Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transposable elements in mammalian chromatin organization

Abstract

Transposable elements (TEs) are mobile DNA elements that comprise almost 50% of mammalian genomic sequence. TEs are capable of making additional copies of themselves that integrate into new positions in host genomes. This unique property has had an important impact on mammalian genome evolution and on the regulation of gene expression because TE-derived sequences can function as cis-regulatory elements such as enhancers, promoters and silencers. Now, advances in our ability to identify and characterize TEs have revealed that TE-derived sequences also regulate gene expression by both maintaining and shaping 3D genome architecture. Studies are revealing how TEs contribute raw sequence that can give rise to the structures that shape chromatin organization, and thus gene expression, allowing for species-specific genome innovation and evolutionary novelty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different scales of 3D genome architecture.
Fig. 2: The many roles of TEs in chromatin organization.
Fig. 3: TEs contribute to maintenance of chromatin structures and to lineage-specific enhancer–promoter loops.
Fig. 4: TEs can contribute to TAD boundary diversity among individuals and cell types within an individual.
Fig. 5: TEs are central to short-range and long-range interactions.
Fig. 6: TEs affect heterochromatin assembly and organization.

Similar content being viewed by others

References

  1. McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finnegan, D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 5, 103–107 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sultana, T., Zamborlini, A., Cristofari, G. & Lesage, P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Cheung, S., Manhas, S. & Measday, V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob. DNA https://doi.org/10.1186/s13100-018-0119-2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wagstaff, B. J. et al. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion. PLoS Genet. 8, e1002842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Ichiyanagi, K. Regulating Pol III transcription to change Pol II transcriptome. Cell Cycle 13, 3625–3626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu, J. Y. et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 31, 613–630 (2021). This study shows that TEs cluster in compartments and form distinct, segregating domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campos-Sanchez, R., Cremona, M. A., Pini, A., Chiaromonte, F. & Makova, K. D. Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. PLoS Comput. Biol. 12, e1004956 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kvikstad, E. M. & Makova, K. D. The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. Genome Res. 20, 600–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, W. D., Liang, G. N., Molloy, P. L. & Jones, P. A. DNA methylation enables transposable element-driven genome expansion. Proc. Natl Acad. Sci. USA 117, 19359–19366 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molaro, A. & Malik, H. S. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr. Opin. Genet. Dev. 37, 51–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Modzelewski, A. J., Gan Chong, J., Wang, T. & He, L. Mammalian genome innovation through transposon domestication. Nat. Cell Biol. 24, 1332–1340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitz, J. & Brosius, J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 93, 1928–1934 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. van de Lagemaat, L. N., Landry, J. R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).

    Article  PubMed  Google Scholar 

  17. Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Agren, J. A. & Wright, S. I. Co-evolution between transposable elements and their hosts: a major factor in genome size evolution? Chromosome Res. 19, 777–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Bogutz, A. B. et al. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat. Commun. 10, 5674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Choudhary, M. N. et al. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol. 21, 16 (2020). This study shows that TEs provide redundant CTCF motifs that maintain chromatin organization over evolutionary time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kentepozidou, E. et al. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Genome Biol. 21, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choudhary, M. N. K., Quaid, K., Xing, X., Schmidt, H. & Wang, T. Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes. Nat. Commun. 14, 634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Dietzel, S. et al. Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res. 6, 25–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236-240 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Sikorska, N. & Sexton, T. Defining functionally relevant spatial chromatin domains: it is a TAD complicated. J. Mol. Biol. 432, 653–664 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Byrd, K. & Corces, V. G. Visualization of chromatin domains created by the gypsy insulator of Drosophila. J. Cell Biol. 162, 565–574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Marsano, R. M., Giordano, E., Messina, G. & Dimitri, P. A new portrait of constitutive heterochromatin: lessons from Drosophila melanogaster. Trends Genet. 35, 615–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, L. H. et al. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat. Commun. 11, 1886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y. L. et al. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol. 18, e3000582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, S., Kaur, S., Seem, K., Kumar, S. & Mohapatra, T. Understanding 3D genome organization and its effect on transcriptional gene regulation under environmental stress in plant: a chromatin perspective. Front. Cell Dev. Biol. 9, 774719 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Williamson, I. et al. Developmentally regulated Shh expression is robust to TAD perturbations. Development 146, dev179523 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Hanssen, L. L. P. et al. Tissue-specific CTCF–cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol. 19, 952–961 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lunyak, V. V. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ringel, A. R. et al. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 185, 3689–3704.e21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barrington, C. et al. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Nat. Commun. 10, 2908 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang, L. H., Ghosh, S. & Noordermeer, D. TADs and their borders: free movement or building a wall? J. Mol. Biol. 432, 643–652 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Despang, A. et al. Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263-1271 (2019).

    Article  PubMed  Google Scholar 

  56. Chen, H. T. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296-1303 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Matthews, B. J. & Waxman, D. J. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver. eLife https://doi.org/10.7554/eLife.34077 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Diehl, A. G., Ouyang, N. & Boyle, A. P. Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Nat. Commun. 11, 1796 (2020). This study shows that differential TE exaptations between human and mouse contribute to differential looping that is associated with species-specific gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lleres, D. et al. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol. 20, 272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, J. et al. MIR retrotransposon sequences provide insulators to the human genome. Proc. Natl Acad. Sci. USA 112, E4428–E4437 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019). This study shows that HERV-H family TEs serve as both TAD boundary elements and enhancers during pluripotency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cournac, A., Koszul, R. & Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Res. 44, 245–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Buhler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kvon, E. Z., Waymack, R., Gad, M. & Wunderlich, Z. Enhancer redundancy in development and disease. Nat. Rev. Genet. 22, 324–336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, X. et al. Nested epistasis enhancer networks for robust genome regulation. Science 377, 1077–1085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 e922 (2017). This study shows that CTCF is required to maintain chromatin organization and proper transcriptional activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Symmons, O. et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39, 529–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paliou, C. et al. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc. Natl Acad. Sci. USA 116, 12390–12399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ichiyanagi, T. et al. B2 SINE copies serve as a transposable boundary of DNA methylation and histone modifications in the mouse. Mol. Biol. Evol. 38, 2380–2395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kruse, K. et al. Transposable elements drive reorganization of 3D chromatin during early embryogenesis. Preprint at bioRxiv https://doi.org/10.1101/523712 (2019).

    Article  Google Scholar 

  75. Chen, X. et al. Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306–310 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Glinsky, G. V. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells. Chromosome Res. 26, 61–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190347 (2020).

    Article  CAS  Google Scholar 

  80. Davidson, E. H. & Britten, R. J. Regulation of gene-expression — possible role of repetitive sequences. Science 204, 1052–1059 (1979).

    Article  CAS  PubMed  Google Scholar 

  81. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Modzelewski, A. J. et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 184, 5541–5558.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huda, A., Bowen, N. J., Conley, A. B. & Jordan, I. K. Epigenetic regulation of transposable element derived human gene promoters. Gene 475, 39–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Franke, V. et al. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 27, 1384–1394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pasquesi, G. I. M. et al. Vertebrate lineages exhibit diverse patterns of transposable element regulation and expression across tissues. Genome Biol. Evol. 12, 506–521 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miao, B. et al. Tissue-specific usage of transposable element-derived promoters in mouse development. Genome Biol. 21, 255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Beyer, U., Moll-Rocek, J., Moll, U. M. & Dobbelstein, M. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc. Natl Acad. Sci. USA 108, 3624–3629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Notwell, J. H., Chung, T., Heavner, W. & Bejerano, G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 6, 6644 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Nishihara, H. et al. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLoS Genet. 12, e1006380 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nishihara, H., Smit, A. F. & Okada, N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16, 864–874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163, 68–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Judd, J., Sanderson, H. & Feschotte, C. Evolution of mouse circadian enhancers from transposable elements. Genome Biol. 22, 193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Song, M. et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587, 644–649 (2020). This study shows that TE-mediated formation of promotors may hold together a transcriptional hub that shapes chromatin organization in the developing brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao, Y. et al. Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions. Genome Res. 29, 40–52 (2019). This study shows that TEs have a widespread role as enhancer-like sequences that contribute to both cell and lineage specificity, and describes the long-range interactions of the MIR and LINE-2 TE families.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paulsen, J. et al. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. Nat. Genet. 51, 835–843 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  104. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  PubMed Central  Google Scholar 

  105. Burns, K. H. Repetitive DNA in disease. Science 376, 353–354 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Burns, K. H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol.-Mech. 15, 51–70 (2020).

    Article  CAS  Google Scholar 

  107. Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319-331.e8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Haws, S. A., Simandi, Z., Barnett, R. J. & Phillips-Cremins, J. E. 3D genome, on repeat: higher-order folding principles of the heterochromatinized repetitive genome. Cell 185, 2690–2707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saksouk, N., Simboeck, E. & Dejardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 8, 3 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Marsano, R. M. & Dimitri, P. Constitutive heterochromatin in eukaryotic genomes: a mine of transposable elements. Cells https://doi.org/10.3390/cells11050761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pimpinelli, S. et al. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc. Natl Acad. Sci. USA 92, 3804–3808 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zamudio, N. & Bourc’his, D. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity 105, 92–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Musselman, C. A., Lalonde, M. E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Risca, V. I., Denny, S. K., Straight, A. F. & Greenleaf, W. J. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541, 237 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Oh, I., Choi, S., Jung, Y. & Kim, J. S. Entropic effect of macromolecular crowding enhances binding between nucleosome clutches in heterochromatin, but not in euchromatin. Sci. Rep. 8, 5469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Singh, P. B. & Newman, A. G. On the relations of phase separation and Hi-C maps to epigenetics. Roy. Soc. Open Sci. 7, 191976 (2020).

    Article  CAS  Google Scholar 

  118. Trono, D. Transposable elements, polydactyl proteins, and the genesis of human-specific transcription networks. Cold Spring Harb. Symp. Quant. Biol. 80, 281–288 (2015).

    Article  PubMed  Google Scholar 

  119. Spracklin, G. et al. Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nat. Struct. Mol. Biol. 30, 38–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chojnowski, A. et al. Heterochromatin loss as a determinant of progerin-induced DNA damage in Hutchinson–Gilford progeria. Aging Cell 19, e13108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).

    Article  PubMed  Google Scholar 

  125. Zhang, X. L. et al. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res. 31, 1121–1135 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Della Valle, F. et al. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med. 14, eabl6057 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Zhou, T., Zhang, R. & Ma, J. The 3D genome structure of single cells. Annu. Rev. Biomed. Data Sci. 4, 21–41 (2021).

    Article  PubMed  Google Scholar 

  128. Galitsyna, A. A. & Gelfand, M. S. Single-cell Hi-C data analysis: safety in numbers. Brief. Bioinform. https://doi.org/10.1093/bib/bbab316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, 57 (2022).

    Article  Google Scholar 

  130. Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Taberlay, P. C. et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 26, 719–731 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. O’Neill, K., Brocks, D. & Hammell, M. G. Mobile genomics: tools and techniques for tackling transposons. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Goerner-Potvin, P. & Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet. 19, 688–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Smit, A. F., Hubley, R. & Green, P. RepeatMasker Open-4.0. Institute for Systems Biology http://www.repeatmasker.org (2015).

  137. Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Smit, A. F. & Hubley, R. RepeatModeler 1.0.11. Institute for Systems Biology http://www.repeatmasker.org/RepeatModeler/ (2018).

  139. Novak, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Taylor, D. & Branco, M. R. Inferring protein–DNA binding profiles at interspersed repeats using HiChIP and PAtChER. Methods Mol. Biol. 2607, 199–214 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Wang laboratory for helpful discussions related to the project.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the manuscript and reviewed/edited the manuscript before submission. H.A.L and T.W discussed the content and wrote the manuscript.

Corresponding authors

Correspondence to Heather A. Lawson or Ting Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Juan Vaquerizas, who co-reviewed with Maria Rigau; Kenji Ichiyanagi; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

A and B compartments

Spatial compartments in which chromosomes are organized. The A compartment broadly correlates with transcriptionally active euchromatic regions, whereas the B compartment broadly correlates with transcriptionally inactive heterochromatic regions.

CCCT-C binding factor

(CTCF). A DNA binding protein that is essential for many cellular processes, including chromatin organization.

Chromosomal territories

Distinct regions of a cell’s nuclear volume that are occupied by each chromosome.

Cohesin

A multiprotein complex that is integral for loop extrusion and formation of topologically associating domain (TAD) boundaries.

DNA transposons

Transposable elements (TEs) that replicate through a cut-and-paste mechanism whereby the element is excised and moved to a different genomic location. DNA transposons are referred to as class II TEs.

Exaptation

When a trait or sequence evolves to function in a manner that is different from the function it originally served.

Insulator elements

DNA sequence motifs that either prevent enhancers from acting on a corresponding promoter or shield genes from the spread of heterochromatin that silences gene expression. In mammals, insulators frequently bind CTCF, often in association with the cohesin complex, and help organize distinct chromatin domains.

Long terminal repeat

(LTR). A class I retrotransposon that is characterized by LTRs flanking an internal coding sequence. LTRs comprise 8% of the human genome.

Phase separation

A mechanism by which genomic compartments with distinct chromatin states are formed. Phase separation refers to the formation of two distinct phases of a solution.

Retrotransposons

Transposable elements (TEs), including long terminal repeats (LTRs), long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs), that replicate through a copy-and-paste mechanism: an RNA intermediate is reverse transcribed into cDNA and integrated into the genome. Retrotransposons are referred to as class I TEs.

Topologically associating domains

(TADs). Structures that are delimited by boundary elements, and that contain sequences that preferentially interact with themselves rather than with other genomic regions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawson, H.A., Liang, Y. & Wang, T. Transposable elements in mammalian chromatin organization. Nat Rev Genet 24, 712–723 (2023). https://doi.org/10.1038/s41576-023-00609-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00609-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing