Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards glycan foldamers and programmable assemblies

Abstract

Natural biopolymers have inspired the development of synthetic analogues that can adopt defined conformations and assemble into 3D architectures. These compounds are mainly based on peptides and nucleic acids, which are well understood at the molecular level and can be rationally synthesized to obtain functional artificial systems. By contrast, synthetic glycans have remained relatively unexplored in materials science and supramolecular chemistry, a paradox considering that carbohydrates are the most abundant structural materials on Earth. Recent advances in automated synthesis and analytical techniques have improved our understanding of glycan structures, transforming our perception of glycans from shapeless molecules to polymers adopting several distinct conformations. This newly available knowledge suggests that glycans capable of folding and assembling into defined architectures can be created. In this Perspective, we explore the emerging field of programmable carbohydrate architectures, highlighting the breakthroughs in synthesis and analysis that have made the design of artificial glycan foldamers and assemblies possible. Finally, we discuss the future prospects of this field, analysing which challenges must be overcome to establish design rules for building carbohydrate materials on demand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Appealing features of glycans to build programmable architectures.
Fig. 2: Synthetic and analytical improvements in glycosciences.
Fig. 3: Designing principles to access artificial glycan foldamers and assemblies.
Fig. 4: Future perspectives of glycan foldamers and assemblies.

Similar content being viewed by others

Data availability

Glycan 3D features are either obtained from Polysac3-DB and BioOligo3-DB, both are sub-databases of Glyco3D (https://glyco3d.cermav.cnrs.fr), or directly from the cited publication. Peptide 3D features are obtained from the Protein Data Bank (https://www.rcsb.org). All 3D structures have been established experimentally from X-ray, neutron electron diffraction, high-resolution NMR and molecular modelling. All PDB files can also be downloaded from https://doi.org/10.17617/3.79M9Z6.

References

  1. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320 (2016).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Gellman, S. H. Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180 (1998).

    Article  CAS  Google Scholar 

  4. Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A field guide to foldamers. Chem. Rev. 101, 3893–4012 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Martinek, T. A. & Fülöp, F. Peptidic foldamers: ramping up diversity. Chem. Soc. Rev. 41, 687–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Goodman, C. M., Choi, S., Shandler, S. & DeGrado, W. F. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol. 3, 252–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Girvin, Z. C., Andrews, M. K., Liu, X. & Gellman, S. H. Foldamer-templated catalysis of macrocycle formation. Science 366, 1528–1531 (2019).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  8. Schneider, J. P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Yoo, S. H. & Lee, H.-S. Foldectures: 3D molecular architectures from self-assembly of peptide foldamers. Acc. Chem. Res. 50, 832–841 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Tyrikos-Ergas, T., Fittolani, G., Seeberger, P. H. & Delbianco, M. Structural studies using unnatural oligosaccharides: toward sugar foldamers. Biomacromolecules 21, 18–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Diener, M. et al. Primary, secondary, tertiary and quaternary structure levels in linear polysaccharides: from random coil, to single helix to supramolecular assembly. Biomacromolecules 20, 1731–1739 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Fittolani, G., Seeberger, P. H. & Delbianco, M. Helical polysaccharides. Pept. Sci. 112, e24124 (2020).

    Article  CAS  Google Scholar 

  13. Delbianco, M., Bharate, P., Varela-Aramburu, S. & Seeberger, P. H. Carbohydrates in supramolecular chemistry. Chem. Rev. 116, 1693–1752 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Brito, A. et al. Carbohydrate amphiphiles for supramolecular biomaterials: design, self-assembly, and applications. Chem 7, 2943–2964 (2021).

    Article  CAS  Google Scholar 

  15. Balijepalli, A. S. & Grinstaff, M. W. Poly-amido-saccharides (PASs): functional synthetic carbohydrate polymers inspired by nature. Acc. Chem. Res. 53, 2167–2179 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Gim, S. et al. Supramolecular assembly and chirality of synthetic carbohydrate materials. Angew. Chem. Int. Ed. 59, 22577–22583 (2020).

    Article  CAS  Google Scholar 

  17. He, C. et al. Glycopeptide self-assembly modulated by glycan stereochemistry through glycan–aromatic interactions. J. Am. Chem. Soc. 142, 17015–17023 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Pires, R. A. et al. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc. 137, 576–579 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, R. et al. A comprehensive landscape for fibril association behaviors encoded synergistically by saccharides and peptides. J. Am. Chem. Soc. 143, 6622–6633 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Guberman, M. & Seeberger, P. H. Automated glycan assembly: a perspective. J. Am. Chem. Soc. 141, 5581–5592 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varki, A. et al. (eds) Essentials of Glycobiology 3rd edn (Cold Spring Harbor Laboratory, 2017).

  22. Bertozzi, C. R. & Kiessling, L. L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Smith, B. A. H. & Bertozzi, C. R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 20, 217–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, X. et al. Imaging single glycans. Nature 582, 375–378 (2020).

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Gray, C. J. et al. Advancing solutions to the carbohydrate sequencing challenge. J. Am. Chem. Soc. 141, 14463–14479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woods, R. J. Predicting the structures of glycans, glycoproteins, and their complexes. Chem. Rev. 118, 8005–8024 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirschner, K. N. et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 29, 622–655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Casalino, L. et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci. 6, 1722–1734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Q. et al. Synthetic, zwitterionic sp1 oligosaccharides adopt a helical structure crucial for antibody interaction. ACS Cent. Sci. 5, 1407–1416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alabugin, I. V., Kuhn, L., Krivoshchapov, N. V., Mehaffy, P. & Medvedev, M. G. Anomeric effect, hyperconjugation and electrostatics: lessons from complexity in a classic stereoelectronic phenomenon. Chem. Soc. Rev. 50, 10212–10252 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Yu, Y. & Delbianco, M. Conformational studies of oligosaccharides. Chem. Eur. J. 26, 9814–9825 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Almond, A. & Sheehan, J. K. Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology 13, 255–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Almond, A. Towards understanding the interaction between oligosaccharides and water molecules. Carbohydr. Res. 340, 907–920 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Aeschbacher, T. et al. A secondary structural element in a wide range of fucosylated glycoepitopes. Chem. Eur. J. 23, 11598–11610 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Kwon, J. et al. Glycan stability and flexibility: thermodynamic and kinetic characterization of nonconventional hydrogen bonding in Lewis antigens. J. Am. Chem. Soc. 145, 10022–10034 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Y. et al. Synthesis and structural analysis of Aspergillus fumigatus galactosaminogalactans featuring α-galactose, α-galactosamine and α-N-acetyl galactosamine linkages. Angew. Chem. Int. Ed. 59, 12746–12750 (2020).

    Article  CAS  Google Scholar 

  37. Seidi, F. et al. Crystalline polysaccharides: a review. Carbohydr. Polym. 275, 118624 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Pylkkänen, R. et al. β-1,3-Glucan synthesis, novel supramolecular self-assembly, characterization and application. Nanoscale 14, 15533–15541 (2022).

    Article  PubMed  Google Scholar 

  39. Panza, M., Pistorio, S. G., Stine, K. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem. Rev. 118, 8105–8150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fittolani, G., Tyrikos-Ergas, T., Vargová, D., Chaube, M. A. & Delbianco, M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J. Org. Chem. 17, 1981–2025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joseph, A. A., Pardo-Vargas, A. & Seeberger, P. H. Total synthesis of polysaccharides by automated glycan assembly. J. Am. Chem. Soc. 142, 8561–8564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Delbianco, M. et al. Well-defined oligo- and polysaccharides as ideal probes for structural studies. J. Am. Chem. Soc. 140, 5421–5426 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Fittolani, G., Vargová, D., Seeberger, P. H., Ogawa, Y. & Delbianco, M. Bottom-up approach to understand chirality transfer across scales in cellulose assemblies. J. Am. Chem. Soc. 144, 12469–12475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dal Colle, M. C. S., Fittolani, G. & Delbianco, M. Synthetic approaches to break the chemical shift degeneracy of glycans. ChemBioChem 23, e202200416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu, Y. et al. Systematic hydrogen-bond manipulations to establish polysaccharide structure–property correlations. Angew. Chem. Int. Ed. 58, 1433–7851 (2019).

    Article  Google Scholar 

  46. Poveda, A., Fittolani, G., Seeberger, P. H., Delbianco, M. & Jiménez-Barbero, J. The flexibility of oligosaccharides unveiled through residual dipolar coupling analysis. Front. Mol. Biosci. 8, 784318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, J.-Y. & Delbianco, M. Recent developments in solid-phase glycan synthesis. Synthesis 55, 1337–1354 (2022).

    Google Scholar 

  48. Yao, W. et al. Automated solution-phase multiplicative synthesis of complex glycans up to a 1,080-mer. Nat. Synth. 1, 854–863 (2022).

    Article  ADS  Google Scholar 

  49. Wu, Y., Qiu, Y., Feng, Y. & Stoddart, J. F. Automating glycan assembly in solution. ACS Cent. Sci. 8, 1369–1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, L. et al. Precision native polysaccharides from living polymerization of anhydrosugars. Nat. Chem. 15, 1276–1284 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Li, T. et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nat. Chem. 11, 229–236 (2019).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  52. Wen, L. et al. Toward automated enzymatic synthesis of oligosaccharides. Chem. Rev. 17, 8151–8187 (2018).

    Article  Google Scholar 

  53. Zhang, J. et al. Machine-driven chemoenzymatic synthesis of glycopeptide. Angew. Chem. Int. Ed. 59, 19825–19829 (2020).

    Article  CAS  Google Scholar 

  54. Smith, P. J. et al. Enzymatic synthesis of artificial polysaccharides. ACS Sustain. Chem. Eng. 8, 11853–11871 (2020).

    Article  CAS  Google Scholar 

  55. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).

    Article  CAS  Google Scholar 

  56. Pallister, E., Gray, C. J. & Flitsch, S. L. Enzyme promiscuity of carbohydrate active enzymes and their applications in biocatalysis. Curr. Opin. Struct. Biol. 65, 184–192 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Gimeno, A., Valverde, P., Ardá, A. & Jiménez-Barbero, J. Glycan structures and their interactions with proteins. A NMR view. Curr. Opin. Struct. Biol. 62, 22–30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fontana, C. & Widmalm, G. Primary structure of glycans by NMR spectroscopy. Chem. Rev. 123, 1040–1102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quinn, C. M., Wang, M. & Polenova, T. in Protein NMR: Methods in Molecular Biology Vol. 1688 (ed. Ghose, R.) 1–35 (2018).

  60. Canales, A. et al. Breaking the limits in analyzing carbohydrate recognition by NMR spectroscopy: resolving branch-selective interaction of a tetra-antennary N-glycan with lectins. Angew. Chem. Int. Ed. 56, 14987–14991 (2017).

    Article  CAS  Google Scholar 

  61. Canales, A. et al. Breaking pseudo-symmetry in multiantennary complex N-glycans using lanthanide-binding tags and NMR pseudo-contact shifts. Angew. Chem. Int. Ed. 52, 13789–13793 (2013).

    Article  CAS  Google Scholar 

  62. Battistel, M. D., Shangold, M., Trinh, L., Shiloach, J. & Freedberg, D. I. Evidence for helical structure in a tetramer of α2-8 sialic acid: unveiling a structural antigen. J. Am. Chem. Soc. 134, 10717–10720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brisson, J. R., Baumann, H., Imberty, A., Perez, S. & Jennings, H. J. Helical epitope of the group B meningococcal α(2-8)-linked sialic acid polysaccharide. Biochemistry 31, 4996–5004 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, Z. et al. Synthetic zwitterionic Streptococcus pneumoniae type 1 oligosaccharides carrying labile O-acetyl esters. Angew. Chem. Int. Ed. 62, e202211940 (2023).

    Article  CAS  Google Scholar 

  65. Li, W. et al. Synthesis of bradyrhizose oligosaccharides relevant to the Bradyrhizobium O-antigen. Angew. Chem. Int. Ed. 56, 2092–2096 (2017).

    Article  CAS  Google Scholar 

  66. Wang, Z. et al. Total synthesis and structural studies of zwitterionic Bacteroides fragilis polysaccharide A1 fragments. J. Am. Chem. Soc. 145, 14052–14063 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deng, Z. et al. A close look at proteins: submolecular resolution of two- and three-dimensionally folded cytochrome c at surfaces. Nano Lett. 12, 2452–2458 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  68. Anggara, K. et al. Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 382, 219–223 (2023).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  69. Anggara, K. et al. Exploring the molecular conformation space by soft molecule–surface collision. J. Am. Chem. Soc. 142, 21420–21427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seibel, J. et al. Visualizing chiral interactions in carbohydrates adsorbed on Au(111) by high-resolution STM imaging. Angew. Chem. Int. Ed. 135, e202305733 (2023).

    Article  Google Scholar 

  71. Jonas, E., Kuhn, S. & Schlörer, N. Prediction of chemical shift in NMR: a review. Magn. Reson. Chem. 60, 1021–1031 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Pérez, S., Sarkar, A., Rivet, A., Breton, C. & Imberty, A. in Glycoinformatics Vol. 1273 (eds Lütteke, T. & Frank, M.) 241–258 (Springer, 2015).

  73. Ogawa, Y. & Putaux, J.-L. Recent advances in electron microscopy of carbohydrate nanoparticles. Front. Chem. 10, 835663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ogawa, Y., Putaux, J.-L. & Nishiyama, Y. Crystallography of polysaccharides: current state and challenges. Curr. Opin. Chem. Biol. 70, 102183 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Ercius, P., Alaidi, O., Rames, M. J. & Ren, G. Electron tomography: a three-dimensional analytic tool for hard and soft materials research. Adv. Mater. 27, 5638–5663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baker, L. A. & Rubinstein, J. L. in Methods in Enzymology Vol. 481 (ed. Jensen, G. J.) 371–388 (Academic, 2010).

  77. Ogawa, Y. Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals. Nanoscale 11, 21767–21774 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article  CAS  ADS  PubMed  Google Scholar 

  79. Lim, J. H. et al. Structural anisotropy governs the kink formation in cellulose nanocrystals. J. Phys. Chem. Lett. 14, 3961–3969 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Wu, C., Wang, X., Chu, B., Tang, S. & Wang, Y. Self-assembly of core–corona β-glucan into stiff and metalizable nanostructures from 1D to 3D. ACS Nano 12, 10545–10553 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Numata, M. et al. Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (β-1,3-glucans). J. Am. Chem. Soc. 127, 5875–5884 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Numata, M. et al. β-1,3-Glucan polysaccharide can act as a one-dimensional host to create novel silica nanofiber structures. Chem. Commun. 37, 4655–4657 (2005).

  83. Bae, A.-H. et al. 1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds. Angew. Chem. Int. Ed. 44, 2030–2033 (2005).

    Article  CAS  Google Scholar 

  84. Shiraki, T., Dawn, A., Tsuchiya, Y. & Shinkai, S. Thermo- and solvent-responsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene. J. Am. Chem. Soc. 132, 13928–13935 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Smith, P. J. et al. Enzymatic synthesis of xylan microparticles with tunable morphologies. ACS Mater. Au 2, 440–452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  ADS  PubMed  Google Scholar 

  87. Viljoen, A. et al. Force spectroscopy of single cells using atomic force microscopy. Nat. Rev. Methods Primers 1, 63 (2021).

    Article  CAS  Google Scholar 

  88. Abu-Lail, N. I. & Camesano, T. A. Polysaccharide properties probed with atomic force microscopy. J. Microsc. 212, 217–238 (2003).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  89. Schefer, L., Adamcik, J., Diener, M. & Mezzenga, R. Supramolecular chiral self-assembly and supercoiling behavior of carrageenans at varying salt conditions. Nanoscale 7, 16182–16188 (2015).

    Article  CAS  ADS  PubMed  Google Scholar 

  90. Fittolani, G. et al. Synthesis of a glycan hairpin. Nat. Chem. 15, 1461–1469 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Girvin, Z. C. & Gellman, S. H. Foldamer catalysis. J. Am. Chem. Soc. 142, 17211–17223 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  CAS  Google Scholar 

  93. Yu, Y. et al. Oligosaccharides self-assemble and show intrinsic optical properties. J. Am. Chem. Soc. 141, 4833–4838 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gim, S. et al. Targeted chemical modifications identify key features of carbohydrate assemblies and generate tailored carbohydrate materials. Chem. Eur. J. 27, 13139–13143 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Yao, Y., Meng, X., Li, C., Bernaerts, K. V. & Zhang, K. Tuning the chiral structures from self-assembled carbohydrate derivatives. Small 19, 2208286 (2023).

    Article  CAS  Google Scholar 

  96. Hendrikse, S. I. S. et al. Elucidating the ordering in self-assembled glycocalyx mimicking supramolecular copolymers in water. J. Am. Chem. Soc. 141, 13877–13886 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Su, L., Hendrikse, S. I. S. & Meijer, E. W. Supramolecular glycopolymers: how carbohydrates matter in structure, dynamics, and function. Curr. Opin. Chem. Biol. 69, 102171 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Richaud, A. D., Zhao, G., Hobloss, S. & Roche, S. P. Folding in place: design of β-strap motifs to stabilize the folding of hairpins with long loops. J. Org. Chem. 86, 13535–13547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Colesnic, D. et al. Precisely designed difunctionalized cyclodextrin produces a solid-state organic porous hierarchical supramolecular assembly. Chem. Eur. J. 29, e202300150 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Davis, M. E. & Brewster, M. E. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, J. et al. Programmed synthesis of hepta-differentiated β-cyclodextrin: 1 out of 117655 arrangements. Angew. Chem. Int. Ed. 60, 12090–12096 (2021).

    Article  CAS  Google Scholar 

  102. Erichsen, A., Peters, G. H. J. & Beeren, S. R. Templated enzymatic synthesis of δ-cyclodextrin. J. Am. Chem. Soc. 145, 4882–4891 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Ikuta, D. et al. Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins. Science 364, 674–677 (2019).

    Article  CAS  ADS  PubMed  Google Scholar 

  104. Li, X. et al. Promoter-controlled synthesis and conformational analysis of cyclic mannosides up to a 32-mer. Angew. Chem. Int. Ed. 62, e202307851 (2023).

    Article  CAS  ADS  Google Scholar 

  105. Ricardo, M. G. et al. Design, synthesis, and characterization of stapled oligosaccharides. J. Am. Chem. Soc. 144, 18429–18434 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Naik, R. R. & Singamaneni, S. Introduction: bioinspired and biomimetic materials. Chem. Rev. 117, 12581–12583 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Sinha, N. J., Langenstein, M. G., Pochan, D. J., Kloxin, C. J. & Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 121, 13915–13935 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Jiang, T., Vail, O. A., Jiang, Z., Zuo, X. & Conticello, V. P. Rational design of multilayer collagen nanosheets with compositional and structural control. J. Am. Chem. Soc. 137, 7793–7802 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Tanrikulu, I. C., Forticaux, A., Jin, S. & Raines, R. T. Peptide tessellation yields micrometre-scale collagen triple helices. Nat. Chem. 8, 1008–1014 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  111. Ke, P. C. et al. Half a century of amyloids: past, present and future. Chem. Soc. Rev. 49, 5473–5509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  113. Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  114. Kumar, P., Paterson, N. G., Clayden, J. & Woolfson, D. N. De novo design of discrete, stable 310-helix peptide assemblies. Nature 607, 387–392 (2022).

    Article  CAS  ADS  PubMed  Google Scholar 

  115. Hu, K.-N. & Tycko, R. What can solid state NMR contribute to our understanding of protein folding? Biophys. Chem. 151, 10–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hamley, I. W. & Castelletto, V. Small-angle scattering techniques for peptide and peptide hybrid nanostructures and peptide-based biomaterials. Adv. Colloid Interface Sci. 318, 102959 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Clarke, D. E., Parmenter, C. D. J. & Scherman, O. A. Tunable pentapeptide self-assembled β-sheet hydrogels. Angew. Chem. Int. Ed. 57, 7709–7713 (2018).

    Article  CAS  Google Scholar 

  118. Mitić, Ž. et al. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater. Sci. Eng. C 79, 930–949 (2017).

    Article  Google Scholar 

  119. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  120. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  121. Hribernik, N. et al. Controlling the assembly of cellulose-based oligosaccharides through sequence modifications. Angew. Chem. Int. Ed. 62, e202310357 (2023).

    Article  CAS  Google Scholar 

  122. Tamburrini, A., Colombo, C. & Bernardi, A. Design and synthesis of glycomimetics: recent advances. Med. Res. Rev. 40, 495–531 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, P. et al. Artificial chiral metallo-pockets including a single metal serving as structural probe and catalytic center. Chem 3, 174–191 (2017).

    Article  CAS  Google Scholar 

  124. Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2012 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Szente, L. & Szemán, J. Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Anal. Chem. 85, 8024–8030 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Hu, J., Seeberger, P. H. & Yin, J. Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Org. Biomol. Chem. 14, 8648–8658 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Max Planck Society, the German Federal Ministry of Education and Research (BMBF, grant number 13XP5114, to M. D.), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; SFB 1449, project number 431232613, sub-project C2) and the European Research Council (ERC) under the Horizon Europe research and innovation programme (project number 101075357 GLYCOFOLD) for the generous financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.D. conceived the article. S.D. designed the figures. All authors contributed to the discussion and writing of the article.

Corresponding author

Correspondence to Martina Delbianco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Alexei Demchenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djalali, S., Yadav, N. & Delbianco, M. Towards glycan foldamers and programmable assemblies. Nat Rev Mater 9, 190–201 (2024). https://doi.org/10.1038/s41578-023-00638-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00638-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing