+ T cell reservoir. Nat. Immunol. 24, 359–370 (2023). This work pioneers single-cell analysis with ASAP-seq to characterize the phenotype and epigenetic profile of HIV-1-infected cells.

    Article  CAS  PubMed  Google Scholar 

  119. Sun, W. et al. Phenotypic signatures of immune selection in HIV-1 reservoir cells. Nature 614, 309–317 (2023). This study describes a novel proteogenomic profiling approach for analysing the surface phenotype of cells harbouring intact HIV-1 DNA.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Banga, R. et al. PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat. Med. 22, 754–761 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Hsiao, F. et al. Tissue memory CD4+ T cells expressing IL-7 receptor-α (CD127) preferentially support latent HIV-1 infection. PLoS Pathog. 16, e1008450 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dufour, C. et al. Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes. Nat. Commun. 14, 1115 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pardons, M. et al. Potent latency reversal by Tat RNA-containing nanoparticle enables multi-omic analysis of the HIV-1 reservoir. Nat. Commun. 14, 8397 (2023). This study reveals phenotypic and transcriptional signatures of HIV-1 reservoir cells after latency reversal.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gaebler, C. et al. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 606, 368–374 (2022). This study demonstrates a reduction of intact HIV-1 DNA after treatment with bNAbs.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miller, J. S. et al. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat. Med. 28, 392–400 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Rodari, A., Darcis, G. & Van Lint, C. M. The current status of latency reversing agents for HIV-1 remission. Annu. Rev. Virol. 8, 491–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Rasmussen, T. A. et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1, e13–e21 (2014).

    Article  PubMed  Google Scholar 

  128. Gunst, J. D. et al. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nat. Med. 28, 2424–2435 (2022). This clinical trial demonstrates accelerated clearance of HIV-1-infected cells during treatment with the bNAb 3BNC117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sogaard, O. S. et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 11, e1005142 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kroon, E. et al. A randomized trial of vorinostat with treatment interruption after initiating antiretroviral therapy during acute HIV-1 infection. J Virus Erad 6, 100004 (2020).

  132. Gay, C. L. et al. Stable latent HIV infection and low-level viremia despite treatment with the broadly neutralizing antibody VRC07-523LS and the latency reversal agent vorinostat. J. Infect. Dis. 225, 856–861 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Dashti, A. et al. AZD5582 plus SIV-specific antibodies reduce lymph node viral reservoirs in antiretroviral therapy-suppressed macaques. Nat. Med. 29, 2535–2546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Macedo, A. B. et al. The HIV latency reversal agent HODHBt enhances NK cell effector and memory-like functions by increasing interleukin-15-mediated STAT activation. J. Virol. 96, e0037222 (2022).

    Article  PubMed  Google Scholar 

  135. Uldrick, T. S. et al. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci. Transl. Med. 14, eabl3836 (2022). In this non-controlled observation study, administration of PD1-blocking antibodies for oncologic indications results in a moderate increase of cell-associated HIV-1 RNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rasmussen, T. A. et al. Impact of anti-PD-1 and anti-CTLA-4 on the human immunodeficiency virus (HIV) reservoir in people living with HIV with cancer on antiretroviral therapy: the AIDS Malignancy Consortium 095 Study. Clin. Infect. Dis. 73, e1973–e1981 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Harper, J. et al. CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption. Nat. Med. 26, 519–528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Harper, J. et al. Interleukin-10 contributes to reservoir establishment and persistence in SIV-infected macaques treated with antiretroviral therapy. J. Clin. Invest. 132, e155251 (2022). This study suggests that immune inhibition via IL-10 can support SIV persistence in non-human primates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jiang, S. et al. Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity 55, 1118–1134.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gay, C. L. et al. Suspected immune-related adverse events with an anti-PD-1 inhibitor in otherwise healthy people with HIV. J. Acquir. Immune Defic. Syndr. 87, e234–e236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McCauley, S. M. et al. Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines. Nat. Commun. 9, 5305 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. SenGupta, D. et al. The TLR7 agonist vesatolimod induced a modest delay in viral rebound in HIV controllers after cessation of antiretroviral therapy. Sci. Transl. Med. 13, eabg3071 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Balibar, C. J. et al. Potent targeted activator of cell kill molecules eliminate cells expressing HIV-1. Sci. Transl. Med. 15, eabn2038 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Clark, K. M. et al. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nat. Chem. Biol. 19, 431–439 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Arandjelovic, P. et al. Venetoclax, alone and in combination with the BH3 mimetic S63845, depletes HIV-1 latently infected cells and delays rebound in humanized mice. Cell Rep. Med. 4, 101178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chandrasekar, A. P. et al. The BCL-2 inhibitor venetoclax augments immune effector function mediated by fas ligand, TRAIL, and Perforin/Granzyme B, resulting in reduced plasma viremia and decreased HIV reservoir size during acute HIV infection in a humanized mouse model. J. Virol. 96, e0173022 (2022).

    Article  PubMed  Google Scholar 

  147. Mancuso, P. et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 11, 6065 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bailon, L. et al. Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial. Nat. Med. 28, 2611–2621 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Colby, D. J. et al. Safety and immunogenicity of Ad26 and MVA vaccines in acutely treated HIV and effect on viral rebound after antiretroviral therapy interruption. Nat. Med. 26, 498–501 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Mothe, B. et al. Therapeutic vaccination refocuses T-cell responses towards conserved regions of HIV-1 in early treated individuals (BCN 01 study). EClinicalMedicine 11, 65–80 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mothe, B. et al. HIVconsv vaccines and romidepsin in early-treated HIV-1-infected individuals: safety, immunogenicity and effect on the viral reservoir (Study BCN02). Front. Immunol. 11, 823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rahman, S. A. et al. PD-1 blockade and vaccination provide therapeutic benefit against SIV by inducing broad and functional CD8+ T cells in lymphoid tissue. Sci. Immunol. 6, eabh3034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284–287 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gaiha, G. D. et al. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Science 364, 480–484 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, H. et al. HLA-E-restricted, Gag-specific CD8+ T cells can suppress HIV-1 infection, offering vaccine opportunities. Sci. Immunol. 6, eabg1703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sneller, M. C. et al. Combination anti-HIV antibodies provide sustained virological suppression. Nature 606, 375–381 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  157. Shapiro, R. L. et al. Broadly neutralizing antibody treatment maintained HIV suppression in children with favorable reservoir characteristics in Botswana. Sci. Transl. Med. 15, eadh0004 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nishimura, Y. et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature 543, 559–563 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rosas-Umbert, M. et al. Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8+ T cell immunity. Nat. Commun. 13, 6473 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Deeks, S. G. et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol. Ther. 5, 788–797 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04648046 (2023).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04357821 (2023).

  163. Sun, W. et al. Persistence of intact HIV-1 proviruses in the brain during antiretroviral therapy. eLife 12, e89837 (2023).

    Article  Google Scholar 

  164. Brown, T. R. I am the Berlin patient: a personal reflection. AIDS Res. Hum. Retroviruses 31, 2–3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hutter, G. et al. Long-term control of HIV by CCR5 Δ32/Δ32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Article  PubMed  Google Scholar 

  166. Gupta, R. K. et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568, 244–248 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jensen, B. O. et al. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat. Med. 29, 583–587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hsu, J. et al. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell 186, 1115–1126.e8 (2023). This study is the first to demonstrate a presumed cure of HIV-1 infection after haplo-cord transplantation of haematopoietic stem cells with the CCR5 Δ32 gene defect.

    Article  CAS  PubMed  Google Scholar 

  169. Lincoln, A. The Gettysburg Adress and Other Speeches (Penguin, 1995).

  170. UNAIDS. UNAIDS Data 2021. UNAIDS https://www.unaids.org/sites/default/files/media_asset/JC3032_AIDS_Data_book_2021_En.pdf (2021).

  171. Sherman, E. et al. INSPIIRED: a pipeline for quantitative analysis of sites of new DNA integration in cellular genomes. Mol. Ther. Methods Clin. Dev. 4, 39–49 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  172. Wagner, T. A. et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Artesi, M. et al. PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. Genome Biol. 22, 97 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sun, C. et al. Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy. Nat. Biomed. Eng. 6, 1004–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cole, B. et al. In-depth single-cell analysis of translation-competent HIV-1 reservoirs identifies cellular sources of plasma viremia. Nat. Commun. 12, 3727 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Scully, E. P. et al. Sex-based differences in human immunodeficiency virus type 1 reservoir activity and residual immune activation. J. Infect. Dis. 219, 1084–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Falcinelli, S. D. et al. Impact of biological sex on immune activation and frequency of the latent HIV reservoir during suppressive antiretroviral therapy. J. Infect. Dis. 222, 1843–1852 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gianella, S. et al. Sex differences in CMV replication and HIV persistence during suppressive ART. Open. Forum Infect. Dis. 7, ofaa289 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Prodger, J. L. et al. Reduced HIV-1 latent reservoir outgrowth and distinct immune correlates among women in Rakai, Uganda. JCI Insight 5, e139287 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cyktor, J. C. et al. Association of male sex and obesity with residual plasma human immunodeficiency virus 1 viremia in persons on long-term antiretroviral therapy. J. Infect. Dis. 223, 462–470 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Leth, S. et al. HIV-1 transcriptional activity during frequent longitudinal sampling in aviremic patients on antiretroviral therapy. Aids 30, 713–721 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Grant, O. A., Wang, Y., Kumari, M., Zabet, N. R. & Schalkwyk, L. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin. Epigenetics 14, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sugathan, A. & Waxman, D. J. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol. Cell Biol. 33, 3594–3610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ratnu, V. S., Emami, M. R. & Bredy, T. W. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J. Neurosci. Res. 95, 301–310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Rao, S. Sex differences in HIV-1 persistence and the implications for a cure. Front. Glob. Women’s Health 3, 942345 (2022).

    Article  Google Scholar 

  186. Asin, S. N., Heimberg, A. M., Eszterhas, S. K., Rollenhagen, C. & Howell, A. L. Estradiol and progesterone regulate HIV type 1 replication in peripheral blood cells. AIDS Res. Hum. Retroviruses 24, 701–716 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Szotek, E. L., Narasipura, S. D. & Al-Harthi, L. 17β-Estradiol inhibits HIV-1 by inducing a complex formation between β-catenin and estrogen receptor α on the HIV promoter to suppress HIV transcription. Virology 443, 375–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Article  PubMed  Google Scholar 

  189. Cheng, M. I. et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat. Immunol. 24, 780–791 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Le, C. N. et al. Time to viral rebound and safety after antiretroviral treatment interruption in postpartum women compared with men. Aids 33, 2149–2156 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Crowell, T. A. et al. Hospitalization rates and reasons among HIV elite controllers and persons with medically controlled HIV infection. J. Infect. Dis. 211, 1692–1702 (2015).

    Article  PubMed  Google Scholar 

  192. Dhummakupt, A. et al. Differences in inducibility of the latent HIV reservoir in perinatal and adult infection. JCI Insight 5, e134105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.L. is supported by the National Institutes of Health (NIH) (grants AI117841, AI130005, HD107670, DK120387, AI152979, AI155233, AI135940, AI169768, AI176579, DA047034), the American Foundation for AIDS Research (amfAR) (#110181-69-RGCV) and the Campbell Foundation. X.G.Y. is supported by the NIH (grants AI155171, AI116228, AI078799, HL134539, DA047034), amfAR ARCHE (grant # 110393-72-RPRL) and the Bill and Melinda Gates Foundation (INV-002703). M.L. and X.G.Y. are members of the DARE, ERASE, PAVE and BEAT-HIV Martin Delaney Collaboratories (UM1 AI164560, AI164562, AI164566, AI164570). T.S. is supported by Fonds voor Wetenschappelijk Onderzoek Vlaanderen (1SA7123N).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data collection and drafting the manuscript. M.L. supervised the project and provided the final text for the manuscript.

Corresponding author

Correspondence to Mathias Lichterfeld.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armani-Tourret, M., Bone, B., Tan, T.S. et al. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01010-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01010-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing