Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in heterogeneous single-cluster catalysis

Abstract

Heterogeneous single-cluster catalysts (SCCs) comprising atomically precise and isolated metal clusters stabilized on appropriately chosen supports offer exciting prospects for enabling novel chemical reactions owing to their broad structural diversity with unparalled opportunities for engineering their properties. Although the pioneering work revealed intriguing performance trends of size-selected metal clusters deposited on supports, synthetic and analytical challenges hindered a thorough understanding of surface chemistry under realistic conditions. This Review underscores the importance of considering the cluster environment in SCCs, encompassing the development of robust metal–support interactions, precise control over the ligand sphere, the influence of reaction media and dynamic behaviour, to uncover new reactivities. Through examples, we illustrate the criticality of tailoring the entire catalytic ensemble in SCCs to achieve stable and selective performance with practically relevant metal coverages. This expansion in application scope transcends from model reactions to complex and technically relevant reactions. Furthermore, we provide a perspective on the opportunities and future directions for SCC design within this rapidly evolving field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defining features of single-cluster catalysts.
Fig. 2: Synthetic strategies for producing single-cluster catalysts.
Fig. 3: Properties of single-cluster catalysts.
Fig. 4: Enhancing reactivity of single-cluster catalysts.
Fig. 5: Reported property–performance relationships on single-cluster catalysts.
Fig. 6: Conceptual strategies for discovering new reactivity of single-cluster catalysts.
Fig. 7: Structural dynamics of single-cluster catalysts.
Fig. 8: Roadmap for single-cluster catalyst development.

Similar content being viewed by others

References

  1. Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    Article  CAS  Google Scholar 

  2. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell, S., Qin, R., Zheng, N. & Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2021). This paper examines how nanoscale engineering can enhance the selectivity and stability of heterogeneous catalysts.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, Z.-J. et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019).

    Article  Google Scholar 

  5. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  6. Zhang, J., Yang, H. B., Zhou, D. & Liu, B. Adsorption energy in oxygen electrocatalysis. Chem. Rev. 122, 17028–17072 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  8. Zhao, X., Levell, Z. H., Yu, S. & Liu, Y. Atomistic understanding of two-dimensional electrocatalysts from first principles. Chem. Rev. 122, 10675–10709 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Li, X. et al. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 12, 2351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo, Y., Wang, M., Zhu, Q., Xiao, D. & Ma, D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 5, 766–776 (2022).

    Article  CAS  Google Scholar 

  11. Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2021).

    Article  Google Scholar 

  12. Yang, H. et al. Catalytically active atomically thin cuprate with periodic Cu single sites. Natl Sci. Rev. 10, nwac100 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Heiz, U. & Schneider, W.-D. Size-selected clusters on solid surfaces. Crit. Rev. Solid State Mater. Sci. 26, 251–290 (2001).

    Article  CAS  Google Scholar 

  14. Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Vajda, S. & White, M. G. Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).

    Article  CAS  Google Scholar 

  16. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell, S. & Pérez-Ramírez, J. Atomically precise control in the design of low-nuclearity supported metal catalysts. Nat. Rev. Mater. 6, 969–985 (2021).

    Article  Google Scholar 

  19. Sun, L., Reddu, V. & Wang, X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem. Soc. Rev. 51, 8923–8956 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015). This paper summarizes work on size-selected supported clusters to provide a mechanistic understanding of their catalytic properties.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018). This paper is one of the earliest papers using the term of SCCs.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ma, X.-L., Liu, J.-C., Xiao, H. & Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 140, 46–49 (2018). This paper first introduces the term SCC.

    Article  CAS  PubMed  Google Scholar 

  23. Xing, D.-H., Xu, C.-Q., Wang, Y.-G. & Li, J. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters. J. Phys. Chem. C 123, 10494–10500 (2019).

    Article  CAS  Google Scholar 

  24. Yao, C. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 11, 4389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rong, H., Ji, S., Zhang, J., Wang, D. & Li, Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020). This review presents the progress of the synthesis of supported atomic clusters and highlights how the structure affects catalytic properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, A. et al. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. Int. Ed. Engl. 135, e202303185 (2023).

    Article  Google Scholar 

  27. Tian, S. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 12, 3181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, N. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. Engl. 60, 13388–13393 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, C. et al. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 33, 2003327 (2021). This paper is a representative paper about dual-atom catalysts, which can be seen as the simplest form of SCCs.

    Article  CAS  Google Scholar 

  30. Gu, J. et al. Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021). This paper reports the enhanced stability of SCCs compared with SACs.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y. et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, L. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ye, W. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5, 2865–2878 (2019).

    Article  CAS  Google Scholar 

  34. Ren, W. et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. Engl. 58, 6972–6976 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Imaoka, T. et al. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat. Commun. 8, 688 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wei, Y. S. et al. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. Engl. 59, 16013–16022 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, Y. et al. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 11, 1404–1410 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Dai, S. et al. Platinum-trimer decorated cobalt–palladium core–shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 10, 440 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, J. et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Xia, Y., Yang, H. & Campbell, T. C. Nanoparticles for catalysis. Acc. Chem. Res. 46, 1671–1672 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Yan, H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ji, S. et al. Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139, 9795–9798 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Tian, S. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao, Y. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl Acad. Sci. USA 115, 2902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ji, S. et al. Atomically dispersed ruthenium species inside metal–organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. Engl. 58, 4271–4275 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Li, X. et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, L., Ren, Y., Liu, W., Wang, A. & Zhang, T. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl Sci. Rev. 5, 653–672 (2018).

    Article  CAS  Google Scholar 

  51. Fortea-Pérez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017).

    Article  PubMed  Google Scholar 

  52. Lu, Z. Y. et al. An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019).

    Article  CAS  Google Scholar 

  53. Liu, J., Cao, D., Xu, H. & Cheng, D. From double-atom catalysts to single-cluster catalysts: a new frontier in heterogeneous catalysis. Nano Sel. 2, 251–270 (2021).

    Article  CAS  Google Scholar 

  54. Pei, W. et al. Immobilized trimeric metal clusters: a family of the smallest catalysts for selective CO2 reduction toward multi-carbon products. Nano Energy 76, 105049 (2020).

    Article  CAS  Google Scholar 

  55. Liu, J.-C., Xiao, H. & Li, J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 142, 3375–3383 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Z. et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 33, 2104718 (2021).

    Article  CAS  Google Scholar 

  57. Wang, Y. et al. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 7, 640–649 (2022).

    Article  CAS  Google Scholar 

  58. Ling, C. et al. Atomic-layered Cu5 nanoclusters on FeS2 with dual catalytic sites for efficient and selective H2O2 activation. Angew. Chem. Int. Ed. Engl. 134, e202200670 (2022).

    Article  Google Scholar 

  59. Yan, X. et al. Atomically dispersed Co2MnN8 triatomic sites anchored in N-doped carbon enabling efficient oxygen reduction reaction. Adv. Mater. https://doi.org/10.1002/adma.202210975 (2023).

  60. Sun, X. et al. Palladium dimer supported on Mo2Co2(Mxene) for direct methane to methanol conversion. Adv. Theory Simul. 2, 1800158 (2019).

    Article  Google Scholar 

  61. Zhang, S. et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 6, 7938 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Li, X. et al. Atomically precise single metal oxide cluster catalyst with oxygen-controlled activity. Adv. Funct. Mater. 32, 2200933 (2022).

    Article  CAS  Google Scholar 

  63. Baxter, E. T., Ha, M.-A., Cass, A. C., Alexandrova, A. N. & Anderson, S. L. Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: strong cluster size dependence linked to preferred catalyst morphologies. ACS Catal. 7, 3322–3335 (2017).

    Article  CAS  Google Scholar 

  64. Ren, Y., Yang, Y., Zhao, Y.-X. & He, S.-G. Conversion of methane with oxygen to produce hydrogen catalyzed by triatomic Rh3−cluster anion. JACS Au 2, 197–203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Watanabe, Y. Atomically precise cluster catalysis towards quantum controlled catalysts. Sci. Technol. Adv. Mater. 15, 063501 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jimenez-Izal, E. & Alexandrova, A. N. Computational design of clusters for catalysis. Annu. Rev. Phys. Chem. 69, 377–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Kwon, G. et al. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7, 5808–5817 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Halder, A. et al. Water oxidation catalysis via size-selected iridium clusters. J. Phys. Chem. C 122, 9965–9972 (2018).

    Article  CAS  Google Scholar 

  70. Xiao, M. et al. Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy 46, 396–403 (2018).

    Article  CAS  Google Scholar 

  71. Liu, D. et al. Distinguished Zn,Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries. Nano Energy 58, 277–283 (2019).

    Article  CAS  Google Scholar 

  72. Wang, J. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11, 3375–3379 (2018).

    Article  CAS  Google Scholar 

  73. Jiang, M. et al. Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 93, 106793 (2022).

    Article  CAS  Google Scholar 

  74. Zhang, T. et al. Dual-atom nickel moieties of Ni(II)2N42-N)2 anchored on alfalfa-derived developed porous N-doped carbon for high-performance Li-S battery. Small 18, 2201996 (2022).

    Article  CAS  Google Scholar 

  75. Zeng, X. et al. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 8, 1701345 (2018).

    Article  Google Scholar 

  76. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, X. et al. Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv. Mater. 32, 2004382 (2020).

    Article  CAS  Google Scholar 

  78. Kaden, W. E., Wu, T., Kunkel, W. A. & Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Lu, J. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 5, 4895 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, C. et al. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J. Am. Chem. Soc. 137, 8676–8679 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Yang, B. et al. Copper cluster size effect in methanol synthesis from CO2. J. Phys. Chem. C 121, 10406–10412 (2017).

    Article  CAS  Google Scholar 

  82. Taketoshi, A. & Haruta, M. Size- and structure-specificity in catalysis by gold clusters. Chem. Lett. 43, 380–387 (2014).

    Article  CAS  Google Scholar 

  83. Judai, K., Abbet, S., Wörz, A. S., Heiz, U. & Henry, C. R. Low-temperature cluster catalysis. J. Am. Chem. Soc. 126, 2732–2737 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Rötzer, M. D. et al. Nanotuning via local work function control: ethylene hydrogenation on supported Pt nanoclusters. ACS Catal. 10, 1799–1809 (2020).

    Article  Google Scholar 

  85. Vorobyeva, E. et al. Atom-by-atom resolution of structure–function relations over low-nuclearity metal catalysts. Angew. Chem. Int. Ed. Engl. 58, 8724–8729 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, G. et al. A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12, 1317–1325 (2019).

    Article  CAS  Google Scholar 

  87. Han, X. et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019).

    Article  CAS  Google Scholar 

  88. Zhu, X. et al. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 (2020).

    Article  CAS  Google Scholar 

  89. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Qian, H., Zhu, M., Wu, Z. & Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45, 1470–1479 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Ni, B. & Wang, X. Chemistry and properties at a sub-nanometer scale. Chem. Sci. 7, 3978–3991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park, H., Shin, D. J. & Yu, J. Categorization of quantum dots, clusters, nanoclusters, and nanodots. J. Chem. Educ. 98, 703–709 (2021).

    Article  CAS  Google Scholar 

  93. Taylor, K. J., Pettiette-Hall, C. L., Cheshnovsky, O. & Smalley, R. E. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys. 96, 3319–3329 (1992).

    Article  CAS  Google Scholar 

  94. Prats, H. & Stamatakis, M. Atomistic and electronic structure of metal clusters supported on transition metal carbides: implications for catalysis. J. Mater. Chem. A 10, 1522–1534 (2022).

    Article  CAS  Google Scholar 

  95. Zhao, W. et al. Triggering Pt active sites in basal plane of van der Waals PtTe2 materials by amorphization engineering for hydrogen evolution. Adv. Mater. 35, 2301593 (2023).

    Article  CAS  Google Scholar 

  96. Ding, T. et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 11317–11324 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  98. Montemore, M. M., van Spronsen, M. A., Madix, R. J. & Friend, C. M. O2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 118, 2816–2862 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Du, Y., Sheng, H., Astruc, D. & Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  CAS  Google Scholar 

  101. Xie, C. et al. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019).

    Article  CAS  Google Scholar 

  102. Kress, P. L. et al. A priori design of dual-atom alloy sites and experimental demonstration of ethanol dehydrogenation and dehydration on PtCrAg. J. Am. Chem. Soc. 145, 8401–8407 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, S., Sykes, E. C. H. & Montemore, M. M. Tuning reactivity in trimetallic dual-atom alloys: molecular-like electronic states and ensemble effects. Chem. Sci. 13, 14070–14079 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, P. et al. Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 10, 5898–5905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, M. et al. Tuning the site-to-site interaction in Ru-M (M = Co, Fe, Ni) diatomic electrocatalysts to climb up the volcano plot of oxygen electroreduction. ACS Nano 16, 10657–10666 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Shi, H. et al. Atomically dispersed indium-copper dual-metal active sites promoting C-C coupling for CO2 photoreduction to ethanol. Angew. Chem. Int. Ed. Engl. 61, e202208908 (2022).

    Article  Google Scholar 

  107. Li, F., Liu, X. & Chen, Z. 1 + 1’ > 2: Heteronuclear biatom catalyst outperforms its homonuclear counterparts for CO oxidation. Small Methods 3, 1800480 (2019).

    Article  Google Scholar 

  108. Giulimondi, V. et al. Controlled formation of dimers and spatially isolated atoms in bimetallic Au-Ru catalysts via carbon-host functionalization. Small 18, 2200224 (2022).

    Article  CAS  Google Scholar 

  109. Wang, J. et al. N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation. ACS Catal. 10, 2754–2761 (2020).

    Article  CAS  Google Scholar 

  110. Xiao, M. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering. J. Am. Chem. Soc. 141, 17763–17770 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Sarkar, S. et al. Unravelling the role of Fe-Mn binary active sites electrocatalyst for efficient oxygen reduction reaction and rechargeable Zn-air batteries. Inorg. Chem. 59, 5194–5205 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Jia, G. et al. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Adv. Funct. Mater. 32, 2206817 (2022).

    Article  CAS  Google Scholar 

  113. Zhu, J. et al. Quasi-covalently coupled Ni-Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 144, 9661–9671 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Wan, X.-K., Wang, J.-Q., Nan, Z.-A. & Wang, Q.-M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 3, e1701823 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. DeRosha, D. E. et al. Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nat. Chem. 11, 1019–1025 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Watanabe, Y., Wu, X., Hirata, H. & Isomura, N. Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catal. Sci. Technol. 1, 1490–1495 (2011).

    Article  CAS  Google Scholar 

  117. Yang, C.-T., Wood, B. C., Bhethanabotla, V. R. & Joseph, B. The effect of the morphology of supported subnanometer Pt clusters on the first and key step of CO2 photoreduction. Phys. Chem. Chem. Phys. 17, 25379–25392 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, J., Wang, G. & Zhao, J. Density-functional study of Aun (n = 2–20) clusters: lowest-energy structures and electronic properties. Phys. Rev. B 66, 035418 (2002).

    Article  Google Scholar 

  119. Li, X., Zhong, W., Cui, P., Li, J. & Jiang, J. Design of efficient catalysts with double transition metal atoms on C2N layer. J. Phys. Chem. Lett. 7, 1750–1755 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Zhao, J., Zhao, J., Li, F. & Chen, Z. Copper dimer supported on a C2N layer as an efficient electrocatalyst for CO2 reduction reaction: a computational study. J. Phys. Chem. C 122, 19712–19721 (2018).

    Article  CAS  Google Scholar 

  121. Li, Y., Su, H., Chan, S. H. & Sun, Q. CO2 electroreduction performance of transition metal dimers supported on graphene: a theoretical study. ACS Catal. 5, 6658–6664 (2015).

    Article  CAS  Google Scholar 

  122. Kumar, A. et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 12, 6766 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shen, L., Dadras, J. & Alexandrova, A. N. Pure and Zn-doped Pt clusters go flat and upright on MgO(100). Phys. Chem. Chem. Phys. 16, 26436–26442 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Dadras, J., Shen, L. & Alexandrova, A. Pt-Zn clusters on stoichiometric MgO(100) and TiO2(110): dramatically different sintering behavior. J. Phys. Chem. C 119, 6047–6055 (2015).

    Article  CAS  Google Scholar 

  125. Parkinson, G. S. et al. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, F., Chen, M. S. & Goodman, D. W. Sintering of Au particles supported on TiO2(110) during CO oxidation. J. Phys. Chem. C 113, 254–260 (2009).

    Google Scholar 

  128. Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y.-G., Mei, D., Glezakou, V.-A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Liu, J.-C., Wang, Y.-G. & Li, J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J. Am. Chem. Soc. 139, 6190–6199 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Chavez, S. et al. Studying, promoting, exploiting, and predicting catalyst dynamics: the next frontier in heterogeneous catalysis. J. Phys. Chem. C 127, 2127–2146 (2023). This review summarizes the doping, alloying, cluster sintering, adsorbate and support influence on the stability of catalysts.

    Article  CAS  Google Scholar 

  132. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with earth-abundant metals. Science 369, eabc3183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wagner, T., Ermler, U. & Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354, 114–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Chan, S. I. et al. Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew. Chem. Int. Ed. Engl. 46, 1992–1994 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Wagner, T., Koch, J., Ermler, U. & Shima, S. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science 357, 699–703 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Stanley, P. M. et al. Photocatalytic CO2-to-syngas evolution with molecular catalyst metal-organic framework nanozymes. Adv. Mater. 35, 2207380 (2023).

    Article  CAS  Google Scholar 

  137. Chen, J.-C. et al. Heterogeneous two-atom single-cluster catalysts for the nitrogen electroreduction reaction. J. Phys. Chem. C 125, 19821–19830 (2021).

    Article  CAS  Google Scholar 

  138. Liu, N., Ma, X.-L., Li, J. & Xiao, H. Singly dispersed bimetallic sites as stable and efficient single-cluster catalysts for activating N2 and CO2. J. Phys. Chem. C 125, 27192–27198 (2021).

    Article  CAS  Google Scholar 

  139. Liu, J.-C. et al. Computational prediction of graphdiyne-supported three-atom single-cluster catalysts. CCS Chem. 5, 152–163 (2022).

    Article  Google Scholar 

  140. Liu, J.-C. et al. Metal affinity of support dictates sintering of gold catalysts. J. Am. Chem. Soc. 144, 20601–20609 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Xu, J., Xie, W., Han, Y. & Hu, P. Atomistic insights into the oxidation of flat and stepped platinum surfaces using large-scale machine learning potential-based grand-canonical Monte Carlo. ACS Catal. 12, 14812–14824 (2022).

    Article  CAS  Google Scholar 

  142. Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Article  Google Scholar 

  143. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  144. Ma, S. & Liu, Z.-P. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future. ACS Catal. 10, 13213–13226 (2020).

    Article  CAS  Google Scholar 

  145. Wang, Y.-G., Yoon, Y., Glezakou, V.-A., Li, J. & Rousseau, R. The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 135, 10673–10683 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Mekkering, M. J. et al. Dry reforming of methane over single-atom Rh/Al2O3 catalysts prepared by exsolution. Catal. Sci. Technol. 13, 2255–2260 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shrestha, S., Liu, Y. & Mustain, W. E. Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: a review. Catal. Rev. Sci. Eng. 53, 256–336 (2011).

    Article  CAS  Google Scholar 

  148. Zandkarimi, B., Poths, P. & Alexandrova, A. N. When fluxionality beats size selection: acceleration of Ostwald ripening of sub-nano clusters. Angew. Chem. 133, 12080–12089 (2021).

    Article  Google Scholar 

  149. Munarriz, J., Zhang, Z., Sautet, P. & Alexandrova, A. N. Graphite-supported Ptn cluster electrocatalysts: major change of active sites as a function of the applied potential. ACS Catal. 12, 14517–14526 (2022).

    Article  CAS  Google Scholar 

  150. Häkkinen, H., Abbet, S., Sanchez, A., Heiz, U. & Landman, U. Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew. Chem. Int. Ed. Engl. 42, 1297–1300 (2003). This paper reveals that clusters can occupy a dynamic ensemble of states with varying reactivities.

    Article  PubMed  Google Scholar 

  151. Sun, T. et al. Ferromagnetic single-atom spin catalyst for boosting water splitting. Nat. Nanotechnol. 18, 763–771 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Li, X. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 140, 12469–12475 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Boyes, E. D. & Gai, P. L. Visualizing reacting single atoms in chemical reactions: advancing the frontiers of materials research. MRS Bull. 40, 600–609 (2015).

    Article  CAS  Google Scholar 

  154. Gai, P. L. & Boyes, E. D. Advances in atomic resolution in situ environmental transmission electron microscopy and 1 Å aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Gai, P. L., Lari, L., Ward, M. R. & Boyes, E. D. Visualisation of single atom dynamics and their role in nanocatalysts under controlled reaction environments. Chem. Phys. Lett. 592, 355–359 (2014).

    Article  CAS  Google Scholar 

  156. Mitchell, S. et al. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. J. Am. Chem. Soc. 144, 8018–8029 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Han, L. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. Engl. 60, 345–350 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Hai, X. et al. Geminal-atom catalysis for cross-coupling. Nature https://doi.org/10.1038/s41586-023-06529-z (2023).

Download references

Acknowledgements

J.Lu acknowledges the support from National Research Foundation, CRP programme (CRP29-2022-0038) and from Agency for Science, Technology and Research (A*STAR) under its MTC IRG Grant (M22K2c0082). S.M. and J.P.-R. acknowledge NCCR Catalysis (No. 180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation. X.L. acknowledges the support from the Natural Science Foundation of Shaanxi Province (No. 2023-JC-QN-0136), ‘Young Talent Support Plan’ of Xi’an Jiaotong University (No. ND6J026) and Qinchuangyuan High-Level Talent Project (No. QCYRCXM-2022-344). J.Li. acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 22033005), NSFC Center for Single-Atom Catalysis, the National Key Research and Development Project (Grant Nos 2022YFA1503900 and 2022YFA1503000) and the Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002). Y.F. acknowledges the financial support from the National Natural Science Foundation of China (No. 22005244) and Fundamental Research Funds for the Central Universities (No. D5000230127).

Author information

Authors and Affiliations

Authors

Contributions

X.L. and S.M. contributed equally. All authors contributed substantially to the discussion of the content and structure, investigated the literature, wrote, reviewed and edited the manuscript.

Corresponding authors

Correspondence to Jun Li, Javier Perez-Ramirez or Jiong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Aiqin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mitchell, S., Fang, Y. et al. Advances in heterogeneous single-cluster catalysis. Nat Rev Chem 7, 754–767 (2023). https://doi.org/10.1038/s41570-023-00540-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00540-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing