Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic variation across and within individuals

Abstract

Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of variants across (germline) and within (somatic) individuals.
Fig. 2: Patterns and rates of somatic variants.
Fig. 3: Advancements in association analyses of germline variants.
Fig. 4: Factors to consider in association analyses of somatic variants.
Fig. 5: Interplay between germline and somatic variants.

Similar content being viewed by others

References

  1. Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Coorens, T. H. H. et al. Extensive phylogenies of human development inferred from somatic mutations. Nature 597, 387–392 (2021). In this study, clones from many different normal tissues are sequenced, and phylogenetic trees of these normal cells are reconstructed, revealing embryonic lineages and somatic evolution.

    Article  CAS  PubMed  Google Scholar 

  3. Bizzotto, S. et al. Landmarks of human embryonic development inscribed in somatic mutations. Science 371, 1249–1253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Fasching, L. et al. Early developmental asymmetries in cell lineage trees in living individuals. Science 371, 1245–1248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, S. et al. Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature 597, 393–397 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Bates, G. P. History of genetic disease: the molecular genetics of Huntington disease — a history. Nat. Rev. Genet. 6, 766–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Berberich, A. J. & Hegele, R. A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol. 16, 9–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Mustjoki, S. & Young, N. S. Somatic mutations in “benign” disease. N. Engl. J. Med. 384, 2039–2052 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Miller, M. B. et al. Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604, 714–722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wong, W. J. et al. Clonal haematopoiesis and risk of chronic liver disease. Nature 616, 747–754 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niroula, A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat. Med. 27, 1921–1927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Silver, A. J., Bick, A. G. & Savona, M. R. Germline risk of clonal haematopoiesis. Nat. Rev. Genet. 22, 603–617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson, P. S. et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat. Genet. 53, 1434–1442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, B. C. H. et al. Mutational landscape of normal epithelial cells in Lynch Syndrome patients. Nat. Commun. 13, 2710 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson, P. S. et al. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat. Commun. 13, 3949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kazazian, H. H. Jr Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164, 538–549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Macintyre, G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50, 1262–1270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 592, 80–85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020). This study is one of the first to use organoid cultures of stem cells from different human tissues to study somatic mutations in normal cells by whole-genome sequencing.

    Article  CAS  PubMed  Google Scholar 

  30. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y. et al. APOBEC mutagenesis is a common process in normal human small intestine. Nat. Genet. 55, 246–254 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015). This study identifies large clonal expansions carrying driver mutations in normal skin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014). This is a landmark study demonstrating population-level associations of somatic mutation with both cancer and non-cancer health conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zekavat, S. M. et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat. Med. 27, 1012–1024 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Colom, B. et al. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat. Genet. 52, 604–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abby, E. et al. Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat. Genet. 55, 232–245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 598, 473–478 (2021). This study identifies selection for recurrent somatic mutations as an adaptive mechanism to chronic liver disease.

    Article  CAS  PubMed  Google Scholar 

  44. Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Jónsson, H. et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017).

    Article  PubMed  Google Scholar 

  46. Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaplanis, J. et al. Genetic and chemotherapeutic influences on germline hypermutation. Nature 605, 503–508 (2022). This study, based on whole-genome data of over 20,000 families, identifies accelerated rates of de novo germline mutations and determines the likely causes of this hypermutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maher, G. J. et al. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. Proc. Natl Acad. Sci. USA 113, 2454–2459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goriely, A., McGrath, J. J., Hultman, C. M., Wilkie, A. O. M. & Malaspina, D. ‘Selfish spermatogonial selection’: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders. Am. J. Psychiatry 170, 599–608 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goriely, A., McVean, G. A. T., Röjmyr, M., Ingemarsson, B. & Wilkie, A. O. M. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301, 643–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Pena, S. D. J. Advances of aneuploidy research in the maternal germline. Nat. Rev. Genet. 24, 274 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Champion, K. J. et al. Germline mutation in BRAF codon 600 is compatible with human development: de novo p.V600G mutation identified in a patient with CFC syndrome. Clin. Genet. 79, 468–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Olson, N. D. et al. Variant calling and benchmarking in an era of complete human genome sequences. Nat. Rev. Genet. 24, 464–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Krusche, P. et al. Best practices for benchmarking germline small-variant calls in human genomes. Nat. Biotechnol. 37, 555–560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grigoriadis, K. et al. CONIPHER: a computational framework for scalable phylogenetic reconstruction with error correction. Nat. Protoc. 19, 159–183 (2024).

    Article  CAS  PubMed  Google Scholar 

  59. Luquette, L. J. et al. Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements. Nat. Genet. 54, 1564–1571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 602, 162–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Bae, J. H. et al. Single duplex DNA sequencing with CODEC detects mutations with high sensitivity. Nat. Genet. 55, 871–879 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at bioRxiv 861054 https://doi.org/10.1101/861054 (2019).

  65. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jones, D. et al. cgpCaVEManwrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinformatics 56, 15.10.1–15.10.18 (2016).

    Article  PubMed  Google Scholar 

  67. Yang, X. et al. Control-independent mosaic single nucleotide variant detection with DeepMosaic. Nat. Biotechnol. 41, 870–877 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat. Genet. 55, 1243–1249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rubinacci, S., Hofmeister, R. J., Sousa da Mota, B. & Delaneau, O. Imputation of low-coverage sequencing data from 150,119 UK Biobank genomes. Nat. Genet. 55, 1088–1090 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492–499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fiziev, P. P. et al. Rare penetrant mutations confer severe risk of common diseases. Science 380, eabo1131 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Hujoel, M. L. A. et al. Influences of rare copy-number variation on human complex traits. Cell 185, 4233–4248.e27 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mukamel, R. E. et al. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science 373, 1499–1505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Z. et al. A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nat. Methods 19, 1599–1611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Selvaraj, M. S. et al. Whole genome sequence analysis of blood lipid levels in >66,000 individuals. Nat. Commun. 13, 5995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Natarajan, P. et al. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nat. Commun. 9, 3391 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nat. Genet. 52, 969–983 (2020). This study introduces the STAAR series, which exemplifies multiple aspects of advancements in germline association studies: multi-ancestry study population, rare variants, multiple functional annotations and novel methods.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  PubMed  Google Scholar 

  86. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haniffa, M. et al. A roadmap for the human developmental cell atlas. Nature 597, 196–205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  Google Scholar 

  90. Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B 82, 1273–1300 (2020).

    Article  Google Scholar 

  93. Gazal, S. et al. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat. Genet. 54, 827–836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021). This study showcases how leveraging deep learning advancement can improve our understanding of genomic biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, X. et al. Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies. Nat. Genet. 55, 154–164 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat. Genet. 51, 187–195 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Klarin, D. & Natarajan, P. Clinical utility of polygenic risk scores for coronary artery disease. Nat. Rev. Cardiol. 19, 291–301 (2022).

    Article  PubMed  Google Scholar 

  101. Patel, A. P. et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease. Nat. Med. 29, 1793–1803 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weir, B. S., Anderson, A. D. & Hepler, A. B. Genetic relatedness analysis: modern data and new challenges. Nat. Rev. Genet. 7, 771–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Slatkin, M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lawson, D. J. et al. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity? Hum. Genet. 139, 23–41 (2020).

    Article  PubMed  Google Scholar 

  105. Jyoti, G., Dayal, M. S. & Arguello, A. Developmental genotype-tissue expression (dGTEx). National Human Genome Research Institute https://www.genome.gov/Funded-Programs-Projects/Developmental-Genotype-Tissue-Expression (2020).

  106. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Muyas, F. et al. De novo detection of somatic mutations in high-throughput single-cell profiling data sets. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01863-z (2023).

  111. Miles, L. A. et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587, 477–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Uddin, M. D. M. et al. Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat. Commun. 13, 5350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Izzo, F. et al. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat. Genet. 52, 378–387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gumuser, E. D. et al. Clonal hematopoiesis of indeterminate potential predicts adverse outcomes in patients with atherosclerotic cardiovascular disease. J. Am. Coll. Cardiol. 81, 1996–2009 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schratz, K. E. et al. Somatic reversion impacts myelodysplastic syndromes and acute myeloid leukemia evolution in the short telomere disorders. J. Clin. Investig. 131, e147598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Revy, P., Kannengiesser, C. & Fischer, A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat. Rev. Genet. 20, 582–598 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Banda, K., Swisher, E. M., Wu, D., Pritchard, C. C. & Gadi, V. K. Somatic reversion of germline BRCA2 mutation confers resistance to poly(ADP-ribose) polymerase inhibitor therapy. JCO Precis. Oncol. 2, 1–6 (2018).

    Article  PubMed  Google Scholar 

  119. Ashworth, A. Drug resistance caused by reversion mutation. Cancer Res. 68, 10021–10023 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Saha, K. et al. The NIH somatic cell genome editing program. Nature 592, 195–204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Biswas, P. & Verma, R. S. Somatic mosaicism in inherited bone marrow failure and chromosomal instability syndrome. Genome Instab. Dis. 2, 150–163 (2021).

    Article  CAS  Google Scholar 

  123. Sebert, M. et al. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell 30, 153–170.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Steinberg, G. D., Carter, B. S., Beaty, T. H., Childs, B. & Walsh, P. C. Family history and the risk of prostate cancer. Prostate 17, 337–347 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. DeBoy, E. A. et al. Familial clonal hematopoiesis in a long telomere syndrome. N. Engl. J. Med. 388, 2422–2433 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McNally, E. J., Luncsford, P. J. & Armanios, M. Long telomeres and cancer risk: the price of cellular immortality. J. Clin. Investig. 129, 3474–3481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Franch-Expósito, S. et al. Associations between cancer predisposition mutations and clonal hematopoiesis in patients with solid tumors. JCO Precis. Oncol. 7, e2300070 (2023).

    Article  PubMed  Google Scholar 

  128. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586, 763–768 (2020). This is a landmark study examining the germline genetic basis of one type of somatic mutation using population-level data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Uddin, M. M. et al. Germline genomic and phenomic landscape of clonal hematopoiesis in 323,112 individuals. Preprint at medRxiv https://doi.org/10.1101/2022.07.29.22278015 (2022).

  130. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu, A. et al. Population analyses of mosaic X chromosome loss identify genetic drivers and widespread signatures of cellular selection. Preprint at medRxiv https://doi.org/10.1101/2023.01.28.23285140 (2023).

  132. Weinstock, J. S. et al. Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis. Nature 616, 755–763 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yu, Z. et al. Genetic modification of inflammation and clonal hematopoiesis-associated cardiovascular risk. J. Clin. Investig. 133, e168597 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hall, J. M. et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250, 1684–1689 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Pareja, F. et al. Cancer-causative mutations occurring in early embryogenesis. Cancer Discov. 12, 949–957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Y. D. et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 3353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Saha, R. et al. Heritability of endometriosis. Fertil. Steril. 104, 947–952 (2015).

    Article  PubMed  Google Scholar 

  140. Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Savola, P. et al. Somatic mutations in clonally expanded cytotoxic T lymphocytes in patients with newly diagnosed rheumatoid arthritis. Nat. Commun. 8, 15869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Magerus, A., Bercher-Brayer, C. & Rieux-Laucat, F. The genetic landscape of the FAS pathway deficiencies. Biomed. J. 44, 388–399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 29, 1662–1670 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Weeks, L. D. et al. Age-related diseases of inflammation in myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 139, 1246–1250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Weinstock, J. S. et al. The genetic determinants of recurrent somatic mutations in 43,693 blood genomes. Sci. Adv. 9, eabm4945 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Office of the Commissioner. FDA approves first gene therapies to treat patients with sickle cell disease. U.S. Food and Drug Administration https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease (2023).

  147. Robertson, N. A. et al. Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects. Nat. Med. 28, 1439–1446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. National Institutes of Health. Somatic Mosaicism across Human Tissues (SMaHT). NIH https://commonfund.nih.gov/smaht (2021).

  149. Hernan, M. A. & Robins, J. M. Causal Inference: What If 1st edn (Taylor & Francis Group, 2023).

  150. Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 430–446 (2023).

    CAS  PubMed  Google Scholar 

  151. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yu, Z. et al. Polygenic risk scores for kidney function and their associations with circulating proteome, and incident kidney diseases. J. Am. Soc. Nephrol. 32, 3161–3173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sondka, Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 52, D1210–D1217 (2024).

    Article  PubMed  Google Scholar 

  155. Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  Google Scholar 

  159. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  PubMed  Google Scholar 

  167. Bonner, R. F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.H.H.C. and Y.Z. researched the literature. T.H.H.C., P.N. and Y.Z. contributed substantially to discussion of the content. T.H.H.C., M.M.U. and Y.Z. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Pradeep Natarajan.

Ethics declarations

Competing interests

P.N. reports investigator-initiated grants from Amgen, Apple, Boston Scientific, Novartis and AstraZeneca; personal fees from Allelica, Apple, AstraZeneca, Blackstone Life Sciences, Foresite Labs, Genentech and Novartis; scientific board membership for Esperion Therapeutics, geneXwell and TenSixteen Bio; and spousal employment at Vertex, all unrelated to the present work. P.N. is a scientific co-founder of TenSixteen Bio, which is a company focused on clonal haematopoiesis but had no role in the present work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Jan O. Korbel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COSMIC: https://cancer.sanger.ac.uk/cosmic

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Coorens, T.H.H., Uddin, M.M. et al. Genetic variation across and within individuals. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00709-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00709-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing