Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The landscape of small-molecule prodrugs

Abstract

Prodrugs are derivatives with superior properties compared with the parent active pharmaceutical ingredient (API), which undergo biotransformation after administration to generate the API in situ. Although sharing this general characteristic, prodrugs encompass a wide range of different chemical structures, therapeutic indications and properties. Here we provide the first holistic analysis of the current landscape of approved prodrugs using cheminformatics and data science approaches to reveal trends in prodrug development. We highlight rationales that underlie prodrug design, their indications, mechanisms of API release, the chemistry of promoieties added to APIs to form prodrugs and the market impact of prodrugs. On the basis of this analysis, we discuss strengths and limitations of current prodrug approaches and suggest areas for future development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prodrug structures and purposes.
Fig. 2: Characterization of currently approved prodrugs.
Fig. 3: Examples of prodrugs that have had a substantial market impact.
Fig. 4: Physicochemical properties of currently approved prodrugs.

Similar content being viewed by others

References

  1. Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Narang, A. S. & Boddu, S. H. S. in Excipient Applications in Formulation Design and Drug Delivery (eds Narang, A. S. & Boddu, S. H. S) 1–10 (Springer, 2015).

  4. Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Elsharkasy, O. M. et al. Extracellular vesicles as drug delivery systems: why and how? Adv. Drug Deliv. Rev. 159, 332–343 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Huttunen, K. M., Raunio, H. & Rautio, J. Prodrugs—from serendipity to rational design. Pharmacol. Rev. 63, 750–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Najjar, A. & Karaman, R. The prodrug approach in the era of drug design. Expert Opin. Drug. Deliv. 16, 1–5 (2018).

    Article  PubMed  Google Scholar 

  8. Jordheim, L. P., Durantel, D., Zoulim, F. & Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 12, 447–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y. et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 48, D1031–D1041 (2020).

    CAS  PubMed  Google Scholar 

  10. Degtyarenko, K. et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344–D350 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mullard, A. 2022 FDA approvals. Nat. Rev. Drug Discov. 22, 83–88 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Mullard, A. 2021 FDA approvals. Nat. Rev. Drug Discov. 21, 83–98 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Mullard, A. 2020 FDA drug approvals. Nat. Rev. Drug Discov. 20, 85–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Mullard, A. 2019 FDA drug approvals. Nat. Rev. Drug Discov. 19, 79–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Y. et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 50, D1398–D1407 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Sugawara, M. et al. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89, 781–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Peppercorn, M. A. Sulfasalazine: pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med. 101, 377–386 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Asaki, T. et al. Selexipag: an oral and selective IP prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. J. Med. Chem. 58, 7128–7137 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, W. A. & Cheng, A. K. Tenofovir alafenamide fumarate. Antivir. Ther. 27, 13596535211067600 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Jankovic, J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin. Pharmacother. 17, 2461–2470 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Reigner, B., Blesch, K. & Weidekamm, E. Clinical pharmacokinetics of capecitabine. Clin. Pharmacokinet. 40, 85–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Aljuffali, I. A., Lin, C.-F., Chen, C.-H. & Fang, J.-Y. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin. Drug Deliv. 13, 1311–1325 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Friedel, H. A., Campoli-Richards, D. M. & Goa, K. L. Sultamicillin. Drugs 37, 491–522 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Mueller, C. E. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem. Biodivers. 6, 2071–2083 (2009).

    Article  CAS  Google Scholar 

  26. Barlow, N., Chalmers, D. K., Williams-Noonan, B. J., Thompson, P. E. & Norton, R. S. Improving membrane permeation in the beyond rule-of-five space by using prodrugs to mask hydrogen bond donors. ACS Chem. Biol. 15, 2070–2078 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Murakami, T. A minireview: usefulness of transporter-targeted prodrugs in enhancing membrane permeability. J. Pharm. Sci. 105, 2515–2526 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Camp, D., Garavelas, A. & Campitelli, M. Analysis of physicochemical properties for drugs of natural origin. J. Nat. Prod. 78, 1370–1382 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Hall, B. S. & Wilkinson, S. R. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob. Agents Chemother. 56, 115–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jubeh, B., Breijyeh, Z. & Karaman, R. Antibacterial prodrugs to overcome bacterial resistance. Molecules 25, 1543 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, D. et al. Bacterial-based cancer therapy: an emerging toolbox for targeted drug/gene delivery. Biomaterials 277, 121124 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y., Zhao, L. & Li, X.-F. Targeting hypoxia: hypoxia-activated prodrugs in cancer therapy. Front. Oncol. 11, 700407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peiró Cadahía, J., Previtali, V., Troelsen, N. S. & Clausen, M. H. Prodrug strategies for targeted therapy triggered by reactive oxygen species. Medchemcomm 10, 1531–1549 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Padilla, A. M. et al. Discovery of an orally active benzoxaborole prodrug effective in the treatment of Chagas disease in non-human primates. Nat. Microbiol. 7, 1536–1546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cundy, K. C. et al. XP13512 [(±)-1-([(α-Isobutanoyloxyethoxy) carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J. Pharmacol. Exp. Ther. 311, 315–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Salem, A. H. et al. Expanding the repertoire for “Large small molecules”: prodrug abbv-167 efficiently converts to venetoclax with reduced food effect in healthy volunteers. Mol. Cancer Ther. 20, 999–1008 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Halpern, L. The transfer of inorganic phosphorus across the red blood cell membrane. J. Biol. Chem. 114, 747–770 (1936).

    Article  CAS  Google Scholar 

  38. Wiemer, A. J. Metabolic efficacy of phosphate prodrugs and the remdesivir paradigm. ACS Pharmacol. Transl. Sci. 3, 613–626 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohwada, J. et al. Design, synthesis and antifungal activity of a novel water soluble prodrug of antifungal triazole. Bioorg. Med. Chem. Lett. 13, 191–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Sawada, S. et al. Synthesis and antitumor activity of 20 (S)-camptothecin derivatives: Carbamate-linked, water-soluble derivaties of 7-ethyl-10-hydroxycamptothecin. Chem. Pharm. Bull. 39, 1446–1454 (1991).

    Article  CAS  Google Scholar 

  41. Ensink, J. M. et al. Oral bioavailability and in vitro stability of pivampicillin, bacampicillin, talampicillin, and ampicillin in horses. Am. J. Vet. Res. 57, 1021–1024 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Sloane, J. L. et al. Prodrugs of PKC modulators show enhanced HIV latency reversal and an expanded therapeutic window. Proc. Natl Acad. Sci. USA 117, 10688–10698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Citrome, L. Breakthrough drugs for the interface between psychiatry and neurology. Int. J. Clin. Pract. 70, 298–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Eddy, N. B., Halbach, H. & Braenden, O. J. Synthetic substances with morphine-like effect: clinical experience: potency, side-effects, addiction liability. Bull. World Health Organ. 17, 569 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Crews, K. R. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin. Pharmacol. Ther. 91, 321–326 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Klous, M. G., Van den Brink, W., Van Ree, J. M. & Beijnen, J. H. Development of pharmaceutical heroin preparations for medical co-prescription to opioid dependent patients. Drug Alcohol Depend. 80, 283–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Green, K. & DOWNS, S. J. Prednisolone phosphate penetration into and through the cornea. Invest. Ophthalmol. Vis. Sci. 13, 316–319 (1974).

    CAS  Google Scholar 

  48. Schijvens, A. M., ter Heine, R., de Wildt, S. N. & Schreuder, M. F. Pharmacology and pharmacogenetics of prednisone and prednisolone in patients with nephrotic syndrome. Pediatr. Nephrol. 34, 389–403 (2019).

    Article  PubMed  Google Scholar 

  49. Ishikawa, T. Chemotherapy with enteric-coated tegafur/uracil for advanced hepatocellular carcinoma. World J. Gastroenterol. 14, 2797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Diasio, R. B., Bennett, J. E. & Myers, C. E. Mode of action of 5-fluorocytosine. Biochem. Pharmacol. 27, 703–707 (1978).

    Article  CAS  PubMed  Google Scholar 

  51. Fryklund, J., Gedda, K. & Wallmark, B. Specific labelling of gastric H+,K+-ATPase by omeprazole. Biochem. Pharmacol. 37, 2543–2549 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Khan, A. K. A., Piris, J. & Truelove, S. C. An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet 310, 892–895 (1977).

    Article  Google Scholar 

  53. Meyers, S., Sachar, D. B., Present, D. H. & Janowitz, H. D. Olsalazine sodium in the treatment of ulcerative colitis among patients intolerant of sulfasalazine: a prospective, randomized placebo-controlled, double-blind, dose-ranging clinical trial. Gastroenterology 93, 1255–1262 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Green, J. R. B. et al. Balsalazide is more effective and better tolerated than mesalamine in the treatment of acute ulcerative colitis. Gastroenterology 114, 15–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Gillis, J. C. & Wiseman, L. R. Secnidazole. Drugs 51, 621–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, I. et al. Identification of a human valacyclovirase: biphenyl hydrolase-like protein as valacyclovir hydrolase. J. Biol. Chem. 278, 25348–25356 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sun, J., Dahan, A. & Amidon, G. L. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach. J. Med. Chem. 53, 624–632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, T. et al. Discovery of the human immunodeficiency virus type 1 (HIV-1) attachment inhibitor temsavir and its phosphonooxymethyl prodrug fostemsavir. J. Med. Chem. 61, 6308–6327 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Kudo, S. & Ishizaki, T. Pharmacokinetics of haloperidol. Clin. Pharmacokinet. 37, 435–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Daley‐Yates, P. T., Price, A. C., Sisson, J. R., Pereira, A. & Dallow, N. Beclomethasone dipropionate: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in man. Br. J. Clin. Pharmacol. 51, 400–409 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen, K.-J., Plaunt, A. J., Leifer, F. G., Kang, J. Y. & Cipolla, D. Recent advances in prodrug-based nanoparticle therapeutics. Eur. J. Pharm. Biopharm. 165, 219–243 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mauro, M. A., Murphy, K. P. J., Thomson, K. R., Venbrux, A. C. & Morgan, R. A. Image-Guided Interventions E-Book. Expert Radiology Series (Elsevier Health Sciences, 2020).

  64. Rosen, L. S. et al. Phase 1 study of TLK286 (Telcyta) administered weekly in advanced malignancies. Clin. Cancer Res. 10, 3689–3698 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Gong, J., Yan, J., Forscher, C. & Hendifar, A. Aldoxorubicin: a tumor-targeted doxorubicin conjugate for relapsed or refractory soft tissue sarcomas. Drug Des. Dev. Ther. 12, 777 (2018).

    Article  CAS  Google Scholar 

  66. Sitar, D. S. Clinical pharmacokinetics of bambuterol. Clin. Pharmacokinet. 31, 246–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Scheeren, T. W. L. Ceftobiprole medocaril in the treatment of hospital-acquired pneumonia. Future Microbiol. 10, 1913–1928 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Grygorenko, O. O. et al. Generating multibillion chemical space of readily accessible screening compounds. iScience 23, 101681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, C.-H. in Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense 155–168 (Springer, 2020).

  70. Beverage, J. N., Sissung, T. M., Sion, A. M., Danesi, R. & g, W. D. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J. Pharm. Sci. 96, 2224–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Krzyszczyk, P. et al. The growing role of precision and personalized medicine for cancer treatment. Technology 6, 79–100 (2018).

    Article  PubMed  Google Scholar 

  72. Baird, J. K. 8-Aminoquinoline therapy for latent malaria. Clin. Microbiol. Rev. 32, e00011-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Inturrisi, C. E. et al. Evidence from opiate binding studies that heroin acts through its metabolites. Life Sci. 33, 773–776 (1983).

    Article  CAS  PubMed  Google Scholar 

  74. Schmitt-Hoffmann, A. et al. Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob. Agents Chemother. 50, 279–285 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mackman, R. L. Phosphoramidate prodrugs continue to deliver, the journey of remdesivir (GS-5734) from RSV to SARS-CoV-2. ACS Med. Chem. Lett. 13, 338–347 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jordan, V. C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2, 205–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Jordan, V. C., Collins, M. M., Rowsby, L. & Prestwich, G. A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J. Endocrinol. 75, 305–316 (1977).

    Article  CAS  PubMed  Google Scholar 

  78. Mickle, T., Guenther, S. & Chi, G. Methylphenidate-prodrugs, processes of making and using the same. US patent 10584112-B2 (2020).

  79. O’Neill, J. I. M. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (2014).

  80. Evans, L. E. et al. Exploitation of antibiotic resistance as a novel drug target: development of a β-lactamase-activated antibacterial prodrug. J. Med. Chem. 62, 4411–4425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Caradec, T. et al. A novel natural siderophore antibiotic conjugate reveals a chemical approach to macromolecule coupling. ACS Cent. Sci. 9, 2138–2149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peukert, C. et al. Siderophore conjugation with cleavable linkers boosts the potency of RNA polymerase inhibitors against multidrug-resistant E. coli. Chem. Sci. 14, 5490–5502 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bodor, N., Shek, E. & Higuchi, T. Delivery of a quaternary pyridinium salt across the blood-brain barrier by its dihydropyridine derivative. Science 190, 155–156 (1975).

    Article  CAS  PubMed  Google Scholar 

  84. Bodor, N. & Simpkins, J. W. Redox delivery system for brain-specific, sustained release of dopamine. Science 221, 65–67 (1983).

    Article  CAS  PubMed  Google Scholar 

  85. Peauger, L. et al. Donepezil-based central acetylcholinesterase inhibitors by means of a “bio-oxidizable” prodrug strategy: design, synthesis, and in vitro biological evaluation. J. Med. Chem. 60, 5909–5926 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fralish, Z., Chen, A., Skaluba, P. & Reker, D. DeepDelta: predicting ADMET improvements of molecular derivatives with deep learning. J. Cheminform 15, 101 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Reker, D., Hoyt, E. A., Bernardes, G. J. L. & Rodrigues, T. Adaptive optimization of chemical reactions with minimal experimental information. Cell Rep. Phys. Sci. 1, 100247 (2020).

    Article  Google Scholar 

  89. Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5, 1572–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Zaretzki, J., Matlock, M. & Swamidass, S. J. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks. J. Chem. Inf. Model. 53, 3373–3383 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. de Bruyn Kops, C. et al. GLORY: generator of the structures of likely cytochrome P450 metabolites based on predicted sites of metabolism. Front. Chem. 7, 402 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Olsen, L., Montefiori, M., Tran, K. P. & Jørgensen, F. S. SMARTCyp 3.0: enhanced cytochrome P450 site-of-metabolism prediction server. Bioinformatics 35, 3174–3175 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Wishart, D. S. et al. BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Res. 50, W115–W123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Šícho, M. et al. FAME 3: predicting the sites of metabolism in synthetic compounds and natural products for phase 1 and phase 2 metabolic enzymes. J. Chem. Inf. Model. 59, 3400–3412 (2019).

    Article  PubMed  Google Scholar 

  96. Karaman, R., Dajani, K. K., Qtait, A. & Khamis, M. Prodrugs of acyclovir–a computational approach. Chem. Biol. Drug Des. 79, 819–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Markovic, M., Ben-Shabat, S. & Dahan, A. Computational simulations to guide enzyme-mediated prodrug activation. Int. J. Mol. Sci. 21, 3621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Elia, J., Easley, C. & Kirkpatrick, P. Lisdexamfetamine dimesylate. Nat. Rev. Drug Discov. 6, 343–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Hung, A., Sinclair, M., Hemmersbach-Miller, M., Edmonston, D. & Wyatt, C. Prescribing rates and characteristics of recipients of tenofovir-containing regimens before and after market entry of tenofovir alafenamide. J. Manag. Care Spec. Pharm. 26, 1582–1588 (2020).

    PubMed  Google Scholar 

  101. D’Angelo, A. B., Westmoreland, D. A., Carneiro, P. B., Johnson, J. & Grov, C. Why are patients switching from tenofovir disoproxil fumarate/emtricitabine (Truvada) to tenofovir alafenamide/emtricitabine (Descovy) for pre-exposure prophylaxis? AIDS Patient Care STDS 35, 327–334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Urquhart, L. Top product forecasts for 2020. Nat. Rev. Drug Discov. 19, 86–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Urquhart, L. Top companies and drugs by sales in 2020. Nat. Rev. Drug Discov. 20, 253 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Urquhart, L. Top companies and drugs by sales in 2021. Nat. Rev. Drug Discov. 21, 251 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Urquhart, L. Top companies and drugs by sales in 2022. Nat. Rev. Drug Discov. 22, 260 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Cha, M. & Yu, F. Pharma’s first-to-market advantage. https://www.mckinsey.com/~/media/McKinsey/Industries/Pharmaceuticals%20and%20Medical%20Products/Our%20Insights/Pharmas%20first%20to%20market%20advantage/Pharmas%20first%20to%20market%20advantage.pdf (McKinsey & Co., 2014).

  107. Orayj, K. & Lane, E. Patterns and determinants of prescribing for Parkinson’s disease: a systematic literature review. Parkinsons Dis. 2019, 9237181 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Z.F. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program. P.Z. acknowledges the support of NIAID grants AI139216 and AI152896. D.R. acknowledges the support of NIGMS grant R35GM151255.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial, direct and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Daniel Reker.

Ethics declarations

Competing interests

D.R. acts as a consultant to the pharmaceutical and biotechnology industry, as a mentor for Start2, and serves on the scientific advisory board of Areteia Therapeutics. S.K. is Chief Scientific Officer at Rivus. P.Z. is a scientific co-founder of Valanbio Therapeutics aiming at developing novel antibiotics.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Jarkko Rautio and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ChEBI Database: https://www.ebi.ac.uk/chebi/

ClinCalc DrugStats Database: https://clincalc.com/DrugStats/

DrugBank: https://go.drugbank.com/

PubChem: https://pubchem.ncbi.nlm.nih.gov/

Therapeutic Target Database: https://idrblab.net/ttd/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fralish, Z., Chen, A., Khan, S. et al. The landscape of small-molecule prodrugs. Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-00914-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-024-00914-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research