Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Co-catalytic metal–support interactions in single-atom electrocatalysts

Abstract

Single-atom catalysts (SACs) are advantageous because every active atom is exposed at the surface, ensuring maximum utilization of catalytically active metals. To optimize the effectiveness of SACs, every atomic site needs to contribute to an accelerated reaction and retain this performance over extended use. The state-of-the-art approach for optimizing the catalytic properties of these atomic sites is through metal–support interactions. In this Review, we present the concept of co-catalytic interactions, in which both the single atom and the support are directly involved in catalysis by binding intermediates to enhance and alter the reaction mechanism. The power of this concept is highlighted for a range of important electrocatalytic reactions. First, we investigate the role of single atoms and supports in the reaction mechanism and explore the SAC designs that have successfully enhanced performance. We then discuss the synthetic targets and strategies for producing SACs that achieve co-reactant, functional group or intermediate binding for co-catalyst metal–support interactions. Finally, we offer a perspective on the future of SAC research and on the opportunities in co-catalytic metal–support interactions to further elevate electrocatalytic performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal–support interactions in single-atom catalysts.
Fig. 2: Metal–support interactions in water conversion technologies.
Fig. 3: Metal–support interactions in biomass conversion reactions.
Fig. 4: Metal–support interactions in direct liquid feed reactions.
Fig. 5: Metal–support interactions in CO2 reduction reaction.

Similar content being viewed by others

References

  1. Mitchell, S. & Pérez-Ramírez, J. Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  2. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  ADS  Google Scholar 

  3. Alinezhad, A. et al. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 141, 16202–16207 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Poerwoprajitno, A. R., Gloag, L., Cheong, S., Gooding, J. J. & Tilley, R. D. Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale 11, 18995–19011 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Gloag, L. et al. Synthesis of hierarchical metal nanostructures with high electrocatalytic surface areas. Sci. Adv. 9, eadf6075 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Ding, J., Ji, Y., Li, Y. & Hong, G. Monoatomic platinum-embedded hexagonal close-packed nickel anisotropic superstructures as highly efficient hydrogen evolution catalyst. Nano Lett. 21, 9381–9387 (2021).

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Cai, C. et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 11, 123–130 (2021).

    Article  CAS  Google Scholar 

  8. Dong, Q. et al. Ultrahigh mass activity for the hydrogen evolution reaction by anchoring platinum single atoms on active {100} facets of TiC via cation defect engineering. Adv. Funct. Mater. 33, 2210665 (2023).

    Article  CAS  Google Scholar 

  9. Hu, P. et al. Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53, 3418–3421 (2014).

    Article  CAS  Google Scholar 

  10. Li, Z. et al. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: recent advances and future perspectives. Nano Res. 14, 3795–3809 (2021).

    Article  CAS  ADS  Google Scholar 

  11. Yang, J., Li, W., Wang, D. & Li, Y. Electronic metal–support interaction of single‐atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020).

    Article  CAS  Google Scholar 

  12. Zheng, W. et al. Tailoring bond microenvironments and reaction pathways of single‐atom catalysts for efficient water electrolysis. Angew. Chem. Int. Ed. 61, e202208667 (2022).

    Article  CAS  Google Scholar 

  13. Chen, Y. et al. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 34, 2201796 (2022).

    Article  CAS  Google Scholar 

  14. Luo, Z., Zhao, G., Pan, H. & Sun, W. Strong metal–support interaction in heterogeneous catalysts. Adv. Energy Mater. 12, 2201395 (2022).

    Article  CAS  Google Scholar 

  15. Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Liu, D. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 7, 10254 (2016).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. Li, Z. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 12, 764–772 (2020).

    Article  PubMed  Google Scholar 

  18. Ge, R. et al. Selective electrooxidation of biomass‐derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel‐oxide‐supported ruthenium single‐atom catalyst. Angew. Chem. Int. Ed. 61, e202200211 (2022).

    Article  CAS  Google Scholar 

  19. Huang, L. et al. Shape-control of Pt–Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 140, 1142–1147 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, C. et al. Ruthenium‐based single‐atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9, 1803913 (2019).

    Article  Google Scholar 

  21. Zhai, P. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  22. Ge, J. et al. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B 298, 120557 (2021).

    Article  CAS  Google Scholar 

  23. Li, J. et al. Elucidating the critical role of ruthenium single atom sites in water dissociation and dehydrogenation behaviors for robust hydrazine oxidation‐boosted alkaline hydrogen evolution. Adv. Funct. Mater. 32, 2109439 (2022).

    Article  CAS  Google Scholar 

  24. Hung, S.-F. et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat. Commun. 13, 819 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  25. O’Mara, P. B. et al. Cascade reactions in nanozymes: spatially separated active sites inside Ag-core–porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 141, 14093–14097 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meng, D. et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel–nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 60, 25485–25492 (2021).

    Article  CAS  Google Scholar 

  27. Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  28. Shi, Y. et al. Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12, 3021 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Yan, Q.-Q. et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  30. Kuang, P. et al. Pt single atoms supported on N‐doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2‐evolution activity. Adv. Mater. 33, 2008599 (2021).

    Article  CAS  Google Scholar 

  31. Liu, Y. et al. Unraveling the function of metal–amorphous support interactions in single‐atom electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 134, e202114160 (2022).

    Article  ADS  Google Scholar 

  32. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Yang, J. et al. The electronic metal–support interaction directing the design of single atomic site catalysts: achieving high efficiency towards hydrogen evolution. Angew. Chem. Int. Ed. 60, 19085–19091 (2021).

    Article  CAS  Google Scholar 

  34. Zhang, Y. et al. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev. 461, 214493 (2022).

    Article  CAS  Google Scholar 

  35. Hu, C. et al. Main‐group metal single‐atomic regulators in dual‐metal catalysts for enhanced electrochemical CO2 reduction. Small 18, 2201391 (2022).

    Article  CAS  Google Scholar 

  36. Zhang, Z. et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat. Commun. 13, 2473 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  37. Chang, S. H. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat. Commun. 5, 4191 (2014).

    Article  CAS  ADS  PubMed  Google Scholar 

  38. Poerwoprajitno, A. R. et al. Formation of branched ruthenium nanoparticles for improved electrocatalysis of oxygen evolution reaction. Small 15, 1804577 (2019).

    Article  Google Scholar 

  39. Gloag, L. et al. Three-dimensional branched and faceted gold–ruthenium nanoparticles: using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 57, 10241–10245 (2018).

    Article  CAS  Google Scholar 

  40. Gloag, L. et al. A cubic-core hexagonal-branch mechanism to synthesize bimetallic branched and faceted Pd–Ru nanoparticles for oxygen evolution reaction electrocatalysis. J. Am. Chem. Soc. 140, 12760–12764 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Wan, W. et al. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 12, 5589 (2021).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  42. Yin, J. et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 142, 18378–18386 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, Y. et al. Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat. Commun. 13, 7754 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  44. Li, S. et al. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 20, 1240–1247 (2021).

    Article  CAS  ADS  PubMed  Google Scholar 

  45. Zheng, Y. et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    Article  CAS  Google Scholar 

  47. Han, X. et al. Atomically dispersed binary Co‐Ni sites in nitrogen‐doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019).

    Article  CAS  ADS  Google Scholar 

  48. Fang, C. et al. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 14, 4449 (2023).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  49. Yu, Z. et al. Iridium–iron diatomic active sites for efficient bifunctional oxygen electrocatalysis. ACS Catal. 12, 9397–9409 (2022).

    Article  CAS  Google Scholar 

  50. Shah, K. et al. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew. Chem. Int. Ed. 61, e202114951 (2022).

    Article  CAS  ADS  Google Scholar 

  51. Li, Y. et al. Reversely trapping isolated atoms in high oxidation state for accelerating the oxygen evolution reaction kinetics. Angew. Chem. Int. Ed. 62, e202309341 (2023).

    Article  CAS  ADS  Google Scholar 

  52. Zhang, F.-F. et al. Iridium oxide modified with silver single atom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett. 6, 1588–1595 (2021).

    Article  CAS  Google Scholar 

  53. Li, J. et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56, 15594–15598 (2017).

    Article  CAS  Google Scholar 

  54. Wang, Y. et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 60, 5708–5711 (2021).

    Article  CAS  Google Scholar 

  55. Huang, Z. et al. A highly efficient pH‐universal HOR catalyst with engineered electronic structures of single Pt sites by isolated Co atoms. Adv. Funct. Mater. 33, 2306333 (2023).

    Article  CAS  Google Scholar 

  56. Sahoo, S., Dekel, D. R., Maric, R. & Alpay, S. P. Atomistic insights into the hydrogen oxidation reaction of palladium-ceria bifunctional catalysts for anion-exchange membrane fuel cells. ACS Catal. 11, 2561–2571 (2021).

    Article  CAS  Google Scholar 

  57. Wang, L. et al. Stabilizing low‐valence single atoms by constructing metalloid tungsten carbide supports for efficient hydrogen oxidation and evolution. Angew. Chem. Int. Ed. 135, e202311937 (2023).

    Article  Google Scholar 

  58. Ma, M. et al. Single‐atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 12, 2103336 (2022).

    Article  CAS  Google Scholar 

  59. Chen, L. et al. Platinum–ruthenium single atom alloy as a bifunctional electrocatalyst toward methanol and hydrogen oxidation reactions. ACS Appl. Mater. Interfaces 14, 27814–27822 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, X. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 14, 3767 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Bender, M. T., Yuan, X., Goetz, M. K. & Choi, K.-S. Electrochemical hydrogenation, hydrogenolysis, and dehydrogenation for reductive and oxidative biomass upgrading using 5-hydroxymethylfurfural as a model system. ACS Catal. 12, 12349–12368 (2022).

    Article  CAS  Google Scholar 

  62. Yang, Y. & Mu, T. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chem. 23, 4228–4254 (2021).

    Article  CAS  Google Scholar 

  63. Poerwoprajitno, A. R. et al. Faceted branched nickel nanoparticles with tunable branch length for high‐activity electrocatalytic oxidation of biomass. Angew. Chem. Int. Ed. 59, 15487–15491 (2020).

    Article  CAS  Google Scholar 

  64. Chen, W. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6, 2974–2993 (2020).

    Article  CAS  Google Scholar 

  65. Tao, Y. et al. CuxCo3–xO4 spinel nanofibers for selective oxidation of 5-hydroxymethylfurfural into fuel additives. ACS Appl. Nano Mater. 5, 16564–16572 (2022).

    Article  CAS  Google Scholar 

  66. Nam, D.-H., Taitt, B. J. & Choi, K.-S. Copper-based catalytic anodes to produce 2,5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid. ACS Catal. 8, 1197–1206 (2018).

    Article  CAS  Google Scholar 

  67. Xu, C., Paone, E., Rodríguez-Padrón, D., Luque, R. & Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 49, 4273–4306 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Li, C. & Na, Y. Recent advances in photocatalytic oxidation of 5‐hydroxymethylfurfural. ChemPhotoChem 5, 502–511 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  69. Lee, D. K. et al. The impact of 5‐hydroxymethylfurfural (HMF)‐metal interactions on the electrochemical reduction pathways of HMF on various metal electrodes. ChemSusChem 14, 4563–4572 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Ji, K. et al. Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural promoted by a Ru1Cu single‐atom alloy catalyst. Angew. Chem. Int. Ed. 61, e202209849 (2022).

    Article  CAS  ADS  Google Scholar 

  71. Tilley, R. D. & Gooding, J. J. Electrocatalysis: understanding platinum migration. Nat. Energy 1, 16174 (2016).

    Article  CAS  ADS  Google Scholar 

  72. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  ADS  PubMed  Google Scholar 

  73. Papanikolaou, K. G., Darby, M. T. & Stamatakis, M. Engineering the surface architecture of highly dilute alloys: an ab initio Monte Carlo approach. ACS Catal. 10, 1224–1236 (2020).

    Article  CAS  Google Scholar 

  74. Zheng, K., Fung, V., Yuan, X., Jiang, D. & Xie, J. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 141, 18977–18983 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Lu, S. et al. Unveiling the structural transformation and activity origin of heteroatom-doped carbons for hydrogen evolution. Proc. Natl Acad. Sci. USA 120, e2300549120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ren, M. et al. Interlayer palladium-single-atom-coordinated cyano-group-rich graphitic carbon nitride for enhanced photocatalytic hydrogen production performance. ACS Catal. 12, 5077–5093 (2022).

    Article  CAS  Google Scholar 

  77. Zhang, E. et al. Engineering the local atomic environments of indium single‐atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202117347 (2022).

    Article  CAS  ADS  Google Scholar 

  78. Zhang, L. et al. Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  79. Xie, Y. et al. Direct oxygen–oxygen cleavage through optimizing interatomic distances in dual single‐atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202301833 (2023).

    Article  CAS  Google Scholar 

  80. Li, R. & Wang, D. Superiority of dual‐atom catalysts in electrocatalysis: one step further than single‐atom catalysts. Adv. Energy Mater. 12, 2103564 (2022).

    Article  CAS  Google Scholar 

  81. Zhou, Y. et al. Dual‐metal interbonding as the chemical facilitator for single‐atom dispersions. Adv. Mater. 32, 2003484 (2020).

    Article  CAS  Google Scholar 

  82. Zhu, P. et al. Regulating the FeN4 moiety by constructing Fe–Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 22, 9507–9515 (2022).

    Article  CAS  ADS  PubMed  Google Scholar 

  83. Kakati, N. et al. Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru? Chem. Rev. 114, 12397–12429 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Cuesta, A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. J. Am. Chem. Soc. 128, 13332–13333 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Tripković, A. V. et al. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim. Acta 47, 3707–3714 (2002).

    Article  Google Scholar 

  86. Wang, Q. et al. Manipulating the surface composition of Pt–Ru bimetallic nanoparticles to control the methanol oxidation reaction pathway. Chem. Commun. 56, 2419–2422 (2020).

    Article  CAS  Google Scholar 

  87. Zhao, L. et al. The oxidation of methanol on PtRu(111): a periodic density functional theory investigation. J. Phys. Chem. C 119, 20389–20400 (2015).

    Article  CAS  Google Scholar 

  88. You, G. et al. PtPd(111) surface versus PtAu(111) surface: which one is more active for methanol oxidation? ACS Catal. 8, 132–143 (2018).

    Article  CAS  Google Scholar 

  89. Kim, H. et al. Palladium single‐atom catalysts supported on C@C3N4 for electrochemical reactions. ChemElectroChem 6, 4757–4764 (2019).

    Article  CAS  Google Scholar 

  90. Kim, Y.-T. et al. Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Ed. 45, 407–411 (2006).

    Article  CAS  Google Scholar 

  91. Awoke, Y. A. et al. The synergistic effect Pt1-W dual sites as a highly active and durable catalyst for electrochemical methanol oxidation. Electrochim. Acta 432, 141161 (2022).

    Article  CAS  Google Scholar 

  92. Sun, S. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013).

    Article  PubMed Central  Google Scholar 

  93. Poerwoprajitno, A. R. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 5, 231–237 (2022).

    Article  CAS  Google Scholar 

  94. Zhang, Z. et al. Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 12, 5235 (2021).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  95. Poerwoprajitno, A. R. et al. Tuning the Pt–Ru atomic neighbors for active and stable methanol oxidation electrocatalysis. Chem. Mater. 35, 10724–10729 (2023).

    Article  CAS  Google Scholar 

  96. Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, X., Granda-Marulanda, L. P., McCrum, I. T. & Koper, M. T. M. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 13, 38 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  98. Liang, M. et al. Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC. Nano Res. 15, 1221–1229 (2022).

    Article  CAS  ADS  Google Scholar 

  99. Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    Article  CAS  ADS  PubMed  Google Scholar 

  100. Shen, T. et al. Engineering Ir atomic configuration for switching the pathway of formic acid electrooxidation reaction. Adv. Funct. Mater. 32, 2107672 (2022).

    Article  CAS  Google Scholar 

  101. Peng, Z. & Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2, 406–415 (2009).

    Article  CAS  Google Scholar 

  102. Liu, M. et al. Ligand‐mediated self‐terminating growth of single‐atom Pt on Au nanocrystals for improved formic acid oxidation activity. Adv. Energy Mater. 12, 2103195 (2022).

    Article  CAS  Google Scholar 

  103. Duchesne, P. N. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018).

    Article  CAS  ADS  PubMed  Google Scholar 

  104. Li, J., Liang, X., Cai, L., Huang, S. & Zhao, C. Modification of palladium nanocrystals with single atom platinum via an electrochemical self-catalysis strategy for efficient formic acid electrooxidation. ACS Appl. Mater. Interfaces 14, 8001–8009 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, H. et al. PdBi single‐atom alloy aerogels for efficient ethanol oxidation. Adv. Funct. Mater. 31, 2103465 (2021).

    Article  CAS  Google Scholar 

  106. Wang, H. et al. Pd metallene aerogels with single-atom W doping for selective ethanol oxidation. ACS Nano 16, 21266–21274 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, G. et al. Tuning the selective ethanol oxidation on tensile‐trained Pt(110) surface by Ir single atoms. Small 18, 2202587 (2022).

    Article  CAS  Google Scholar 

  108. Luo, S. et al. A tensile‐strained Pt–Rh single‐atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 33, 2008508 (2021).

    Article  CAS  Google Scholar 

  109. Nguyen, T. N., Salehi, M., van Le, Q., Seifitokaldani, A. & Dinh, C. T. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 10, 10068–10095 (2020).

    Article  Google Scholar 

  110. Zhang, L., Zhao, Z.-J. & Gong, J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).

    Article  CAS  Google Scholar 

  111. Thevenon, A., Rosas-Hernández, A., Fontani Herreros, A. M., Agapie, T. & Peters, J. C. Dramatic HER suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction. ACS Catal. 11, 4530–4537 (2021).

    Article  CAS  Google Scholar 

  112. Zhang, Y.-J., Sethuraman, V., Michalsky, R. & Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014).

    Article  CAS  Google Scholar 

  113. Cheng, M., Clark, E. L., Pham, H. H., Bell, A. T. & Head-gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 6, 7769–7777 (2016).

    Article  CAS  Google Scholar 

  114. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    Article  CAS  Google Scholar 

  115. Zhang, N. et al. A supported Pd2 dual‐atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 13388–13393 (2021).

    Article  CAS  ADS  Google Scholar 

  116. Jiang, J.-C. et al. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 15, 7116–7123 (2022).

    Article  CAS  ADS  Google Scholar 

  117. Wang, Y. et al. CO electroreduction on single-atom copper. Sci. Adv. 9, eade3557 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Yan, Z. et al. Recent progress in electrocatalytic conversion of CO2 to valuable C2 products. Adv. Mater. Interfaces 10, 2300186 (2023).

    Article  CAS  Google Scholar 

  119. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  120. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  121. Yin, Z. et al. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144, 20931–20938 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, L., Tang, C., Zheng, Y., Skúlason, E. & Jiao, Y. C3 production from CO2 reduction by concerted *CO trimerization on a single-atom alloy catalyst. J. Mater. Chem. A 10, 5998–6006 (2022).

    Article  CAS  Google Scholar 

  123. Back, S., Yeom, M. S. & Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

    Article  CAS  Google Scholar 

  124. Liu, W., Tkatchenko, A. & Scheffler, M. Modeling adsorption and reactions of organic molecules at metal surfaces. Acc. Chem. Res. 47, 3369–3377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hsu, C.-S. et al. Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction. Nat. Commun. 14, 5245 (2023).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  126. Hu, Y. et al. Atomic modulation of single dispersed Ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting. ACS Catal. 13, 11195–11203 (2023).

    Article  CAS  Google Scholar 

  127. Deng, X., Alfonso, D., Nguyen-Phan, T.-D. & Kauffman, D. R. Resolving the size-dependent transition between CO2 reduction reaction and H2 evolution reaction selectivity in sub-5 nm silver nanoparticle electrocatalysts. ACS Catal. 12, 5921–5929 (2022).

    Article  CAS  Google Scholar 

  128. Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    Article  CAS  Google Scholar 

  129. Wang, C. et al. Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction. Nat. Commun. 14, 5108 (2023).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  130. Wang, D. et al. Oxygen‐bridged copper–iron atomic pair as dual‐metal active sites for boosting electrocatalytic NO reduction. Adv. Mater. 35, e2304646 (2023).

    Article  PubMed  Google Scholar 

  131. Li, Y. et al. Single‐atom iron catalyst with biomimetic active center to accelerate proton spillover for medical‐level electrosynthesis of H2O2 disinfectant. Angew. Chem. Int. Ed. 62, e202306491 (2023).

    Article  CAS  ADS  Google Scholar 

  132. Yang, J. et al. Regulating the tip effect on single‐atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem. Int. Ed. 61, e202200366 (2022).

    Article  CAS  Google Scholar 

  133. Speck, F. D. et al. Atomistic insights into the stability of Pt single-atom electrocatalysts. J. Am. Chem. Soc. 142, 15496–15504 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Bai, X. et al. Dynamic stability of copper single-atom catalysts under working conditions. J. Am. Chem. Soc. 144, 17140–17148 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Yang, Q., Yang, C.-C., Lin, C.-H. & Jiang, H.-L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem. Int. Ed. 58, 3511–3515 (2019).

    Article  CAS  Google Scholar 

  136. Ye, C., Zhang, N., Wang, D. & Li, Y. Single atomic site catalysts: synthesis, characterization, and applications. Chem. Commun. 56, 7687–7697 (2020).

    Article  CAS  Google Scholar 

  137. Zhang, H., Jin, X., Lee, J.-M. & Wang, X. Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano 16, 17572–17592 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fang, J., Chen, Q., Li, Z., Mao, J. & Li, Y. The synthesis of single-atom catalysts for heterogeneous catalysis. Chem. Commun. 59, 2854–2868 (2023).

    Article  CAS  Google Scholar 

  139. Zheng, X., Li, B., Wang, Q., Wang, D. & Li, Y. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 15, 7806–7839 (2022).

    Article  CAS  ADS  Google Scholar 

  140. Yang, X. et al. Review of emerging atomically precise composite site‐based electrocatalysts. Adv. Energy Mater. https://doi.org/10.1002/aenm.202301737 (2023).

  141. Qi, Z., Zhou, Y., Guan, R., Fu, Y. & Baek, J. Tuning the coordination environment of carbon‐based single‐atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv. Mater. 35, 2210575 (2023).

    Article  CAS  Google Scholar 

  142. Gao, Y., Liu, B. & Wang, D. Microenvironment engineering of single/dual‐atom catalysts for electrocatalytic application. Adv. Mater. 35, 2209654 (2023).

    Article  CAS  Google Scholar 

  143. Shi, B. et al. Fe single-atom catalyst for cost-effective yet highly efficient heterogeneous Fenton catalysis. ACS Appl. Mater. Interfaces 14, 53767–53776 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Ji, D. et al. Atomically transition metals on self‐supported porous carbon flake arrays as binder‐free air cathode for wearable zinc−air batteries. Adv. Mater. 31, 1808267 (2019).

    Article  Google Scholar 

  145. Mou, K. et al. Highly efficient electroreduction of CO2 on nickel single‐atom catalysts: atom trapping and nitrogen anchoring. Small 15, 1903668 (2019).

    Article  CAS  Google Scholar 

  146. Tian, H. et al. High durability of Fe–N–C single atom catalysts with carbon vacancies towards oxygen reduction reaction in alkaline media. Adv. Mater. 35, 2210714 (2023).

    Article  CAS  Google Scholar 

  147. Chen, X. et al. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 11, 25976–25985 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Sun, K. et al. Nature‐inspired design of molybdenum–selenium dual‐single‐atom electrocatalysts for CO2 reduction. Adv. Mater. 34, 2206478 (2022).

    Article  CAS  Google Scholar 

  149. Yu, L.-Q. et al. Universal method to fabricate transition metal single-atom-anchored carbon with excellent oxygen reduction reaction activity. ACS Appl. Mater. Interfaces 13, 13534–13540 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, S. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem. Int. Ed. 59, 21698–21705 (2020).

    Article  CAS  Google Scholar 

  151. Li, X. et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal. 11, 7450–7459 (2021).

    Article  CAS  Google Scholar 

  152. Zhao, W. et al. Pt–Ru dimer electrocatalyst with electron redistribution for hydrogen evolution reaction. ACS Catal. 12, 5540–5548 (2022).

    Article  CAS  Google Scholar 

  153. Li, Y. et al. Atomically dispersed dual‐metal site catalysts for enhanced CO2 reduction: mechanistic insight into active site structures. Angew. Chem. Int. Ed. 61, e202205632 (2022).

    Article  CAS  Google Scholar 

  154. Pei, Z. et al. Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem. Int. Ed. 61, e202207537 (2022).

    Article  CAS  ADS  Google Scholar 

  155. Wang, Y. et al. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 7, 640–649 (2022).

    Article  CAS  Google Scholar 

  156. Kunwar, D. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9, 3978–3990 (2019).

    Article  CAS  Google Scholar 

  157. Wang, Q. et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 142, 7425–7433 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Hejazi, S. et al. On the controlled loading of single platinum atoms as a co‐catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 32, 1908505 (2020).

    Article  CAS  Google Scholar 

  159. Ling, Y. et al. General strategy toward hydrophilic single atom catalysts for efficient selective hydrogenation. Adv. Sci. 9, 2202144 (2022).

    Article  CAS  Google Scholar 

  160. Xu, H. et al. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 20, 5482–5489 (2020).

    Article  CAS  ADS  PubMed  Google Scholar 

  161. Zhang, Z. et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11, 1215 (2020).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  162. Li, H. et al. Vapor-phase self-assembly for generating thermally stable single-atom catalysts. Chem 8, 731–748 (2022).

    Article  Google Scholar 

  163. Wang, Z. et al. Titania‐supported Cu‐single‐atom catalyst for electrochemical reduction of acetylene to ethylene at low‐concentrations with suppressed hydrogen evolution. Adv. Mater. 35, e2303818 (2023).

    Article  PubMed  Google Scholar 

  164. Chen, Z. et al. Stabilizing Pt single atoms through Pt−Se electron bridges on vacancy‐enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 62, e202308686 (2023).

    Article  CAS  ADS  Google Scholar 

  165. Shi, Y. et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat. Commun. 11, 4558 (2020).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  166. Chao, T. et al. Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56, 16047–16051 (2017).

    Article  CAS  Google Scholar 

  167. Kong, F. et al. Selectively coupling Ru single atoms to PtNi concavities for high‐performance methanol oxidation via d‐band center regulation. Angew. Chem. Int. Ed. 61, e202207524 (2022).

    Article  CAS  ADS  Google Scholar 

  168. Liu, S. et al. Awakening (220) as one more active facet of PtMo alloy via single‐atom doping to boost ammonia electrooxidation in direct ammonia fuel cell. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202306204 (2023).

  169. Wang, Y.-R. et al. Reduction-controlled atomic migration for single atom alloy library. Nano Lett. 22, 4232–4239 (2022).

    Article  CAS  ADS  PubMed  Google Scholar 

  170. Du, C. et al. Selectively reducing nitrate into NH3 in neutral media by PdCu single-atom alloy electrocatalysis. ACS Catal. 13, 10560–10569 (2023).

    Article  CAS  Google Scholar 

  171. Xia, W. et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145, 17253–17264 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Cao, S. et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat. Chem. 11, 1098–1105 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Liu, Y. et al. Unraveling the function of metal–amorphous support interactions in single‐atom electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 61, e202114160 (2022).

    Article  CAS  ADS  Google Scholar 

  174. Shan, J. et al. Integrating interactive noble metal single-atom catalysts into transition metal oxide lattices. J. Am. Chem. Soc. 144, 23214–23222 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Zeng, R. et al. Atomically site synergistic effects of dual-atom nanozyme enhances peroxidase-like properties. Nano Lett. 23, 6073–6080 (2023).

    Article  CAS  ADS  PubMed  Google Scholar 

  176. Yang, S. et al. Metal single-atom and nanoparticle double-active-site relay catalysts: design, preparation, and application to the oxidation of 5-hydroxymethylfurfural. ACS Catal. 12, 971–981 (2022).

    Article  CAS  Google Scholar 

  177. Ye, X. et al. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1–In2O3 single-atom catalyst. J. Am. Chem. Soc. 142, 19001–19005 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Zhang, J. et al. Competitive adsorption: reducing the poisoning effect of adsorbed hydroxyl on Ru single‐atom site with SnO2 for efficient hydrogen evolution. Angew. Chem. Int. Ed. 61, e202209486 (2022).

    Article  CAS  ADS  Google Scholar 

  179. Yang, S. & Lee, H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal. 3, 437–443 (2013).

    Article  CAS  Google Scholar 

  180. Zhang, X. et al. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 10, 5812 (2019).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  181. Wang, Y. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem. Int. Ed. 61, e202115735 (2022).

    Article  CAS  ADS  Google Scholar 

  182. Zhu, Y. et al. Supported ruthenium single‐atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. 35, 2301133 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding under the Australian Research Council’s Discovery Project (R.D.T., DP200100143 and DP230100596; J.J.G., DP210102698), Centre of Excellence (R.D.T., CE230100032) and Training Centre IC210100056 and National Health and Medical Research Council Investigator grant (J.J.G., GNT1196648). S.V.S. acknowledges support from the Australian Government Research Training Program (RTP) Scholarship. They also acknowledge support from Microscopy Australia and the Mark Wainwright Analytical Centre and Electron Microscope Unit at the University of New South Wales.

Author information

Authors and Affiliations

Authors

Contributions

L.G., S.V.S. and R.D.T. researched data for the article. L.G. and R.D.T. contributed substantially to the discussion of the content. L.G., J.J.G. and R.D.T. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Richard D. Tilley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Dingsheng Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gloag, L., Somerville, S.V., Gooding, J.J. et al. Co-catalytic metal–support interactions in single-atom electrocatalysts. Nat Rev Mater 9, 173–189 (2024). https://doi.org/10.1038/s41578-023-00633-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00633-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing