Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular chameleons in drug discovery

Abstract

Molecular chameleons possess a flexibility that allows them to dynamically shield or expose polar functionalities in response to the properties of the environment. Although the concept of molecular chameleons was introduced already in 1970, interest in them has grown considerably since the 2010s, when drug discovery has focused to an increased extent on new chemical modalities. Such modalities include cyclic peptides, macrocycles and proteolysis-targeting chimeras, all of which reside in a chemical space far from that of traditional small-molecule drugs. Both cell permeability and aqueous solubility are required for the oral absorption of drugs. Engineering these properties, and potent target binding, into the larger new modalities is a more daunting task than for traditional small-molecule drugs. The ability of chameleons to adapt to different environments may be essential for success. In this Review, we provide both general and theoretical insights into the realm of molecular chameleons. We discuss why chameleons have come into fashion and provide a do-it-yourself toolbox for their design; we then provide a glimpse of how advanced in silico methods can support molecular chameleon design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of how the molecular chameleon telithromycin achieves aqueous solubility, cell permeability and broad-spectrum activity.
Fig. 2: Impact of molecular chameleonicity on cell permeability and aqueous solubility.
Fig. 3: Molecular chameleons from different classes of compounds in the beyond-Ro5 space.
Fig. 4: Conformational flexibility allows chameleons to bind targets that differ in structure.
Fig. 5: Tips and tricks for the design of molecular chameleons.
Fig. 6: Computer-aided design of molecular chameleons.

Similar content being viewed by others

References

  1. Hoy, K. L. New values of the solubility parameters from vapor pressure data. J. Paint. Technol. 42, 76–118 (1970).

    CAS  Google Scholar 

  2. Carrupt, P.-A. et al. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J. Med. Chem. 34, 1272–1275 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Whitty, A. et al. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov. Today 21, 712–717 (2016). An educational description of what a molecular chameleon is, the benefits chameleonicity provides in drug discovery and why chameleonicity becomes increasingly important as the MW of drugs increases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossi Sebastiano, M. et al. Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J. Med. Chem. 61, 4189–4202 (2018). Analysis of crystal structures for a large set of drugs reveals the drugs’ calculated minimum SA 3D PSA values to be useful descriptors of cell permeability, and highlights dynamic formation of intramolecular hydrogen bonds and shielding of polar groups by aromatic groups as particularly effective in conferring chameleonicity.

    Article  CAS  PubMed  Google Scholar 

  5. Over, B. et al. Structural and conformational determinants of macrocycle cell permeability. Nat. Chem. Biol. 12, 1065–1074 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Furukawa, A. et al. Drug-like properties in macrocycles above MW 1000: backbone rigidity versus side-chain lipophilicity. Angew. Chem. Int. Ed. 59, 21571–21577 (2020).

    Article  CAS  Google Scholar 

  7. Danelius, E. et al. Solution conformations explain the chameleonic behavior of macrocyclic drugs. Chem. Eur. J. 26, 5231–5244 (2020). Solution-phase NMR spectroscopy reveals the chameleonic behaviour of three macrocyclic drugs residing in the chemical space far beyond Ro5 and confirms that such behaviour is not limited to the cyclic peptide cyclosporin A.

    Article  CAS  PubMed  Google Scholar 

  8. Over, B. et al. Impact of stereospecific intramolecular hydrogen bonding on cell permeability and physicochemical properties. J. Med. Chem. 57, 2746–2754 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caron, G. & Ermondi, G. Updating molecular properties during early drug discovery. Drug Discov. Today 22, 835–840 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Shultz, M. D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 62, 1701–1714 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Villar, E. A. et al. How proteins bind macrocycles. Nat. Chem. Biol. 10, 723–732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. 56, 10294–10323 (2017).

    Article  CAS  Google Scholar 

  14. Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed Central  Google Scholar 

  16. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  17. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. F. The exploration of macrocycles for drug discovery — an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Doak, B. C., Zheng, J., Dobritzsch, D. & Kihlberg, J. How beyond rule of 5 drugs and clinical candidates bind to their targets. J. Med. Chem. 59, 2312–2327 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Doak, B. C., Over, B., Giordanetto, F. & Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21, 1115–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. DeGoey, D. A., Chen, H.-J., Cox, P. B. & Wendt, M. D. Beyond the rule of 5: lessons learned from AbbVie’s drugs and compound collection. J. Med. Chem. 61, 2636–2651 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. García Jiménez, D., Poongavanam, V. & Kihlberg, J. Macrocycles in drug discovery–learning from the past for the future. J. Med. Chem. 66, 5377–5396 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guimarães, C. R. W., Mathiowetz, A. M., Shalaeva, M., Goetz, G. & Liras, S. Use of 3D properties to characterize beyond rule-of-5 property space for passive permeation. J. Chem. Inf. Model. 52, 882–890 (2012).

    Article  PubMed  Google Scholar 

  25. Caron, G., Kihlberg, J. & Ermondi, G. Intramolecular hydrogen bonding: an opportunity for improved design in medicinal chemistry. Med. Res. Rev. 39, 1707–1729 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Poongavanam, V. et al. Predicting the permeability of macrocycles from conformational sampling – limitations of molecular flexibility. J. Pharm. Sci. 110, 301–313 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Hoang, H. N., Hill, T. A. & Fairlie, D. P. Connecting hydrophobic surfaces in cyclic peptides increases membrane permeability. Angew. Chem. Int. Ed. 60, 8385–8390 (2021).

    Article  CAS  Google Scholar 

  28. Linker, S. M. et al. Lessons for oral bioavailability: how conformationally flexible cyclic peptides enter and cross lipid membranes. J. Med. Chem. 66, 2773–2788 (2023). MD simulations provide mechanistic understanding of how cyclic peptides can cross cell membranes by side chain-mediated anchoring followed by formation of a closed, nonpolar conformation that subsequently crosses the membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sugita, M. et al. Large-scale membrane permeability prediction of cyclic peptides crossing a lipid bilayer based on enhanced sampling molecular dynamics simulations. J. Chem. Inf. Model. 61, 3681–3695 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Rezai, T. et al. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc. 128, 14073–14080 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Witek, J. et al. Rationalization of the membrane permeability differences in a series of analogue cyclic decapeptides. J. Chem. Inf. Model. 59, 294–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Caron, G., Vallaro, M. & Ermondi, G. High throughput methods to measure the propensity of compounds to form intramolecular hydrogen bonding. MedChemComm 8, 1143–1151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ermondi, G., Vallaro, M., Goetz, G., Shalaeva, M. & Caron, G. Updating the portfolio of physicochemical descriptors related to permeability in the beyond the rule of 5 chemical space. Eur. J. Pharm. Sci. 146, 105274 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Kuhn, B., Mohr, P. & Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 53, 2601–2611 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Alex, A., Millan, D. S., Perez, M., Wakenhut, F. & Whitlock, G. A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm 2, 669–674 (2011).

    Article  CAS  Google Scholar 

  36. Wieske, L. H. E., Peintner, S. & Erdélyi, M. Ensemble determination by NMR data deconvolution. Nat. Rev. Chem. 7, 511–524 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Z. et al. Matched molecular pair analysis in drug discovery: methods and recent applications. J. Med. Chem. 66, 4361–4377 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Shalaeva, M. et al. Integrating intramolecular hydrogen bonding (IMHB) considerations in drug discovery using ΔlogP as a tool. J. Med. Chem. 56, 4870–4879 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Goetz, G. H. et al. High throughput method for the indirect detection of intramolecular hydrogen bonding. J. Med. Chem. 57, 2920–2929 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Garcia Jimenez, D. et al. Chamelogk: a chromatographic chameleonicity quantifier to design orally bioavailable beyond-rule-of‐5 drugs. J. Med. Chem. 66, 10681–10693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davis, A. M., Teague, S. J. & Kleywegt, G. J. Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew. Chem. Int. Ed. 42, 2718–2736 (2003).

    Article  CAS  Google Scholar 

  42. Atilaw, Y. et al. Solution conformations shed light on PROTAC cell permeability. ACS Med. Chem. Lett. 12, 107–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Gramse, G., Dols-Perez, A., Edwards, M. A., Fumagalli, L. & Gomila, G. Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys. J. 104, 1257–1262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheikh, A. Y. et al. Implications of the conformationally flexible, macrocyclic structure of the first-generation, direct-acting anti-viral paritaprevir on Its solid form complexity and chameleonic behavior. J. Am. Chem. Soc. 143, 17479–17491 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, M. G. et al. Use of a conformational-switching mechanism to modulate exposed polarity: discovery of CCR2 antagonist BMS-741672. ACS Med. Chem. Lett. 10, 300–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mackman, R. L. et al. Discovery of a potent and orally bioavailable cyclophilin inhibitor derived from the sanglifehrin macrocycle. J. Med. Chem. 61, 9473–9499 (2018). An example of how the insertion of an environment-dependent IMHB in lead optimization can improve both cell permeability and solubility, and thus contribute to the identification of a drug candidate suitable for progression into clinical studies.

    Article  CAS  PubMed  Google Scholar 

  47. Corbett, K. M., Ford, L., Warren, D. B., Pouton, C. W. & Chalmers, D. K. Cyclosporin structure and permeability: from A to Z and beyond. J. Med. Chem. 64, 13131–13151 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Wieske, L. H. E., Atilaw, Y., Poongavanam, V., Erdélyi, M. & Kihlberg, J. Going viral: an investigation into the chameleonic behaviour of antiviral compounds. Chem. Eur. J. 29, e202202798 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Poongavanam, V. et al. Linker-dependent folding rationalizes PROTAC cell permeability. J. Med. Chem. 65, 13029–13040 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bockus, A. T. et al. Going out on a limb: delineating the effects of β-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of sanguinamide A analogues. J. Med. Chem. 58, 7409–7418 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Palian, M. M., Boguslavsky, V. I., O’Brien, D. F. & Polt, R. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media. J. Am. Chem. Soc. 125, 5823–5831 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Moxam, J. et al. Passive membrane permeability of sizable acyclic β‐hairpin peptides. ACS Med. Chem. Lett. 14, 278–284 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Ermondi, G. et al. Managing experimental 3D structures in the beyond-rule-of-5 chemical space: the case of rifampicin. Chem. Eur. J. 27, 10394–10404 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Liang, J., Choi, J. & Clardy, J. Refined structure of the FKBP12–rapamycin–FRB ternary complex at 2.2 Å resolution. Acta Cryst. D55, 736–744 (1999).

    CAS  Google Scholar 

  56. März, A. M., Fabian, A.-K., Kozany, C., Bracher, A. & Hausch, F. Large FK506-binding proteins shape the pharmacology of rapamycin. Mol. Cell. Biol. 33, 1357–1367 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ceymann, A. et al. Solution structure of the Legionella pneumophila Mip-rapamycin complex. BMC Struct. Biol. 8, 17 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Surleraux, D. L. N. G. et al. Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J. Med. Chem. 48, 1813–1822 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Kovalevsky, A. Y. et al. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M. J. Med. Chem. 49, 1379–1387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kovalevsky, A. Y. et al. Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J. Mol. Biol. 363, 161–173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Y. et al. Structures of darunavir-resistant HIV‐1 protease mutant reveal atypical binding of darunavir to wide open flaps. ACS Chem. Biol. 9, 1351–1358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chierrito, T. P. C. et al. Chameleon-like behavior of indolylpiperidines in complex with cholinesterases targets: potent butyrylcholinesterase inhibitors. Eur. J. Med. Chem. 145, 431–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Kuhnert, M. et al. Tracing binding modes in hit-to-lead optimization: chameleon-like poses of aspartic protease inhibitors. Angew. Chem. Int. Ed. 54, 2849–2853 (2015).

    Article  CAS  Google Scholar 

  64. Limbach, M. N. et al. Atomic view of aqueous cyclosporine A: unpacking a decades-old mystery. J. Am. Chem. Soc. 144, 12602–12607 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Rezai, T., Yu, B., Millhauser, G. L., Jacobson, M. P. & Lokey, R. S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 128, 2510–2511 (2006). A pioneering study of how N-methylation of amide bonds and variation of stereochemistry in cyclic peptides can influence passive cell permeability by up to two orders of magnitude.

    Article  CAS  PubMed  Google Scholar 

  66. Taechalertpaisarn, J., Ono, S., Okada, O., Johnstone, T. C. & Lokey, R. S. A new amino acid for improving permeability and solubility in macrocyclic peptides through side chain-to-backbone hydrogen bonding. J. Med. Chem. 65, 5072–5084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rafi, S. B., Hearn, B. R., Vedantham, P., Jacobson, M. P. & Renslo, A. R. Predicting and improving the membrane permeability of peptidic small molecules. J. Med. Chem. 55, 3163–3169 (2011).

    Article  Google Scholar 

  68. Birkinshaw, R. W. et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 10, 2385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Perdih, F., Žigart, N. & Časar, Z. Crystal structure and solid-state conformational analysis of active pharmaceutical ingredient venetoclax. Crystals 11, 261 (2021).

    Article  CAS  Google Scholar 

  70. Tyagi, M. et al. Toward the design of molecular chameleons: flexible shielding of an amide bond enhances macrocycle cell permeability. Org. Lett. 20, 5737–5742 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Sethio, D. et al. Simulation reveals the chameleonic behavior of macrocycles. J. Chem. Inf. Model. 63, 138–146 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Caron, G., Digiesi, V., Solaro, S. & Ermondi, G. Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Drug Discov. Today 25, 621–627 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Poongavanam, V. et al. Conformational sampling of macrocyclic drugs in different environments: can we find the relevant conformations? ACS Omega 3, 11742–11757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hawkins, P. C. D. Conformation generation: the state of the art. J. Chem. Inf. Model. 57, 1747–1756 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Appavoo, S. D., Huh, S., Diaz, D. B. & Yudin, A. K. Conformational control of macrocycles by remote structural modification. Chem. Rev. 119, 9724–9752 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Bhardwaj, G. et al. Accurate de novo design of membrane-traversing macrocycles. Cell 185, 3520–3532 (2022). The first report of the comprehensive computational design and experimental characterization of structurally diverse cell-permeable cyclic peptides, some of which behave as molecular chameleons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, C. K., Swedberg, J. E., Harvey, P. J., Kaas, Q. & Craik, D. J. Conformational flexibility is a determinant of permeability for cyclosporin. J. Phys. Chem. B 122, 2261–2276 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Linker, S. M. et al. Polar/apolar interfaces modulate the conformational behavior of cyclic peptides with impact on their passive membrane permeability. RSC Adv. 12, 5782–5796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ono, S. et al. Conformation and permeability: cyclic hexapeptide diastereomers. J. Chem. Inf. Model. 59, 2952–2963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hosseinzadeh, P. et al. Comprehensive computational design of ordered peptide macrocycles. Science 358, 1461–1466 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramelot, T. A., Palmer, J., Montelione, G. T. & Bhardwaj, G. Cell-permeable chameleonic peptides: exploiting conformational dynamics in de novo cyclic peptide design. Curr. Opin. Struct. Biol. 80, 102603 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Miao, J., Descoteaux, M. L. & Lin, Y.-S. Structure prediction of cyclic peptides by molecular dynamics + machine learning. Chem. Sci. 12, 14927–14936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  84. Bergström, C. A. S. & Avdeef, A. Perspectives in solubility measurement and interpretation. ADMET DMPK 7, 88–105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Di, L. et al. The critical role of passive permeability in designing successful drugs. ChemMedChem 15, 1862–1874 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Plant, N. Strategies for using in vitro screens in drug metabolism. Drug Discov. Today 9, 328–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Poongavanam, V., Doak, B. C. & Kihlberg, J. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. Curr. Opin. Chem. Biol. 44, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Sheikh and R. Hong for helpful discussions on paritaprevir, and G. Bhardwaj for providing the two predicted low-energy conformations of cyclic peptide 27. The writing of this manuscript was supported by a grant from the Swedish Research Council (Grant No. 2021-04747).

Author information

Authors and Affiliations

Authors

Contributions

J.K. conceptualized and wrote the manuscript, with contributions from V.P., L.H.E.W., S.P. and M.E. V.P. performed the computational analysis, searched the literature and made the submitted figures. L.H.E.W., S.P. and V.P. downloaded and curated a dataset of crystal structures from which examples were chosen to illustrate different aspects of molecular chameleonicity.

Corresponding author

Correspondence to Jan Kihlberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Scott Lokey, Youla Tsantrizos, Sandor Vajda, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poongavanam, V., Wieske, L.H.E., Peintner, S. et al. Molecular chameleons in drug discovery. Nat Rev Chem 8, 45–60 (2024). https://doi.org/10.1038/s41570-023-00563-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00563-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research