Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-classical crystallization in soft and organic materials

Abstract

Classical nucleation and crystal growth theories describe how nuclei form, become stable after reaching a critical size and then enlarge through monomer attachment. More than two decades ago, non-classical pathways have been proposed for various types of (bio)molecules and materials, which can substantially alter the crystallization kinetics and outcomes. Direct observation of non-classical crystallization of inorganic nanomaterials, including metastable structure-mediated and particle attachment-based pathways that usually occur on the nanoscale, was enabled by in situ liquid-phase electron microscopy. However, it was not until recently that the crystallization dynamics of beam-sensitive soft materials were directly imaged with sufficient spatial resolution, and a level of microstructural understanding of defects and interfaces emerged. This article provides a high-level review of the non-classical crystallization pathways discovered in soft and organic materials and a forward-looking guide for future research. We first analyse how the characteristics of soft materials affect their crystallization pathways and kinetics. We then identify technical approaches to studying the crystallization trajectories of soft materials and discuss strategies to properly select and apply them to different systems. Breakthroughs made in understanding the crystallization of small organic molecules, (bio)macromolecules, colloids and reticular framework materials are examined. Finally, we provide an outlook on the challenges in elucidating soft material crystallization pathways and the opportunities for assisting the design and synthesis of new materials and structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types and thermodynamics of non-classical nucleation and crystal growth.
Fig. 2: Methods for studying the crystallization pathways of soft and organic materials.
Fig. 3: Crystallization of small organic molecules through intermediate structures.
Fig. 4: Non-classical protein crystallization.
Fig. 5: Multistep assembly of polymers into ordered structures.
Fig. 6: Non-classical nucleation and growth in microscale and nanoscale colloidal crystals.
Fig. 7: Building units and their non-classical evolution in MOFs and COFs.

Similar content being viewed by others

References

  1. Tung, H.-H., Paul, E. L., Midler, M. & McCauley, J. A. Crystallization of Organic Compounds: An Industrial Perspective (Wiley, 2023).

  2. Hartje, L. F. & Snow, C. D. Protein crystal based materials for nanoscale applications in medicine and biotechnology. WIREs Nanomed. Nanobiotechnol. 11, e1547 (2019).

    Article  Google Scholar 

  3. Cai, Z. et al. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem. Soc. Rev. 50, 5898–5951 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Yaghi, O. M. Reticular chemistry — construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138, 15507–15509 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kato, M., Ito, H., Hasegawa, M. & Ishii, K. Soft crystals: flexible response systems with high structural order. Chem. Eur. J. 25, 5105–5112 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Ishii, K. & Kato, M. in Soft Crystals: Flexible Response Systems with High Structural Order (eds. Kato, M. & Ishii, K.) 13–21 (Springer Nature, 2023).

  7. Vekilov, P. G. in Crystallization via Nonclassical Pathways Volume 1: Nucleation, Assembly, Observation & Application Ch. 2 (ed. Zhang, X.), 19–46 (American Chemical Society, 2020).

  8. Redfern, L. R. & Farha, O. K. Mechanical properties of metal–organic frameworks. Chem. Sci. 10, 10666–10679 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  PubMed  Google Scholar 

  10. Tang, X., Chen, W. & Li, L. The tough journey of polymer crystallization: battling with chain flexibility and connectivity. Macromolecules 52, 3575–3591 (2019).

    Article  CAS  Google Scholar 

  11. Fu, H., Gao, X., Zhang, X. & Ling, L. Recent advances in nonclassical crystallization: fundamentals, applications, and challenges. Cryst. Growth Des. 22, 1476–1499 (2022).

    Article  CAS  Google Scholar 

  12. Smeets, P. J. M. et al. A classical view on nonclassical nucleation. Proc. Natl Acad. Sci. USA 114, E7882–E7890 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ostwald, W. Studien über die bildung und umwandlung fester körper: 1. Abhandlung: übersättigung und überkaltung [German]. Z. Phys. Chem. 22, 289–330 (1897).

    Article  CAS  Google Scholar 

  14. De Yoreo, J. J. Casting a bright light on Ostwald’s rule of stages. Proc. Natl Acad. Sci. USA 119, e2121661119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. ten Wolde, P. R. & Frenkel, D. Homogeneous nucleation and the Ostwald step rule. Phys. Chem. Chem. Phys. 1, 2191–2196 (1999).

    Article  Google Scholar 

  16. Xia, Y., Xia, X. & Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Udayabhaskararao, T., Kazes, M., Houben, L., Lin, H. & Oron, D. Nucleation, growth, and structural transformations of perovskite nanocrystals. Chem. Mater. 29, 1302–1308 (2017).

    Article  CAS  Google Scholar 

  18. Xia, Y., Gilroy, K. D., Peng, H.-C. & Xia, X. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 56, 60–95 (2017).

    Article  CAS  Google Scholar 

  19. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, H.-Q. et al. Seed-mediated synthesis of metal–organic frameworks. J. Am. Chem. Soc. 138, 5316–5320 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  PubMed  Google Scholar 

  22. Talanquer, V. & Oxtoby, D. W. Crystal nucleation in the presence of a metastable critical point. J. Chem. Phys. 109, 223–227 (1998).

    Article  CAS  Google Scholar 

  23. Vekilov, P. G. Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst. Growth Des. 4, 671–685 (2004).

    Article  CAS  Google Scholar 

  24. Vekilov, P. G. Two-step mechanism for the nucleation of crystals from solution. J. Cryst. Growth 275, 65–76 (2005).

    Article  CAS  Google Scholar 

  25. Davey, R. J., Schroeder, S. L. M. & ter Horst, J. H. Nucleation of organic crystals — a molecular perspective. Angew. Chem. Int. Ed. 52, 2166–2179 (2013).

    Article  CAS  Google Scholar 

  26. Vekilov, P. G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2, 2346–2357 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, S., Zhang, H., Qiao, B. & Wang, Y. Review of liquid–liquid phase separation in crystallization: from fundamentals to application. Cryst. Growth Des. 21, 7306–7325 (2021).

    Article  CAS  Google Scholar 

  28. Burkett, S. L. & Davis, M. E. Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR. J. Phys. Chem. 98, 4647–4653 (1994).

    Article  CAS  Google Scholar 

  29. Galkin, O. & Vekilov, P. G. Are nucleation kinetics of protein crystals similar to those of liquid droplets? J. Am. Chem. Soc. 122, 156–163 (2000).

    Article  CAS  Google Scholar 

  30. Gebauer, D., Kellermeier, M., Gale, J. D., Bergström, L. & Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348–2371 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Millange, F. et al. Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal–organic frameworks. Angew. Chem. Int. Ed. 49, 763–766 (2010).

    Article  CAS  Google Scholar 

  32. Fang, H., Hagan, M. F. & Rogers, W. B. Two-step crystallization and solid–solid transitions in binary colloidal mixtures. Proc. Natl Acad. Sci. USA 117, 27927–27933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamazaki, T. et al. Two types of amorphous protein particles facilitate crystal nucleation. Proc. Natl Acad. Sci. USA 114, 2154–2159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, G. et al. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature 590, 416–422 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Durelle, M. et al. Coexistence of transient liquid droplets and amorphous solid particles in nonclassical crystallization of cerium oxalate. J. Phys. Chem. Lett. 13, 8502–8508 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Shao, L. et al. Pseudomorphic replacement in the transformation between metal–organic frameworks toward three-dimensional hierarchical nanostructures. Chem. Mater. 34, 5356–5365 (2022).

    Article  CAS  Google Scholar 

  37. Safari, M. S. et al. Anomalous dense liquid condensates host the nucleation of tumor suppressor p53 fibrils. iScience 12, 342–355 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  40. Wagner, C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-Reifung) [German]. Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 65, 581–591 (1961).

    CAS  Google Scholar 

  41. Zhang, J., Huang, F. & Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2, 18–34 (2010).

    Article  PubMed  Google Scholar 

  42. Wang, F., Richards, V. N., Shields, S. P. & Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 26, 5–21 (2014).

    Article  Google Scholar 

  43. Smoluchowski, M. V. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92U, 129–168 (1918).

    Article  Google Scholar 

  44. Huang, F., Zhang, H. & Banfield, J. F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3, 373–378 (2003).

    Article  CAS  Google Scholar 

  45. Davis, T. M. et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat. Mater. 5, 400–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Woehl, T. J. et al. Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett. 14, 373–378 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Burbelko, A. A., Fraś, E. & Kapturkiewicz, W. About Kolmogorov’s statistical theory of phase transformation. Mater. Sci. Eng. A 413–414, 429–434 (2005).

    Article  Google Scholar 

  48. Richards, V. N., Rath, N. P. & Buhro, W. E. Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem. Mater. 22, 3556–3567 (2010).

    Article  CAS  Google Scholar 

  49. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Y. et al. Particle-based hematite crystallization is invariant to initial particle morphology. Proc. Natl Acad. Sci. USA 119, e2112679119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lv, W. et al. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review. Nanoscale 6, 2531–2547 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Sushko, M. L. Understanding the driving forces for crystal growth by oriented attachment through theory and simulations. J. Mater. Res. 34, 2914–2927 (2019).

    Article  CAS  Google Scholar 

  53. Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    Article  CAS  Google Scholar 

  54. Weissenberger, G., Henderikx, R. J. M. & Peters, P. J. Understanding the invisible hands of sample preparation for cryo-EM. Nat. Methods 18, 463–471 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Tian, J. et al. High-resolution cryo-electron microscopy structure of block copolymer nanofibres with a crystalline core. Nat. Mater. 22, 786–792 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. D’Imprima, E. et al. Protein denaturation at the air-water interface and how to prevent it. eLife 8, e42747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ferré-D’Amaré, A. R. & Burley, S. K. Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure 2, 357–359 (1994).

    Article  PubMed  Google Scholar 

  58. Jeffries, C. M. et al. Small-angle X-ray and neutron scattering. Nat. Rev. Methods Primers 1, 70 (2021).

    Article  CAS  Google Scholar 

  59. Pienack, N. & Bensch, W. In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 50, 2014–2034 (2011).

    Article  CAS  Google Scholar 

  60. Brandt, J., Oehlenschlaeger, K. K., Schmidt, F. G., Barner-Kowollik, C. & Lederer, A. State-of-the-art analytical methods for assessing dynamic bonding soft matter materials. Adv. Mater. 26, 5758–5785 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Mashiach, R. et al. In situ NMR reveals real-time nanocrystal growth evolution via monomer-attachment or particle-coalescence. Nat. Commun. 12, 229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sabale, S. et al. Understanding time dependence on zinc metal–organic framework growth using in situ liquid secondary ion mass spectrometry. ACS Appl. Mater. Interfaces 12, 5090–5098 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Ando, T., Uchihashi, T. & Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev. 114, 3120–3188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, H., Friedrich, H., Patterson, J. P., Sommerdijk, N. A. J. M. & de Jonge, N. Liquid-phase electron microscopy for soft matter science and biology. Adv. Mater. 32, 2001582 (2020).

    Article  CAS  Google Scholar 

  65. Zhang, S. et al. Microfluidic platform for optimization of crystallization conditions. J. Cryst. Growth 472, 18–28 (2017).

    Article  CAS  Google Scholar 

  66. Cantu, D. C., McGrail, B. P. & Glezakou, V.-A. Formation mechanism of the secondary building unit in a chromium terephthalate metal–organic framework. Chem. Mater. 26, 6401–6409 (2014).

    Article  CAS  Google Scholar 

  67. Li, H. et al. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5. J. Am. Chem. Soc. 139, 16310–16318 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Dshemuchadse, J., Damasceno, P. F., Phillips, C. L., Engel, M. & Glotzer, S. C. Moving beyond the constraints of chemistry via crystal structure discovery with isotropic multiwell pair potentials. Proc. Natl Acad. Sci. USA 118, e2024034118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Salvalaglio, M., Perego, C., Giberti, F., Mazzotti, M. & Parrinello, M. Molecular-dynamics simulations of urea nucleation from aqueous solution. Proc. Natl Acad. Sci. USA 112, E6–E14 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, C., Cao, F., Kulkarni, S. A., Wood, G. P. F. & Santiso, E. E. Understanding polymorph selection of sulfamerazine in solution. Cryst. Growth Des. 19, 6925–6934 (2019).

    Article  CAS  Google Scholar 

  71. Finney, A. R. & Salvalaglio, M. A variational approach to assess reaction coordinates for two-step crystallization. J. Chem. Phys. 158, 094503 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Kollias, L. et al. Molecular level understanding of the free energy landscape in early stages of metal–organic framework nucleation. J. Am. Chem. Soc. 141, 6073–6081 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Balestra, S. R. G. & Semino, R. Computer simulation of the early stages of self-assembly and thermal decomposition of ZIF-8. J. Chem. Phys. 157, 184502 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Mirabello, G. et al. Crystallization by particle attachment is a colloidal assembly process. Nat. Mater. 19, 391–396 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Shields, S. P., Richards, V. N. & Buhro, W. E. Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem. Mater. 22, 3212–3225 (2010).

    Article  CAS  Google Scholar 

  76. Dighe, A. V. et al. Autocatalysis and oriented attachment direct the synthesis of a metal–organic framework. JACS Au 2, 453–462 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Egerton, R. Radiation damage and nanofabrication in TEM and STEM. Microsc. Today 29, 56–59 (2021).

    Article  CAS  Google Scholar 

  79. Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, L. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Cho, H. et al. The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett. 17, 414–420 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Keskin, S. & de Jonge, N. Reduced radiation damage in transmission electron microscopy of proteins in graphene liquid cells. Nano Lett. 18, 7435–7440 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Jokisaari, J. R., Hu, X., Mukherjee, A., Uskoković, V. & Klie, R. F. Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for in situ electron microscopy. Nanotechnology 32, 485707 (2021).

    Article  CAS  Google Scholar 

  85. Narayanan, S., Shahbazian-Yassar, R. & Shokuhfar, T. In situ visualization of ferritin biomineralization via graphene liquid cell-transmission electron microscopy. ACS Biomater. Sci. Eng. 6, 3208–3216 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Korpanty, J., Parent, L. R. & Gianneschi, N. C. Enhancing and mitigating radiolytic damage to soft matter in aqueous phase liquid-cell transmission electron microscopy in the presence of gold nanoparticle sensitizers or isopropanol scavengers. Nano Lett. 21, 1141–1149 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Woehl, T. J. & Abellan, P. Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J. Microsc. 265, 135–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, M., Park, C. & Woehl, T. J. Quantifying the nucleation and growth kinetics of electron beam nanochemistry with liquid cell scanning transmission electron microscopy. Chem. Mater. 30, 7727–7736 (2018).

    Article  CAS  Google Scholar 

  89. Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. & Ross, F. M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Kröger, R. & Verch, A. Liquid cell transmission electron microscopy and the impact of confinement on the precipitation from supersaturated solutions. Minerals 8, 21 (2018).

    Article  Google Scholar 

  91. Paulo, Á. S. & García, R. Unifying theory of tapping-mode atomic-force microscopy. Phys. Rev. B 66, 041406 (2002).

    Article  Google Scholar 

  92. Tao, J., Nielsen, M. H. & De Yoreo, J. J. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques. Curr. Opin. Colloid Interface Sci. 34, 74–88 (2018).

    Article  CAS  Google Scholar 

  93. Mandemaker, L. D. B. et al. Time-resolved in situ liquid-phase atomic force microscopy and infrared nanospectroscopy during the formation of metal–organic framework thin films. J. Phys. Chem. Lett. 9, 1838–1844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Houben, L., Weissman, H., Wolf, S. G. & Rybtchinski, B. A mechanism of ferritin crystallization revealed by cryo-STEM tomography. Nature 579, 540–543 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Demurtas, D. et al. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat. Commun. 6, 8915 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, J. et al. Magic number colloidal clusters as minimum free energy structures. Nat. Commun. 9, 5259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miao, J., Ercius, P. & Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

    Article  PubMed  Google Scholar 

  98. Yang, Y. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Park, J. et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, B. H. et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 368, 60–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Lorenz, H., Perlberg, A., Sapoundjiev, D., Elsner, M. P. & Seidel-Morgenstern, A. Crystallization of enantiomers. Chem. Eng. Process. 45, 863–873 (2006).

    Article  CAS  Google Scholar 

  102. Lorenz, H. & Seidel-Morgenstern, A. Processes to separate enantiomers. Angew. Chem. Int. Ed. 53, 1218–1250 (2014).

    Article  CAS  Google Scholar 

  103. Chattopadhyay, S. et al. SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst. Growth Des. 5, 523–527 (2005).

    Article  CAS  Google Scholar 

  104. Larson, M. A. & Garside, J. Solute clustering in supersaturated solutions. Chem. Eng. Sci. 41, 1285–1289 (1986).

    Article  CAS  Google Scholar 

  105. Myerson, A. S. & Lo, P. Y. Diffusion and cluster formation in supersaturated solutions. J. Cryst. Growth 99, 1048–1052 (1990).

    Article  CAS  Google Scholar 

  106. Davey, R. J. et al. Crystal polymorphism as a probe for molecular self-assembly during nucleation from solutions: the case of 2,6-dihydroxybenzoic acid. Cryst. Growth Des. 1, 59–65 (2001).

    Article  CAS  Google Scholar 

  107. Erdemir, D. et al. Relationship between self-association of glycine molecules in supersaturated solutions and solid state outcome. Phys. Rev. Lett. 99, 115702 (2007).

    Article  PubMed  Google Scholar 

  108. Hamad, S., Moon, C., Catlow, C. R. A., Hulme, A. T. & Price, S. L. Kinetic insights into the role of the solvent in the polymorphism of 5-fluorouracil from molecular dynamics simulations. J. Phys. Chem. B 110, 3323–3329 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Kulkarni, S. A., McGarrity, E. S., Meekes, H. & ter Horst, J. H. Isonicotinamide self-association: the link between solvent and polymorph nucleation. Chem. Commun. 48, 4983 (2012).

    Article  CAS  Google Scholar 

  110. Hunter, C. A., McCabe, J. F. & Spitaleri, A. Solvent effects of the structures of prenucleation aggregates of carbamazepine. CrystEngComm 14, 7115 (2012).

    Article  CAS  Google Scholar 

  111. Wiedenbeck, E., Kovermann, M., Gebauer, D. & Cölfen, H. Liquid metastable precursors of ibuprofen as aqueous nucleation intermediates. Angew. Chem. Int. Ed. 58, 19103–19109 (2019).

    Article  CAS  Google Scholar 

  112. Pan, W., Kolomeisky, A. B. & Vekilov, P. G. Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach. J. Chem. Phys. 122, 174905 (2005).

    Article  PubMed  Google Scholar 

  113. Jawor-Baczynska, A., Sefcik, J. & Moore, B. D. 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst. Growth Des. 13, 470–478 (2013).

    Article  CAS  Google Scholar 

  114. Yuan, C. et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid–liquid phase separation. Angew. Chem. Int. Ed. 131, 18284–18291 (2019).

    Article  Google Scholar 

  115. Tsarfati, Y. et al. Crystallization of organic molecules: nonclassical mechanism revealed by direct imaging. ACS Cent. Sci. 4, 1031–1036 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tsarfati, Y. et al. Continuum crystallization model derived from pharmaceutical crystallization mechanisms. ACS Cent. Sci. 7, 900–908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Korede, V. et al. A review of laser-induced crystallization from solution. Cryst. Growth Des. 23, 3873–3916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gowayed, O., Tasnim, T., Fuentes-Rivera, J. J., Aber, J. E. & Garetz, B. A. Non-photochemical pulsed-laser-induced nucleation in a continuous-wave-laser-induced phase-separated solution droplet of aqueous glycine formed by optical gradient forces. Cryst. Growth Des. 19, 7372–7379 (2019).

    Article  CAS  Google Scholar 

  119. Gowayed, O. Y. et al. Dynamic light scattering study of a laser-induced phase-separated droplet of aqueous glycine. J. Phys. Chem. B 125, 7828–7839 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Liao, Z. & Wynne, K. A metastable amorphous intermediate is responsible for laser-induced nucleation of glycine. J. Am. Chem. Soc. 144, 6727–6733 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Liao, Z. & Wynne, K. Mesoscopic amorphous particles rather than oligomeric molecular aggregates are the cause of laser-induced crystal nucleation. Proc. Natl Acad. Sci. USA 119, e2207173119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Javid, N., Kendall, T., Burns, I. S. & Sefcik, J. Filtration suppresses laser-induced nucleation of glycine in aqueous solutions. Cryst. Growth Des. 16, 4196–4202 (2016).

    Article  CAS  Google Scholar 

  123. Liao, Z., Das, A., Robb, C. G., Beveridge, R. & Wynne, K. Amorphous aggregates with a very wide size distribution play a central role in crystal nucleation. Preprint at https://doi.org/10.26434/chemrxiv-2023-18zk5-v3 (2023).

  124. Urquidi, O., Brazard, J., LeMessurier, N., Simine, L. & Adachi, T. B. M. In situ optical spectroscopy of crystallization: one crystal nucleation at a time. Proc. Natl Acad. Sci. USA 119, e2122990119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Adachi, T. B. M., Brazard, J. & Urquidi, O. Reply to Liao and Wynne: the size of crystal nucleus remains an open question. Proc. Natl Acad. Sci. USA 119, e2207713119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Taden, A., Landfester, K. & Antonietti, M. Crystallization of dyes by directed aggregation of colloidal intermediates: a model case. Langmuir 20, 957–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, T. & Zhang, C. W. Dissolution enhancement by bio-inspired mesocrystals: the study of racemic (R,S)-(±)-sodium ibuprofen dihydrate. Pharm. Res. 25, 1563–1571 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Wohlrab, S., Cölfen, H. & Antonietti, M. Crystalline, porous microspheres made from amino acids by using polymer-induced liquid precursor phases. Angew. Chem. Int. Ed. 44, 4087–4092 (2005).

    Article  CAS  Google Scholar 

  129. Wohlrab, S., Pinna, N., Antonietti, M. & Cölfen, H. Polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructures. Chem. Eur. J. 11, 2903–2913 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Cölfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

    Article  Google Scholar 

  131. Schwahn, D., Ma, Y. & Cölfen, H. Mesocrystal to single crystal transformation of D,L-alanine evidenced by small angle neutron scattering. J. Phys. Chem. C 111, 3224–3227 (2007).

    Article  CAS  Google Scholar 

  132. Su, Y. et al. A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. J. Mater. Chem. 20, 6734–6740 (2010).

    Article  CAS  Google Scholar 

  133. Levin, A. et al. Ostwald’s rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5, 5219 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Warzecha, M. et al. Direct observation of templated two-step nucleation mechanism during olanzapine hydrate formation. Cryst. Growth Des. 17, 6382–6393 (2017).

    Article  CAS  Google Scholar 

  135. Wagner, A. et al. The non‐classical crystallization mechanism of a composite biogenic guanine crystal. Adv. Mater. 34, 2202242 (2022).

    Article  CAS  Google Scholar 

  136. Kida, T., Marui, Y., Miyawaki, K., Kato, E. & Akashi, M. Unique organogel formation with a channel-type cyclodextrin assembly. Chem. Commun. https://doi.org/10.1039/B907491K (2009).

  137. Li, H., Guan, M., Zhu, G., Yin, G. & Xu, Z. Experimental observation of fullerene crystalline growth from mesocrystal to single crystal. Cryst. Growth Des. 16, 1306–1310 (2016).

    Article  CAS  Google Scholar 

  138. Kida, T., Teragaki, A., Kalaw, J. M. & Shigemitsu, H. Supramolecular organogel formation through three-dimensional α-cyclodextrin nanostructures: solvent chirality-selective organogel formation. Chem. Commun. 56, 7581–7584 (2020).

    Article  CAS  Google Scholar 

  139. Kumar, K. V. et al. Pure curcumin spherulites from impure solutions via nonclassical crystallization. ACS Omega 6, 23884–23900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sivakumar, R. et al. Enantiomer-specific oriented attachment of guanidine carbonate crystals. Cryst. Growth Des. 16, 3573–3576 (2016).

    Article  CAS  Google Scholar 

  141. Strum, E. V. & Cölfen, H. Mesocrystals: structural and morphogenetic aspects. Chem. Soc. Rev. 45, 5821–5833 (2016).

    Article  Google Scholar 

  142. Chen, Z., Higashi, K., Ueda, K. & Moribe, K. Multistep crystallization of pharmaceutical amorphous nanoparticles via a cognate pathway of oriented attachment: direct evidence of nonclassical crystallization for organic molecules. Nano Lett. 22, 6841–6846 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Cookman, J., Hamilton, V., Hall, S. R. & Bangert, U. Non-classical crystallisation pathway directly observed for a pharmaceutical crystal via liquid phase electron microscopy. Sci. Rep. 10, 19156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gnanasekaran, K. et al. Dipeptide nanostructure assembly and dynamics via in situ liquid-phase electron microscopy. ACS Nano 15, 16542–16551 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, H. et al. Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states. Nat. Commun. 10, 3872 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Liu, G. et al. In situ imaging of on-surface, solvent-free molecular single-crystal growth. J. Am. Chem. Soc. 137, 4972–4975 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Warzecha, M. et al. Olanzapine crystal symmetry originates in preformed centrosymmetric solute dimers. Nat. Chem. 12, 914–920 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Jiang, Y. et al. Growth of organic crystals via attachment and transformation of nanoscopic precursors. Nat. Commun. 8, 15933 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Biran, I. et al. Organic crystal growth: hierarchical self-assembly involving nonclassical and classical steps. Cryst. Growth Des. 22, 6647–6655 (2022).

    Article  CAS  Google Scholar 

  150. Yang, Y., Wang, H., Ji, Z., Han, Y. & Li, J. A switch from classic crystallization to non-classic crystallization by controlling the diffusion of chemicals. CrystEngComm 16, 7633–7637 (2014).

    Article  CAS  Google Scholar 

  151. Hayes, O. G., Partridge, B. E. & Mirkin, C. A. Encoding hierarchical assembly pathways of proteins with DNA. Proc. Natl Acad. Sci. USA 118, e2106808118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McPherson, A. & Gavira, J. A. Introduction to protein crystallization. Acta Crystallogr. F 70, 2–20 (2014).

    Article  CAS  Google Scholar 

  153. Piazza, R. Protein interactions and association: an open challenge for colloid science. Curr. Opin. Colloid Interface Sci. 8, 515–522 (2004).

    Article  CAS  Google Scholar 

  154. Piazza, R. Interactions and phase transitions in protein solutions. Curr. Opin. Colloid Interface Sci. 5, 38–43 (2000).

    Article  CAS  Google Scholar 

  155. Ray, W. J. & Bracker, C. E. Polyethylene glycol: catalytic effect on the crystallization of phosphoglucomutase at high salt concentration. J. Cryst. Growth 76, 562–576 (1986).

    Article  CAS  Google Scholar 

  156. Muschol, M. & Rosenberger, F. Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys. 107, 1953–1962 (1997).

    Article  CAS  Google Scholar 

  157. Kuznetsov, Yu. G., Malkin, A. J. & McPherson, A. Atomic-force-microscopy studies of phase separations in macromolecular systems. Phys. Rev. B 58, 6097–6103 (1998).

    Article  CAS  Google Scholar 

  158. Malkin, A. J., Kuznetsov, Yu. G., Land, T. A., DeYoreo, J. J. & McPherson, A. Mechanisms of growth for protein and virus crystals. Nat. Struct. Mol. Biol. 2, 956–959 (1995).

    Article  CAS  Google Scholar 

  159. Galkin, O. & Vekilov, P. G. Control of protein crystal nucleation around the metastable liquid–liquid phase boundary. Proc. Natl Acad. Sci. USA 97, 6277–6281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vekilov, P. G. Nucleation. Cryst. Growth Des. 10, 5007–5019 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gliko, O. et al. A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc. 127, 3433–3438 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Wen, J. et al. Conformational expansion of tau in condensates promotes irreversible aggregation. J. Am. Chem. Soc. 143, 13056–13064 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Schubert, R. et al. Real-time observation of protein dense liquid cluster evolution during nucleation in protein crystallization. Cryst. Growth Des. 17, 954–958 (2017).

    Article  CAS  Google Scholar 

  165. Sauter, A. et al. On the question of two-step nucleation in protein crystallization. Faraday Discuss. 179, 41–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Sauter, A. et al. Real-time observation of nonclassical protein crystallization kinetics. J. Am. Chem. Soc. 137, 1485–1491 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Maes, D. et al. Do protein crystals nucleate within dense liquid clusters? Acta Crystallogr. F 71, 815–822 (2015).

    Article  CAS  Google Scholar 

  168. Sleutel, M. & Driessche, A. E. S. V. Role of clusters in nonclassical nucleation and growth of protein crystals. Proc. Natl Acad. Sci. USA 111, E546–E553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chung, S., Shin, S.-H., Bertozzi, C. R. & Yoreo, J. J. D. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics. Proc. Natl Acad. Sci. USA 107, 16536–16541 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Vivarès, D., Kaler, E. W. & Lenhoff, A. M. Quantitative imaging by confocal scanning fluorescence microscopy of protein crystallization via liquid–liquid phase separation. Acta Crystallogr. D 61, 819–825 (2005).

    Article  PubMed  Google Scholar 

  171. Maier, R. et al. Protein crystallization from a preordered metastable intermediate phase followed by real-time small-angle neutron scattering. Cryst. Growth Des. 21, 6971–6980 (2021).

    Article  CAS  Google Scholar 

  172. Kaissaratos, M., Filobelo, L. & Vekilov, P. G. Two-step crystal nucleation is selected because of a lower surface free energy barrier. Cryst. Growth Des. 21, 5394–5402 (2021).

    Article  CAS  Google Scholar 

  173. Maier, R. et al. Protein crystallization in the presence of a metastable liquid–liquid phase separation. Cryst. Growth Des. 20, 7951–7962 (2020).

    Article  CAS  Google Scholar 

  174. Liu, Y., Wang, X. & Ching, C. B. Toward further understanding of lysozyme crystallization: phase diagram, protein–protein interaction, nucleation kinetics, and growth kinetics. Cryst. Growth Des. 10, 548–558 (2010).

    Article  CAS  Google Scholar 

  175. Guo, C., Wang, J., Li, J., Wang, Z. & Tang, S. Kinetic pathways and mechanisms of two-step nucleation in crystallization. J. Phys. Chem. Lett. 7, 5008–5014 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Sleutel, M., Lutsko, J., Van Driessche, A. E. S., Durán-Olivencia, M. A. & Maes, D. Observing classical nucleation theory at work by monitoring phase transitions with molecular precision. Nat. Commun. 5, 5598 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Van Driessche, A. E. S., Ling, W. L., Schoehn, G. & Sleutel, M. Nucleation of glucose isomerase protein crystals in a nonclassical disguise: the role of crystalline precursors. Proc. Natl Acad. Sci. USA 119, e2108674119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Van Driessche, A. E. S. et al. Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature 556, 89–94 (2018).

    Article  PubMed  Google Scholar 

  179. Parmar, A. S., Gottschall, P. E. & Muschol, M. Pre-assembled clusters distort crystal nucleation kinetics in supersaturated lysozyme solutions. Biophys. Chem. 129, 224–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Van Driessche, A. E. S. et al. Nucleation of protein mesocrystals via oriented attachment. Nat. Commun. 12, 3902 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Tao, F., Han, Q., Liu, K. & Yang, P. Tuning crystallization pathways through the mesoscale assembly of biomacromolecular nanocrystals. Angew. Chem. Int. Ed. 56, 13440–13444 (2017).

    Article  CAS  Google Scholar 

  182. Xuan, S. et al. Atomic-level engineering and imaging of polypeptoid crystal lattices. Proc. Natl Acad. Sci. USA 116, 22491–22499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sinha, N. J., Langenstein, M. G., Pochan, D. J., Kloxin, C. J. & Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 121, 13915–13935 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Jiao, F. et al. Hierarchical assembly of peptoid‐based cylindrical micelles exhibiting efficient resonance energy transfer in aqueous solution. Angew. Chem. Int. Ed. 58, 12223–12230 (2019).

    Article  CAS  Google Scholar 

  185. Xuan, S., Jiang, X., Balsara, N. P. & Zuckermann, R. N. Crystallization and self-assembly of shape-complementary sequence-defined peptoids. Polym. Chem. 12, 4770–4777 (2021).

    Article  CAS  Google Scholar 

  186. Sun, J. et al. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles. Proc. Natl Acad. Sci. USA 113, 3954–3959 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).

    Article  CAS  Google Scholar 

  188. Cai, B., Li, Z. & Chen, C.-L. Programming amphiphilic peptoid oligomers for hierarchical assembly and inorganic crystallization. Acc. Chem. Res. 54, 81–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Tian, Y. et al. Nanotubes, plates, and needles: pathway-dependent self-assembly of computationally designed peptides. Biomacromolecules 19, 4286–4298 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Chen, C. et al. Design of multi-phase dynamic chemical networks. Nat. Chem. 9, 799–804 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Childers, W. S., Anthony, N. R., Mehta, A. K., Berland, K. M. & Lynn, D. G. Phase networks of cross-β peptide assemblies. Langmuir 28, 6386–6395 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Ma, X. et al. Tuning crystallization pathways through sequence engineering of biomimetic polymers. Nat. Mater. 16, 767–774 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Hsieh, M.-C., Lynn, D. G. & Grover, M. A. Kinetic model for two-step nucleation of peptide assembly. J. Phys. Chem. B 121, 7401–7411 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Nandakumar, A., Ito, Y. & Ueda, M. Solvent effects on the self-assembly of an amphiphilic polypeptide incorporating α-helical hydrophobic blocks. J. Am. Chem. Soc. 142, 20994–21003 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Wei, Y. et al. Supramolecular nanosheets assembled from poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) diblock copolymer containing crystallizable hydrophobic polypeptoid: crystallization driven assembly transition from filaments to nanosheets. Macromolecules 52, 1546–1556 (2019).

    Article  CAS  Google Scholar 

  196. Adamcik, J., Castelletto, V., Bolisetty, S., Hamley, I. W. & Mezzenga, R. Direct observation of time-resolved polymorphic states in the self-assembly of end-capped heptapeptides. Angew. Chem. Int. Ed. 50, 5495–5498 (2011).

    Article  CAS  Google Scholar 

  197. Ziserman, L., Lee, H.-Y., Raghavan, S. R., Mor, A. & Danino, D. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J. Am. Chem. Soc. 133, 2511–2517 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Zhao, M. et al. Hierarchical self-assembly pathways of peptoid helices and sheets. Biomacromolecules 23, 992–1008 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Jin, H. et al. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids. Nat. Commun. 9, 270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Keller, A. A note on single crystals in polymers: evidence for a folded chain configuration. Philos. Mag. 2, 1171–1175 (1957).

    Article  CAS  Google Scholar 

  201. Keller, A. & O’Connor, A. Study of single crystals and their associations in polymers. Discuss. Faraday Soc. 25, 114 (1958).

    Article  Google Scholar 

  202. Zhang, M., Guo, B.-H. & Xu, J. A review on polymer crystallization theories. Crystals 7, 4 (2016).

    Article  CAS  Google Scholar 

  203. Xu, J., Reiter, G. & Alamo, R. Concepts of nucleation in polymer crystallization. Crystals 11, 304 (2021).

    Article  CAS  Google Scholar 

  204. Xue, F. & Jiang, S. Crystallization behaviors and structure transitions of biocompatible and biodegradable diblock copolymers. Polymers 6, 2116–2145 (2014).

    Article  Google Scholar 

  205. Hong, Y. et al. Three-dimensional conformation of folded polymers in single crystals. Phys. Rev. Lett. 115, 168301 (2015).

    Article  PubMed  Google Scholar 

  206. Liu, J., Wang, C., Chen, Y. & Lan, Q. Multistep nucleation mechanism of poly(l-lactide) revealed by nanocrystallization in low-pressure carbon dioxide. ACS Appl. Polym. Mater. 4, 1126–1138 (2022).

    Article  CAS  Google Scholar 

  207. Kumaki, J., Kawauchi, T. & Yashima, E. Two-dimensional folded chain crystals of a synthetic polymer in a Langmuir–Blodgett film. J. Am. Chem. Soc. 127, 5788–5789 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Strobl, G. From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization? Eur. Phys. J. E 3, 165–183 (2000).

    Article  CAS  Google Scholar 

  209. Yuan, S. et al. Determination of local packing structure of mesomorphic form of isotactic polypropylene by solid-state NMR. ACS Macro Lett. 4, 143–146 (2015).

    Article  PubMed  Google Scholar 

  210. Su, F. et al. Coupling of multiscale orderings during flow-induced crystallization of isotactic polypropylene. Macromolecules 50, 1991–1997 (2017).

    Article  CAS  Google Scholar 

  211. Wang, S. et al. Structural unit of polymer crystallization in dilute solution as studied by solid-state NMR and 13C isotope labeling. Macromolecules 51, 8729–8737 (2018).

    Article  CAS  Google Scholar 

  212. Konishi, T. et al. Kinetics of polymer crystallization with aggregating small crystallites. Phys. Rev. Lett. 128, 107801 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Wang, S. et al. Solid-state NMR study of the chain trajectory and crystallization mechanism of poly(l-lactic acid) in dilute solution. Macromolecules 50, 6404–6414 (2017).

    Article  CAS  Google Scholar 

  214. MacFarlane, L., Zhao, C., Cai, J., Qiu, H. & Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 12, 4661–4682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Guerin, G., Rupar, P. A., Manners, I. & Winnik, M. A. Explosive dissolution and trapping of block copolymer seed crystallites. Nat. Commun. 9, 1158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Hurst, P. J., Rakowski, A. M. & Patterson, J. P. Ring-opening polymerization-induced crystallization-driven self-assembly of poly-L-lactide-block-polyethylene glycol block copolymers (ROPI-CDSA). Nat. Commun. 11, 4690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Jin, X. et al. Fusion growth of two-dimensional disklike micelles via liquid-crystallization-driven self-assembly. Macromolecules 55, 3831–3839 (2022).

    Article  CAS  Google Scholar 

  218. Hurst, P. J., Graham, A. A. & Patterson, J. P. Gaining structural control by modification of polymerization rate in ring-opening polymerization-induced crystallization-driven self-assembly. ACS Polym. Au 2, 501–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liao, J., Ye, C., Agrawal, P., Gu, Z. & Zhang, Y. S. Colloidal photonic crystals for biomedical applications. Small Struct. 2, 2000110 (2021).

    Article  CAS  Google Scholar 

  220. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Wang, S. et al. The emergence of valency in colloidal crystals through electron equivalents. Nat. Mater. 21, 580–587 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Wang, Z., Wang, F., Peng, Y., Zheng, Z. & Han, Y. Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Zhang, T. H. & Liu, X. Y. How does a transient amorphous precursor template crystallization. J. Am. Chem. Soc. 129, 13520–13526 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    Article  CAS  PubMed  Google Scholar 

  225. Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nat. Phys. 10, 73–79 (2014).

    Article  CAS  Google Scholar 

  226. Zhang, T. H. & Liu, X. Y. Nucleation: what happens at the initial stage? Angew. Chem. Int. Ed. 48, 1308–1312 (2009).

    Article  CAS  Google Scholar 

  227. Hensley, A., Jacobs, W. M. & Rogers, W. B. Self-assembly of photonic crystals by controlling the nucleation and growth of DNA-coated colloids. Proc. Natl Acad. Sci. USA 119, e2114050118 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Zhong, Y., Allen, V. R., Chen, J., Wang, Y. & Ye, X. Multistep crystallization of dynamic nanoparticle superlattices in nonaqueous solution. J. Am. Chem. Soc. 144, 14915–14922 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Bo, A. et al. Nanoscale faceting and ligand shell structure dominate the self‐assembly of nonpolar nanoparticles into superlattices. Adv. Mater. 34, 2109093 (2022).

    Article  CAS  Google Scholar 

  230. Luo, B. et al. Unravelling crystal growth of nanoparticles. Nat. Nanotechnol. 18, 589–595 (2023).

    Article  CAS  PubMed  Google Scholar 

  231. Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Liu, C. et al. “Colloid–Atom Duality” in the assembly dynamics of concave gold nanoarrows. J. Am. Chem. Soc. 142, 11669–11673 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Lavergne, F. A., Aarts, D. G. A. L. & Dullens, R. P. A. Anomalous grain growth in a polycrystalline monolayer of colloidal hard spheres. Phys. Rev. X 7, 041064 (2017).

    Google Scholar 

  234. Zheng, X.-J. et al. Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J. Phys. Chem. C 111, 4499–4502 (2007).

    Article  CAS  Google Scholar 

  235. Hu, M., Jiang, J.-S., Ji, R.-P. & Zeng, Y. Prussian blue mesocrystals prepared by a facile hydrothermal method. CrystEngComm 11, 2257–2259 (2009).

    Article  CAS  Google Scholar 

  236. Liang, J., Li, C. H. & Talham, D. R. Growth mechanisms of mesoscale Prussian blue analogue particles in modifier-free synthesis. Cryst. Growth Des. 20, 2713–2720 (2020).

    Article  CAS  Google Scholar 

  237. Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  238. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  239. Rood, J. A., Boggess, W. C., Noll, B. C. & Henderson, K. W. Assembly of a homochiral, body-centered cubic network composed of vertex-shared Mg12 cages: use of electrospray ionization mass spectrometry to monitor metal carboxylate nucleation. J. Am. Chem. Soc. 129, 13675–13682 (2007).

    Article  CAS  PubMed  Google Scholar 

  240. Seeber, G. et al. Following the self assembly of supramolecular MOFs using X-ray crystallography and cryospray mass spectrometry. Chem. Sci. 1, 62–67 (2010).

    Article  CAS  Google Scholar 

  241. Terban, M. W. et al. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale 10, 4291–4300 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Kollias, L., Rousseau, R., Glezakou, V.-A. & Salvalaglio, M. Understanding metal–organic framework nucleation from a solution with evolving graphs. J. Am. Chem. Soc. 144, 11099–11109 (2022).

    Article  CAS  PubMed  Google Scholar 

  243. Skjelstad, B. B., Hijikata, Y. & Maeda, S. Early-stage formation of the SIFSIX-3-Zn metal–organic framework: an automated computational study. Inorg. Chem. 62, 1210–1217 (2023).

    Article  CAS  PubMed  Google Scholar 

  244. Ramanan, A. & Whittingham, M. S. How molecules turn into solids: the case of self-assembled metal–organic frameworks. Cryst. Growth Des. 6, 2419–2421 (2006).

    Article  CAS  Google Scholar 

  245. Haouas, M., Volkringer, C., Loiseau, T., Férey, G. & Taulelle, F. In situ NMR, ex situ XRD aaudy of the hydrothermal crystallization of nanoporous aluminum trimesates MIL-96, MIL-100, and MIL-110. Chem. Mater. 24, 2462–2471 (2012).

    Article  CAS  Google Scholar 

  246. Férey, G., Haouas, M., Loiseau, T. & Taulelle, F. Nanoporous solids: how do they form? An in situ approach. Chem. Mater. 26, 299–309 (2014).

    Article  Google Scholar 

  247. Xu, H., Sommer, S., Broge, N. L. N., Gao, J. & Iversen, B. B. The chemistry of nucleation: in situ pair distribution function analysis of secondary building units during UiO-66 MOF formation. Chem. Eur. J. 25, 2051–2058 (2019).

    Article  CAS  PubMed  Google Scholar 

  248. Filez, M. et al. Elucidation of the pre-nucleation phase directing metal-organic framework formation. Cell Rep. Phys. Sci. 2, 100680 (2021).

    Article  CAS  Google Scholar 

  249. Xing, J., Schweighauser, L., Okada, S., Harano, K. & Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 10, 3608 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Peng, X. et al. Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat. Commun. 13, 5197 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Tsuruoka, T. et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed. 48, 4739–4743 (2009).

    Article  CAS  Google Scholar 

  252. Sikdar, N., Bhogra, M., Waghmare, U. V. & Maji, T. K. Oriented attachment growth of anisotropic meso/nanoscale MOFs: tunable surface area and CO2 separation. J. Mater. Chem. A 5, 20959–20968 (2017).

    Article  CAS  Google Scholar 

  253. Wang, Y. et al. Superstructure of a metal–organic framework derived from microdroplet flow reaction: an intermediate state of crystallization by particle attachment. ACS Nano 13, 2901–2912 (2019).

    Article  CAS  PubMed  Google Scholar 

  254. Jose, N. A., Varghese, J. J., Mushrif, S. H., Zeng, H. C. & Lapkin, A. A. Assembly of two-dimensional metal organic framework superstructures via solvent-mediated oriented attachment. J. Phys. Chem. C 125, 22837–22847 (2021).

    Article  CAS  Google Scholar 

  255. Gnanasekaran, K., Vailonis, K. M., Jenkins, D. M. & Gianneschi, N. C. In situ monitoring of the seeding and growth of silver metal–organic nanotubes by liquid-cell transmission electron microscopy. ACS Nano 14, 8735–8743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Salionov, D. et al. Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nat. Commun. 13, 3762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wen, X. et al. In situ optical spectroscopy for monitoring plasma-assisted formation of lanthanide metal–organic frameworks. Chem. Commun. 58, 5419–5422 (2022).

    Article  CAS  Google Scholar 

  258. Han, X. et al. Oriented attachment interfaces of zeolitic imidazolate framework nanocrystals. Nanoscale 15, 7703–7709 (2023).

    Article  CAS  PubMed  Google Scholar 

  259. Ma, M. et al. Real-space imaging of the node–linker coordination on the interfaces between self-assembled metal–organic frameworks. Nano Lett. 22, 9928–9934 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Tian, T. et al. A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  261. Zhang, J. & Su, C.-Y. Metal-organic gels: from discrete metallogelators to coordination polymers. Coord. Chem. Rev. 257, 1373–1408 (2013).

    Article  CAS  Google Scholar 

  262. Tam, A. Y.-Y. & Yam, V. W.-W. Recent advances in metallogels. Chem. Soc. Rev. 42, 1540–1567 (2013).

    Article  CAS  PubMed  Google Scholar 

  263. Cravillon, J. et al. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 50, 8067–8071 (2011).

    Article  CAS  Google Scholar 

  264. Saha, S. et al. Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering experiments. Cryst. Growth Des. 16, 2002–2010 (2016).

    Article  CAS  Google Scholar 

  265. Jin, B. et al. The role of amorphous ZIF in ZIF-8 crystallization kinetics and morphology. J. Cryst. Growth 603, 126989 (2023).

    Article  CAS  Google Scholar 

  266. Ogata, A. F. et al. Direct observation of amorphous precursor phases in the nucleation of protein–metal–organic frameworks. J. Am. Chem. Soc. 142, 1433–1442 (2020).

    Article  CAS  PubMed  Google Scholar 

  267. Liu, X. et al. Three-step nucleation of metal–organic framework nanocrystals. Proc. Natl Acad. Sci. USA 118, e2008880118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Venna, S. R., Jasinski, J. B. & Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Yeung, H. H.-M. et al. In situ observation of successive crystallizations and metastable intermediates in the formation of metal–organic frameworks. Angew. Chem. Int. Ed. 55, 2012–2016 (2016).

    Article  CAS  Google Scholar 

  270. Lee, S.-J. et al. Time-resolved in situ polymorphic transformation from one 12-connected Zr-MOF to another. ACS Mater. Lett. 2, 499–504 (2020).

    Article  CAS  Google Scholar 

  271. Stavitski, E. et al. Kinetic control of metal–organic framework crystallization investigated by time-resolved in situ X-ray scattering. Angew. Chem. Int. Ed. 50, 9624–9628 (2011).

    Article  CAS  Google Scholar 

  272. Wu, Y. et al. Exchange of coordinated solvent during crystallization of a metal–organic framework observed by in situ high-energy X-ray diffraction. Angew. Chem. Int. Ed. 55, 4992–4996 (2016).

    Article  CAS  Google Scholar 

  273. Breeze, M. I. et al. Structural variety in ytterbium dicarboxylate frameworks and in situ study diffraction of their solvothermal crystallisation. CrystEngComm 19, 2424–2433 (2017).

    Article  CAS  Google Scholar 

  274. Du Bois, D. R., Wright, K. R., Bellas, M. K., Wiesner, N. & Matzger, A. J. Linker deprotonation and structural evolution on the pathway to MOF-74. Inorg. Chem. 61, 4550–4554 (2022).

    Article  PubMed  Google Scholar 

  275. Anderson, S. L. et al. Formation pathways of metal–organic frameworks proceeding through partial dissolution of the metastable phase. CrystEngComm 19, 3407–3413 (2017).

    Article  CAS  Google Scholar 

  276. Smith, B. J. & Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014).

    Article  CAS  PubMed  Google Scholar 

  277. Smith, B. J. et al. Colloidal covalent organic frameworks. ACS Cent. Sci. 3, 58–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Smith, B. J., Overholts, A. C., Hwang, N. & Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 52, 3690–3693 (2016).

    Article  CAS  Google Scholar 

  279. Kong, W. et al. Amorphous-to-crystalline transformation toward controllable synthesis of fibrous covalent organic frameworks enabling promotion of proton transport. Chem. Commun. 55, 75–78 (2018).

    Article  Google Scholar 

  280. Xiong, Z. et al. Amorphous-to-crystalline transformation: general synthesis of hollow structured covalent organic frameworks with high crystallinity. J. Am. Chem. Soc. 144, 6583–6593 (2022).

    Article  CAS  PubMed  Google Scholar 

  281. Wang, S. et al. Toward covalent organic framework metastructures. J. Am. Chem. Soc. 143, 5003–5010 (2021).

    Article  CAS  PubMed  Google Scholar 

  282. Sasmal, H. S., Kumar Mahato, A., Majumder, P. & Banerjee, R. Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 144, 11482–11498 (2022).

    Article  CAS  PubMed  Google Scholar 

  283. Dighe, A. V. et al. Microkinetic insights into the role of catalyst and water activity on the nucleation, growth, and dissolution during COF-5 synthesis. Nanoscale 15, 9329–9338 (2023).

    Article  CAS  PubMed  Google Scholar 

  284. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  285. Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).

    Article  CAS  PubMed  Google Scholar 

  286. Gole, B. et al. Microtubular self-assembly of covalent organic frameworks. Angew. Chem. Int. Ed. 57, 846–850 (2018).

    Article  CAS  Google Scholar 

  287. He, Y. et al. High-density active site COFs with a flower-like morphology for energy storage applications. J. Mater. Chem. A 10, 11030–11038 (2022).

    Article  CAS  Google Scholar 

  288. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  PubMed  Google Scholar 

  289. Nguyen, V. & Grünwald, M. Microscopic origins of poor crystallinity in the synthesis of covalent organic framework COF-5. J. Am. Chem. Soc. 140, 3306–3311 (2018).

    Article  CAS  PubMed  Google Scholar 

  290. Feriante, C. et al. New mechanistic insights into the formation of imine-linked two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 18637–18644 (2020).

    Article  CAS  PubMed  Google Scholar 

  291. Miao, Z. et al. A novel strategy for the construction of covalent organic frameworks from nonporous covalent organic polymers. Angew. Chem. Int. Ed. 58, 4906–4910 (2019).

    Article  CAS  Google Scholar 

  292. Zhai, Y. et al. Construction of covalent-organic frameworks (COFs) from amorphous covalent organic polymers via linkage replacement. Angew. Chem. Int. Ed. 58, 17679–17683 (2019).

    Article  CAS  Google Scholar 

  293. Fan, C. et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 60, 18051–18058 (2021).

    Article  CAS  Google Scholar 

  294. Zhou, Z. et al. Growth of single-crystal imine-linked covalent organic frameworks using amphiphilic amino-acid derivatives in water. Nat. Chem. 15, 841–847 (2023).

    Article  CAS  PubMed  Google Scholar 

  295. Vailonis, K. M., Gnanasekaran, K., Powers, X. B., Gianneschi, N. C. & Jenkins, D. M. Elucidating the growth of metal–organic nanotubes combining isoreticular synthesis with liquid-cell transmission electron microscopy. J. Am. Chem. Soc. 141, 10177–10182 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their constructive feedback. This work was carried out at Pacific Northwest National Laboratory (PNNL) with support from the US Department of Energy (DOE) Office of Science (SC) Basic Energy Sciences (BES) programme. Review of biomacromolecules was supported by the US DOE SC BES as part of the Energy Frontier Research Centers programme: CSSAS (The Center for the Science of Synthesis Across Scales) under Award DE-SC0019288 (FWP 72448 at PNNL). Review of reticular framework materials and small organic molecules was supported by the US DOE SC BES Division of Materials Science and Engineering (MSE) Synthesis and Processing Sciences programme under Award FWP 67554 at PNNL. Review of colloids and techniques was supported by the US DOE SC BES MSE Biomolecular Materials programme under Award FWP 65357 at PNNL. J.S.D. acknowledges a Washington Research Foundation Postdoctoral Fellowship. Pacific Northwest National Laboratory is a multiprogramme national laboratory operated for the DOE by Battelle under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

J.S.D. and J.J.D.Y. conceived and defined the scope of this Review. J.S.D. drafted the introduction, the section ‘Technique selection for studying crystallization pathways’, the subsection ‘Organic molecular crystals’, the section ‘Non-classical crystallization in reticular framework materials’ and the section ‘Outlook’. Y.B. drafted the sections ‘Macromolecular crystals’ and ‘Colloidal crystals’. All authors discussed and edited the manuscript.

Corresponding author

Correspondence to James J. De Yoreo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J.S., Bae, Y. & De Yoreo, J.J. Non-classical crystallization in soft and organic materials. Nat Rev Mater 9, 229–248 (2024). https://doi.org/10.1038/s41578-023-00637-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00637-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing