Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hierarchical 3D electrodes for electrochemical energy storage

Abstract

The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (≤1 mg cm−2) and is difficult to realize in commercial electrodes with higher mass loadings (>10 mg cm−2). To realize the full potential of these electrode materials, new electrode architectures are required that can allow more efficient charge transport beyond the limits of traditional electrodes. In this Review, we summarize the design and synthesis of 3D electrodes to address charge transport limitations in thick electrodes. Specifically, we discuss the role of charge transport in electrochemical systems and focus on the design of 3D porous structures with a continuous conductive network for electron transport and a fully interconnected hierarchical porosity for ion transport. We also discuss the application of 3D porous architectures as conductive scaffolds for various electrode materials to enable composite electrodes with an unprecedented combination of energy and power densities and then conclude with a perspective on future opportunities and challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical energy storage technologies.
Fig. 2: The role of areal mass loading and structure in battery electrodes.
Fig. 3: Manufacturing of various 3D carbon architectures.
Fig. 4: Electrochemical characterization of 3D electrodes.
Fig. 5: 3D hierarchically porous carbon scaffolds for electrochemical energy storage systems.
Fig. 6: The effect of mass loading on electrochemical characterization of Nb2O5/HGF composite electrodes.
Fig. 7: The use of biological materials as templates to fabricate 3D hierarchically porous architectures for energy storage systems.
Fig. 8: A 3D tri-continuous nanolayer battery.

Similar content being viewed by others

References

  1. Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    CAS  Google Scholar 

  2. Chiang, Y.-M. Building a better battery. Science 330, 1485–1486 (2010).

    CAS  Google Scholar 

  3. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    CAS  Google Scholar 

  4. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    CAS  Google Scholar 

  5. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Google Scholar 

  6. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015). This study reports an ultrafast-charging aluminium battery composed of a 3D graphitic foam cathode, which offers a safe alternative to commercial Li-ion batteries.

    CAS  Google Scholar 

  7. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    CAS  Google Scholar 

  8. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011).

    Google Scholar 

  9. Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). This study reports a 3D HG scaffold supporting high-performance electrode materials, forming a composite that is capable of efficient charge delivery even at high areal mass loading.

    CAS  Google Scholar 

  10. Liu, J. Charging graphene for energy. Nat. Nanotechnol. 9, 739–741 (2014).

    CAS  Google Scholar 

  11. Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    CAS  Google Scholar 

  12. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  13. Raccichini, R., Varzi, A., Passerini, S. & Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2014). This progress article outlines the most promising results and applications of graphene for electrochemical energy storage.

    Google Scholar 

  14. An, Q. et al. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 8, 481–490 (2015).

    CAS  Google Scholar 

  15. Sun, H. et al. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014).

    CAS  Google Scholar 

  16. Zhang, N. et al. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 8, 3384–3393 (2015).

    CAS  Google Scholar 

  17. Li, L., Raji, A.-R. O. & Tour, J. M. Graphene-wrapped MnO2–graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 25, 6298–6302 (2013).

    CAS  Google Scholar 

  18. Xu, J., Lin, Y., Connell, J. W. & Dai, L. Nitrogen-doped holey graphene as an anode for lithium-ion batteries with high volumetric energy density and long cycle life. Small 11, 6179–6185 (2015).

    CAS  Google Scholar 

  19. Wu, R. et al. Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8, 6297–6303 (2014).

    CAS  Google Scholar 

  20. Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    CAS  Google Scholar 

  21. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    CAS  Google Scholar 

  22. Wang, M. et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018).

    CAS  Google Scholar 

  23. Qie, L., Lin, Y., Connell, J. W., Xu, J. & Dai, L. Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode. Angew. Chem. Int. Ed. 56, 6970–6974 (2017).

    CAS  Google Scholar 

  24. Dudney, N. J. & Li, J. Using all energy in a battery. Science 347, 131–132 (2015).

    CAS  Google Scholar 

  25. Sun, H. et al. Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J. Phys. Chem. C 118, 2263–2272 (2014).

    CAS  Google Scholar 

  26. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014).

    CAS  Google Scholar 

  27. Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012).

    CAS  Google Scholar 

  28. Lim, E. et al. Facile synthesis of Nb2O5@carbon core–shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9, 7497–7505 (2015).

    CAS  Google Scholar 

  29. Wang, G. et al. Toward ultrafast lithium ion capacitors: a novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode. Nano Energy 36, 46–57 (2017).

    CAS  Google Scholar 

  30. Zhong, Y. et al. Simultaneously armored and active graphene for transparent and flexible supercapacitors. Adv. Funct. Mater. 28, 1801998 (2018).

    Google Scholar 

  31. Wang, H., Casalongue, H. S., Liang, Y. & Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472–7477 (2010).

    CAS  Google Scholar 

  32. Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

    CAS  Google Scholar 

  33. Cheng, H. M. & Li, F. Charge delivery goes the distance. Science 356, 581–582 (2017).

    Google Scholar 

  34. Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011). This perspective emphasizes the importance of true performance metrics to evaluate electrochemical performance when considering the inactive passive components in a practical device.

    CAS  Google Scholar 

  35. Gallagher, K. G. et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 163, A138–A149 (2016). This study demonstrates the importance of the mass transport limit of ions in thick electrodes and defines a penetration depth to study the utilization of the active materials at a high level of mass loading.

    CAS  Google Scholar 

  36. Fang, R. et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater. 28, 3374–3382 (2016).

    CAS  Google Scholar 

  37. Singh, M., Kaiser, J. & Hahn, H. Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 162, A1196–A1201 (2015).

    CAS  Google Scholar 

  38. Moshtev, R. & Johnson, B. State of the art of commercial Li ion batteries. J. Power Sources 91, 86–91 (2000).

    CAS  Google Scholar 

  39. Zhu, H. et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 13, 3093–3100 (2013).

    CAS  Google Scholar 

  40. Zhu, M. et al. Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 5181–5187 (2016).

    CAS  Google Scholar 

  41. Yao, H. et al. Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 13, 3385–3390 (2013).

    CAS  Google Scholar 

  42. Hyde, S. T. & Schröder-Turk, G. E. Geometry of interfaces: topological complexity in biology and materials. Interface Focus 2, 529–538 (2012).

    Google Scholar 

  43. Zhu, J. et al. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 7, 13432 (2016).

    Google Scholar 

  44. Werner, J. G., Rodriguez-Calero, G. G., Abruna, H. D. & Wiesner, U. Block copolymer derived 3D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy Environ. Sci. 11, 1261–1270 (2018). A bottom-up, block copolymer approach that enables the integration and interpenetration of many functional nanomaterials into 3D batteries, resulting in a substantial decrease in footprint area and improved performance compared with 2D designs.

    CAS  Google Scholar 

  45. Peng, H. J. et al. 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries. Adv. Funct. Mater. 26, 6351–6358 (2016).

    CAS  Google Scholar 

  46. Liu, W. et al. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 28, 3578–3583 (2016).

    CAS  Google Scholar 

  47. Zhou, G., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015).

    CAS  Google Scholar 

  48. Fang, R. et al. More reliable lithiumsulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017).

    Google Scholar 

  49. Cheng, X.-B. et al. Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium–sulfur batteries. J. Power Sources 261, 264–270 (2014).

    CAS  Google Scholar 

  50. Zhao, S. et al. A 3D multifunctional architecture for lithium–sulfur batteries with high areal capacity. Small 2, 1800067 (2018).

    Google Scholar 

  51. Xu, J. et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 27, 2042–2048 (2015).

    CAS  Google Scholar 

  52. Hu, L. et al. Silicon–carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1, 523–527 (2011).

    CAS  Google Scholar 

  53. Chen, Y. et al. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge. Adv. Energy Mater. 8, 1702981 (2018).

    Google Scholar 

  54. Luo, B. et al. Freestanding carbon-coated CNT/Sn(O2) coaxial sponges with enhanced lithium-ion storage capability. Nanoscale 7, 20380–20385 (2015).

    CAS  Google Scholar 

  55. Hu, L. et al. Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5, 8904–8913 (2011).

    CAS  Google Scholar 

  56. Xu, Y., Shi, G. & Duan, X. Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res. 48, 1666–1675 (2015).

    CAS  Google Scholar 

  57. Sun, Y., Wu, Q. & Shi, G. Graphene based new energy materials. Energy Environ. Sci. 4, 1113–1132 (2011).

    CAS  Google Scholar 

  58. Xu, Y. et al. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605–4610 (2015).

    CAS  Google Scholar 

  59. Wang, G. et al. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8, 452–459 (2012).

    CAS  Google Scholar 

  60. Xu, Y., Sheng, K., Li, C. & Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010).

    CAS  Google Scholar 

  61. Xu, Y. et al. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). This study reports a 3D HGF with a continuous graphene network for efficient electron transport and a hierarchical porous structure for efficient ion transport. These transport properties make this conductive scaffold ideal for supercapacitors and batteries.

    CAS  Google Scholar 

  62. Xu, Y. et al. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 6, 65–76 (2013).

    CAS  Google Scholar 

  63. Wu, Z.-S. et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 24, 5130–5135 (2012).

    CAS  Google Scholar 

  64. Zhao, Y. et al. Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 53, 13934–13939 (2014).

    CAS  Google Scholar 

  65. Wu, Z.-S. et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 9082–9085 (2012).

    CAS  Google Scholar 

  66. Cong, H.-P., Ren, X.-C., Wang, P. & Yu, S.-H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012).

    CAS  Google Scholar 

  67. Papandrea, B. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Res. 9, 240–248 (2016).

    Google Scholar 

  68. Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011).

    CAS  Google Scholar 

  69. Wang, B., Li, S., Wu, X., Liu, J. & Tian, W. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage. Phys. Chem. Chem. Phys. 18, 908–915 (2016).

    CAS  Google Scholar 

  70. Li, N., Chen, Z., Ren, W., Li, F. & Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl Acad. Sci. USA 109, 17360–17365 (2012).

    CAS  Google Scholar 

  71. Kim, B.-J. et al. Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes. Appl. Phys. Lett. 102, 161902 (2013).

    Google Scholar 

  72. Ning, J., Xu, X., Liu, C. & Fan, D. L. Three-dimensional multilevel porous thin graphite nanosuperstructures for Ni(OH)2-based energy storage devices. J. Mater. Chem. A 2, 15768–15773 (2014).

    CAS  Google Scholar 

  73. Xue, Y. et al. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 1, 1400198 (2015).

    Google Scholar 

  74. Wu, Z.-S. et al. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134, 19532–19535 (2012).

    CAS  Google Scholar 

  75. Shi, J. L. et al. 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries. Small 11, 5243–5252 (2015).

    CAS  Google Scholar 

  76. Wang, H.-F., Tang, C. & Zhang, Q. Template growth of nitrogen-doped mesoporous graphene on metal oxides and its use as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Catal. Today 301, 25–31 (2018).

    CAS  Google Scholar 

  77. Shi, J.-L., Tang, C., Huang, J.-Q., Zhu, W. & Zhang, Q. Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries. J. Energy Chem. 27, 167–175 (2018).

    Google Scholar 

  78. Zuo, T. T. et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 29, 1700389 (2017).

    Google Scholar 

  79. Zhu, Y. et al. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10, 1529–1538 (2016).

    CAS  Google Scholar 

  80. Senturk-Ozer, S., Ward, D., Gevgilili, H. & Kalyon, D. M. Dynamics of electrospinning of poly(caprolactone) via a multi-nozzle spinneret connected to a twin screw extruder and properties of electrospun fibers. Polym. Eng. Sci. 53, 1463–1474 (2013).

    CAS  Google Scholar 

  81. Zhu, C. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15, 107–120 (2017). This review article summarizes progress in fabricating 3D electrodes via 3D printing techniques.

    CAS  Google Scholar 

  82. Zhu, C. et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016).

    CAS  Google Scholar 

  83. Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    CAS  Google Scholar 

  84. Sha, J. et al. Three-dimensional printed graphene foams. ACS Nano 11, 6860–6867 (2017).

    CAS  Google Scholar 

  85. García-Tuñon, E. et al. Printing in three dimensions with graphene. Adv. Mater. 27, 1688–1693 (2015).

    Google Scholar 

  86. Lacey, S. D. et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, 1705651 (2018).

    Google Scholar 

  87. Kim Jung, H. et al. 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27, 157–161 (2015).

    Google Scholar 

  88. Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013).

    CAS  Google Scholar 

  89. Zhang, Q. et al. 3D printing of graphene aerogels. Small 12, 1702–1708 (2016).

    CAS  Google Scholar 

  90. Duoss, E. B. et al. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv. Funct. Mater. 24, 4905–4913 (2014).

    CAS  Google Scholar 

  91. Compton, B. G. & Lewis, J. A. 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014).

    CAS  Google Scholar 

  92. Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    CAS  Google Scholar 

  93. Smay, J. E., Gratson, G. M., Shepherd, R. F., Cesarano, J. & Lewis, J. A. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14, 1279–1283 (2002).

    CAS  Google Scholar 

  94. Chen, K., Song, S., Liu, F. & Xue, D. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 44, 6230–6257 (2015).

    CAS  Google Scholar 

  95. Yan, J. et al. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8, 4720–4729 (2014).

    CAS  Google Scholar 

  96. Simon, P. & Gogotsi, Y. Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013).

    CAS  Google Scholar 

  97. Tao, Y. et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013).

    Google Scholar 

  98. Yu, D. et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechol. 9, 555–562 (2014).

    CAS  Google Scholar 

  99. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    CAS  Google Scholar 

  100. Zhao, M. Q. et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2014).

    Google Scholar 

  101. Wang, X. et al. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors. J. Power Sources 324, 188–198 (2016).

    CAS  Google Scholar 

  102. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    CAS  Google Scholar 

  103. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    CAS  Google Scholar 

  104. Li, X. & Zhi, L. Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47, 3189–3216 (2018).

    CAS  Google Scholar 

  105. Zhu, J., Wang, T., Fan, F., Mei, L. & Lu, B. Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10, 8243–8251 (2016).

    CAS  Google Scholar 

  106. Come, J. et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014).

    CAS  Google Scholar 

  107. Peng, L. et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 8, 15139 (2017).

    Google Scholar 

  108. Fang, Z. et al. Metallic transition metal selenide holey nanosheets for efficient oxygen evolution electrocatalysis. ACS Nano 11, 9550–9557 (2017).

    CAS  Google Scholar 

  109. Peng, L., Fang, Z., Zhu, Y., Yan, C. & Yu, G. Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 8, 1702179 (2017).

    Google Scholar 

  110. Peng, L. et al. Two-dimensional holey nanoarchitectures created by confined self-assembly of nanoparticles via block copolymers: from synthesis to energy storage property. ACS Nano 12, 820–828 (2018).

    CAS  Google Scholar 

  111. Ji, H. et al. Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett. 12, 2446–2451 (2012).

    CAS  Google Scholar 

  112. Zhang, W. et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 29, 1701677 (2017).

    Google Scholar 

  113. Liu, S. et al. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv. Energy Mater. 4, 1301960 (2014).

    Google Scholar 

  114. Chao, D. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015).

    CAS  Google Scholar 

  115. Self, E. C., Wycisk, R. & Pintauro, P. N. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes. J. Power Sources 282, 187–193 (2015).

    CAS  Google Scholar 

  116. Zhang, X., Ji, L., Toprakci, O., Liang, Y. & Alcoutlabi, M. Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym. Rev. 51, 239–264 (2011).

    CAS  Google Scholar 

  117. Fu, W. et al. Iron fluoride–carbon nanocomposite nanofibers as free-standing cathodes for high-energy lithium batteries. Adv. Funct. Mater. 28, 1801711 (2018).

    Google Scholar 

  118. Luo, W. B. et al. Investigation of promising air electrode for realizing ultimate lithium oxygen battery. Adv. Energy Mater. 7, 1700234 (2017).

    Google Scholar 

  119. Yoon, Y. et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014).

    CAS  Google Scholar 

  120. Lv, D. et al. High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015).

    Google Scholar 

  121. Billaud, J., Bouville, F., Magrini, T., Villevieille, C. & Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016).

    CAS  Google Scholar 

  122. Wang, X., Yan, C., Yan, J., Sumboja, A. & Lee, P. S. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 11, 765–772 (2015).

    CAS  Google Scholar 

  123. Lim, E. et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8, 8968–8978 (2014).

    CAS  Google Scholar 

  124. Cui, L.-F., Yang, Y., Hsu, C.-M. & Cui, Y. Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370–3374 (2009).

    CAS  Google Scholar 

  125. Li, X. et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).

    CAS  Google Scholar 

  126. Weatherspoon, M. R., Cai, Y., Crne, M., Srinivasarao, M. & Sandhage, K. H. 3D rutile titania-based structures with morpho butterfly wing scale morphologies. Angew. Chem. Int. Ed. 47, 7921–7923 (2008).

    CAS  Google Scholar 

  127. Shi, Y. et al. A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries. Adv. Mater. 29, 1603922 (2017).

    Google Scholar 

  128. Shi, Y. et al. Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in Li-ion batteries. Nano Lett. 17, 1906–1914 (2017).

    CAS  Google Scholar 

  129. Zhao, F., Shi, Y., Pan, L. & Yu, G. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc. Chem. Res. 50, 1734–1743 (2017). This review article discusses 3D conductive polymer gels that show tunable physical and chemical properties for use in electronics, energy and environmental technologies.

    CAS  Google Scholar 

  130. Zhao, F., Bae, J., Zhou, X., Guo, Y. & Yu, G. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv. Mater. 30, 1801796 (2018).

    Google Scholar 

  131. Shi, Y., Zhou, X. & Yu, G. Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50, 2642–2652 (2017).

    CAS  Google Scholar 

  132. Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).

    Google Scholar 

  133. Liu, B., Soares, P., Checkles, C., Zhao, Y. & Yu, G. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett. 13, 3414–3419 (2013).

    CAS  Google Scholar 

  134. Dudney, N. J. Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B 116, 245–249 (2005).

    Google Scholar 

  135. Rolison, D. R. et al. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38, 226–252 (2009).

    CAS  Google Scholar 

  136. Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    CAS  Google Scholar 

  137. Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

    CAS  Google Scholar 

  138. Bruce Peter, G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    CAS  Google Scholar 

  139. Pikul, J. H., Gang Zhang, H., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).

    Google Scholar 

  140. Roberts, M. et al. 3D lithium ion batteries-from fundamentals to fabrication. J. Mater. Chem. 21, 9876–9890 (2011).

    CAS  Google Scholar 

  141. Long, J. W., Dunn, B., Rolison, D. R. & White, H. S. Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004).

    CAS  Google Scholar 

  142. Min, H.-S. et al. Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources 178, 795–800 (2008).

    CAS  Google Scholar 

  143. Ergang, N. S., Fierke, M. A., Wang, Z., Smyrl, W. H. & Stein, A. Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell. J. Electrochem. Soc. 154, A1135–A1139 (2007).

    CAS  Google Scholar 

  144. Rhodes, C. P., Long, J. W., Pettigrew, K. A., Stroud, R. M. & Rolison, D. R. Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D. Nanoscale 3, 1731–1740 (2011).

    CAS  Google Scholar 

  145. Bates, F. S. & Fredrickson, G. H. Block copolymers — designer soft materials. Phys. Today 52, 32–38 (1999).

    CAS  Google Scholar 

  146. Chen, C.-C. & Maier, J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes. Nat. Energy 3, 102–108 (2018).

    CAS  Google Scholar 

  147. Han, J. et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9, 402 (2018).

    Google Scholar 

  148. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    CAS  Google Scholar 

  149. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    CAS  Google Scholar 

  150. Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

    CAS  Google Scholar 

  151. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    CAS  Google Scholar 

  152. Meirer, F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 18, 773–781 (2011).

    CAS  Google Scholar 

  153. Nelson, J. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012).

    CAS  Google Scholar 

  154. Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, 9820 (2018).

    Google Scholar 

  155. Bandhauer, T. M., Garimella, S. & Fuller, T. F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1–R25 (2011).

    CAS  Google Scholar 

  156. Lu, L.-L. et al. Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 30, 1706745 (2018).

    Google Scholar 

  157. Elango, R., Demortière, A., Andrade, V., Morcrette, M. & Seznec, V. Thick binder-free electrodes for Li–ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv. Energy Mater. 8, 1703031 (2018).

    Google Scholar 

  158. Feng, D. et al. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    CAS  Google Scholar 

  159. Business Wire. 24M introduces the semisolid lithium-ion battery. Business Wire https://www.businesswire.com/news/home/20150622005631/en/24M-Introduces-Semisolid-Lithium-Ion-Battery (2015).

Download references

Acknowledgements

X.D. acknowledges the partial financial support from the National Science Foundation DMR1508144. Y.H. acknowledges the financial support from the National Science Foundation EFRI-1433541. H.S. and I.S. thank the Deanship of Scientific Research at King Saud University for its funding of this research through grant PEJP-17-01. J.Z. acknowledges the Fundamental Research Funds of the Central Universities (no. 531107051078) and the Double First-Class University Initiative of Hunan University (no. 531109100004).

Author information

Authors and Affiliations

Authors

Contributions

X.D., H.S. and J.Z. co-wrote the article. H.S. and J.Z. researched data for the article. All authors made substantial contributions to the discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhu, J., Baumann, D. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat Rev Mater 4, 45–60 (2019). https://doi.org/10.1038/s41578-018-0069-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0069-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing