Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Ligand binding at the protein–lipid interface: strategic considerations for drug design

Abstract

Many drug targets are embedded within the phospholipid bilayer of cellular membranes, including G protein-coupled receptors, ion channels, transporters and membrane-bound enzymes. Increasing evidence from biophysical and structural studies suggests that many small-molecule drugs commonly associate with these targets at binding sites at the protein–phospholipid interface. Without a direct path from bulk solvent to a binding site, a drug must first partition in the phospholipid membrane before interacting with the protein target. This membrane access mechanism necessarily affects the interpretation of potency data, structure–activity relationships, pharmacokinetics and physicochemical properties for drugs that target these sites. With an increasing number of small-molecule intramembrane binding sites revealed through X-ray crystallography and cryogenic electron microscopy, we suggest that ligand–lipid interactions likely play a larger role in small-molecule drug action than commonly appreciated. This Perspective introduces key concepts and drug design considerations to aid discovery teams operating within this target space, and discusses challenges and future opportunities in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modes of receptor binding.
Fig. 2: Strategies for drug design at the protein–phospholipid interface.
Fig. 3: Structural data illuminate classical intramembrane binding sites.
Fig. 4: Structural data on emerging intramembrane binding sites.

Similar content being viewed by others

References

  1. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, R. et al. Binding sites in membrane proteins–diversity, druggability and prospects. Eur. J. Cell Biol. 91, 326–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Meyer, H. Welche Eigenschaft der Anästhetica bedingt ihre narkotische Wirkung? Naunyn-Schmiedebergs. Arch. Exp. Pathol. Pharmakol. 42, 109–118 (1899).

    Article  Google Scholar 

  5. Overton, C. E. Studien über die Narkose, zugleich ein Beitrag zur allgemeiner Pharmakologie. (Gustav Fischer, 1901).

  6. Smith, D. A., Di, L. & Kerns, E. H. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat. Rev. Drug Discov. 9, 929–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Yukawa, T. & Naven, R. Utility of physicochemical properties for the prediction of toxicological outcomes: Takeda perspective. ACS Med. Chem. Lett. 11, 203–209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barton, P. & Riley, R. J. A new paradigm for navigating compound property related drug attrition. Drug Discov. Today 21, 72–81 (2016).

    Article  PubMed  Google Scholar 

  10. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Miller, R. R. et al. Integrating the impact of lipophilicity on potency and pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization. J. Med. Chem. 63, 12156–12170 (2020). A provocative perspective on the use of lipophilicity in drug design that challenges modern concepts of drug-like space and PK optimization.

    Article  CAS  PubMed  Google Scholar 

  12. Yin, J., Mobarec, J. C., Kolb, P. & Rosenbaum, D. M. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519, 247–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahuja, S. et al. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350, aac5464 (2015).

    Article  PubMed  Google Scholar 

  15. Hua, T. et al. Crystal structure of the human cannabinoid receptor CB1. Cell 167, 750–762 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, D. et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520, 317–321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Long, T. et al. Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition. Nat. Commun. 10, 2452 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balestrini, A. et al. A TRPA1 inhibitor suppresses neurogenic inflammation and smooth muscle contraction for the treatment of asthma. J. Exp. Med. 218, e20201637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szlenk, C. T., GC, J. B. & Natesan, S. Does the lipid bilayer orchestrate access and binding of ligands to transmembrane orthosteric/allosteric sites of G protein-coupled receptors? Mol. Pharmacol. 96, 527–541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y., Yu, Z., Xiao, W., Lu, S. & Zhang, J. Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov. Today 26, 690–703 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, F. et al. Structural identification of a hotspot on CFTR for potentiation. Science 364, 1184–1188 (2019). This cryo-EM structure provides a stunning depiction of a membrane-exposed extrahelical site, revealing the mechanism of action of a transformative drug in the treatment of cystic fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, K. et al. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang, L. et al. Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature 537, 117–121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Franks, N. P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Franks, N. P. in The Wondrous Story of Anesthesia (eds Eger, E. I., Saidman, L. J. & Westhorpe, R. N.) 597–608 (Springer, 2014).

  28. Nury, H. et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469, 428–431 (2011). A landmark report lending structural support for the protein theory of general anaesthesia.

    Article  CAS  PubMed  Google Scholar 

  29. Kamaya, H., Kaneshina, S. & Ueda, I. Partition equilibrium of inhalation anesthetics and alcohols between water and membranes of phospholipids with varying acyl chain-lengths. Biochim. Biophys. Acta 646, 135–142 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, M. et al. Fluorinated alcohols’ effects on lipid bilayer properties. Biophys. J. 115, 679–689 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whalen, F. X., Bacon, D. R. & Smith, H. M. Inhaled anesthetics: an historical overview. Best. Pract. Res. Clin. Anaesthesiol. 19, 323–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, R. in The Wondrous Story of Anesthesia (eds Eger, E. I., Saidman, L. J., & Westhorpe, R. N.) 609–627 (Springer, 2014).

  33. Hille, B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69, 497–515 (1977).

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, D. et al. Structure of the cardiac sodium channel. Cell 180, 122–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Gamal El-Din, T. M., Lenaeus, M. J., Zheng, N. & Catterall, W. A. Fenestrations control resting-state block of a voltage-gated sodium channel. Proc. Natl Acad. Sci. USA 115, 13111–13116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banitt, E. H., Bronn, W. R., Coyne, W. E. & Schmid, J. R. Antiarrhythmics. 2. Synthesis and antiarrhythmic activity of N-(piperidylalkyl)trifluoroethoxybenzamides. J. Med. Chem. 20, 821–826 (1977).

    Article  CAS  PubMed  Google Scholar 

  37. Hudak, J. M., Banitt, E. H. & Schmid, J. R. Discovery and development of flecainide. Am. J. Cardiol. 53, 17B–20B (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Mason, R. P., Moisey, D. M. & Shajenko, L. Cholesterol alters the binding of Ca2+ channel blockers to the membrane lipid bilayer. Mol. Pharmacol. 41, 315–321 (1992).

    CAS  PubMed  Google Scholar 

  39. Herbette, L. G. Membrane pathways for drug/ion channel interactions: molecular basis for pharmacokinetic properties. Drug Dev. Res. 33, 214–224 (1994).

    Article  CAS  Google Scholar 

  40. Smith, D. A., Beaumont, K., Maurer, T. S. & Di, L. Volume of distribution in drug design. J. Med. Chem. 58, 5691–5698 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, Y. et al. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell 177, 1495–1506 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Yan, N. & Gao, S. Structural basis of Cav1.1 modulation by dihydropyridine compounds. Angew. Chem. Int. Ed. Engl. 60, 3131–3137 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Coleman, R. A., Johnson, M., Nials, A. T. & Vardey, C. J. Exosites: their current status, and their relevance to the duration of action of long-acting beta 2-adrenoceptor agonists. Trends Pharmacol. Sci. 17, 324–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Anderson, G. P., Lindén, A. & Rabe, K. F. Why are long-acting beta-adrenoceptor agonists long-acting? Eur. Respir. J. 7, 569–578 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Masureel, M. et al. Structural insights into binding specificity, efficacy and bias of a β2 AR partial agonist. Nat. Chem. Biol. 14, 1059–1066 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Austin, R. P. et al. QSAR and the rational design of long-acting dual D2-receptor/beta 2-adrenoceptor agonists. J. Med. Chem. 46, 3210–3220 (2003). An early, pioneering example of IAM chromatography as a measure of membrane partitioning used in a medicinal chemistry campaign.

    Article  CAS  PubMed  Google Scholar 

  47. Rhodes, D. G., Newton, R., Butler, R. & Herbette, L. Equilibrium and kinetic studies of the interactions of salmeterol with membrane bilayers. Mol. Pharmacol. 42, 596–602 (1992).

    CAS  PubMed  Google Scholar 

  48. Sykes, D. A. et al. Observed drug-receptor association rates are governed by membrane affinity: the importance of establishing “micro-pharmacokinetic/pharmacodynamic relationships” at the β2-adrenoceptor. Mol. Pharmacol. 85, 608–617 (2014). This study provides the most thorough kinetic analysis available for drug action at the membrane, using IAM chromatography to estimate drug concentration in the local membrane environment of β2AR.

    Article  PubMed  Google Scholar 

  49. Dickson, C. J. et al. Uncoupling the structure−activity relationships of β2 adrenergic receptor ligands from membrane binding. J. Med. Chem. 59, 5780–5789 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Chao, H. et al. Discovery of 2-(phenoxypyridine)-3-phenylureas as small molecule P2Y1 antagonists. J. Med. Chem. 56, 1704–1714 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, T. C. et al. Discovery of diarylurea P2Y(1) antagonists with improved aqueous solubility. Bioorg. Med. Chem. Lett. 23, 3239–3243 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, W. et al. Discovery of 4-aryl-7-hydroxyindoline-based P2Y1 antagonists as novel antiplatelet agents. J. Med. Chem. 57, 6150–6164 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Yuan, X., Raniolo, S., Limongelli, V. & Xu, Y. The molecular mechanism underlying ligand binding to the membrane-embedded site of a G-protein-coupled receptor. J. Chem. Theory Comput. 14, 2761–2770 (2018). A computational simulation of BPTU’s path from bulk water to the membrane-exposed extrahelical site of the P2Y1 receptor that illustrates a membrane access pathway in vivid detail.

    Article  CAS  PubMed  Google Scholar 

  54. Fohner, A. E. et al. PharmGKB summary: ivacaftor pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet. Genomics 27, 39–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hadida, S. et al. Discovery of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator. J. Med. Chem. 57, 9776–9795 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, H. et al. Discovery of a potent (4R,5S)-4-fluoro-5-methylproline sulfonamide transient receptor potential ankyrin 1 antagonist and its methylene phosphate prodrug guided by molecular modeling. J. Med. Chem. 61, 3641–3659 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Srivastava, A. et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513, 124–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Negoro, N. et al. Discovery of TAK-875: a potent, selective, and orally bioavailable GPR40 agonist. ACS Med. Chem. Lett. 1, 290–294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christiansen, E. et al. Free fatty acid receptor 1 (FFA1/GPR40) agonists: mesylpropoxy appendage lowers lipophilicity and improves ADME properties. J. Med. Chem. 55, 6624–6628 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Vauquelin, G. On the ‘micro’-pharmacodynamic and pharmacokinetic mechanisms that contribute to long-lasting drug action. Expert Opin. Drug Discov. 10, 1085–1098 (2015).

    Article  PubMed  Google Scholar 

  61. Mason, R. P., Rhodes, D. G. & Herbette, L. G. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes. J. Med. Chem. 34, 869–877 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Vauquelin, G. & Packeu, A. Ligands, their receptors and plasma membranes. Mol. Cell. Endocrinol. 311, 1–10 (2009). This wide-ranging review surveys important concepts related to the pharmacology of membrane access mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, S.-Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, H. et al. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell 176, 7012–715 (2019).

    Article  Google Scholar 

  65. Conn, P. J., Kuduk, S. D. & Doller, D. Drug design strategies for GPCR allosteric modulators. Annu. Rep. Med. Chem. 47, 441–457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Congreve, M., Oswald, C. & Marshall, F. H. Applying structure-based drug design approaches to allosteric modulators of GPCRs. Trends Pharmacol. Sci. 39, 837–847 (2017).

    Article  Google Scholar 

  67. Brooks, C. A. et al. Discovery of GSK3527497: a candidate for the inhibition of transient receptor potential vanilloid-4 (TRPV4). J. Med. Chem. 62, 9270–9280 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Avdeef, A., Box, K. J., Comer, J. E., Hibbert, C. & Tam, K. Y. pH-metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm. Res. 15, 209–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Pavel, M. A., Petersen, E. N., Wang, H., Lerner, R. A. & Hansen, S. B. Studies on the mechanism of general anesthesia. Proc. Natl Acad. Sci. USA 117, 13757–13766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Broccatelli, F., Aliagas, I. & Zheng, H. Why decreasing lipophilicity alone is often not a reliable strategy for extending IV half-life. ACS Med. Chem. Lett. 9, 522–527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gunaydin, H. Strategy for extending half-life in drug design and its significance. ACS Med. Chem. Lett. 9, 528–533 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsopelas, F., Giaginis, C. & Tsantili-Kakoulidou, A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin. Drug Discov. 12, 885–896 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Ong, S., Liu, H. & Pidgeon, C. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. J. Chromatogr. A 728, 113–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Pidgeon, C. & Venkataram, U. V. Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal. Biochem. 176, 36–47 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Nagar, S. & Korzekwa, K. Commentary: nonspecific protein binding versus membrane partitioning: it is not just semantics. Drug Metab. Dispos. 40, 1649–1652 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Fares, A. R., El Meshad, A. N. & Kassem, M. A. A. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 25, 132–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Jamieson, C., Moir, E. M., Rankovic, Z. & Wishart, G. Medicinal chemistry of hERG optimizations: highlights and hang-ups. J. Med. Chem. 49, 5029–5046 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Ploemen, J. P. et al. Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: a case study with structurally related piperazines. Exp. Toxicol. Pathol. 55, 347–355 (2004).

    CAS  PubMed  Google Scholar 

  79. Graceffa, R. F. et al. Sulfonamides as selective NaV1.7 inhibitors: optimizing potency, pharmacokinetics, and metabolic properties to obtain atropisomeric quinolinone (AM-0466) that affords robust in vivo activity. J. Med. Chem. 60, 5990–6017 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Shukla, S. S. et al. Identification of clinically used drugs that activate pregnane X receptors. Drug Metab. Dispos. 39, 151–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Baylon, J. L., Lenov, I. L., Sligar, S. G. & Tajkhorshid, E. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J. Am. Chem. Soc. 135, 8542–8551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, L. et al. Structures of the human PGD2 receptor CRTH2 reveal novel mechanisms for ligand recognition. Mol. Cell 72, 48–59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sandham, D. A. et al. Discovery of fevipiprant (NVP-QAW039), a potent and selective DP2 receptor antagonist for treatment of asthma. ACS Med. Chem. Lett. 8, 582–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bissantz, C., Kuhn, B. & Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem. 53, 5061–5084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gherbi, K., Briddon, S. J. & Charlton, S. J. Micro-pharmacokinetics: quantifying local drug concentration at live cell membranes. Sci. Rep. 8, 3479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kiho, T. et al. Structure-activity relationships of globomycin analogues as antibiotics. Bioorg. Med. Chem. 12, 337–361 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Garland, K. et al. Optimization of globomycin analogs as novel Gram-negative antibiotics. Bioorg. Med. Chem. Lett. 30, 127419 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Olantunji, S. et al. Structures of lipoprotein signal peptidase II from Staphylococcus aureus complexed with antibiotics globomycin and myxovirescin. Nat. Commun. 11, 140 (2020).

    Article  Google Scholar 

  89. Vass, M. et al. Chemical diversity in the G protein-coupled receptor superfamily. Trends Pharmacol. Sci. 39, 494–512 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Lyu, J. et al. Ultra-large library docking for discoverying new chemotypes. Nature 566, 224–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579, 609–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, X. et al. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature 548, 480–484 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stauch, B. et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 569, 284–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Johansson, L. C. et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 569, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luginina, A. et al. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv. 5, eaax2518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fan, H. et al. Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat. Chem. Biol. 15, 27–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–277 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Robertson, N. et al. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553, 111–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546, 312–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Cheng, R. K. Y. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Bai, Y. et al. Structural basis for pharmacological modulation of the TRPC6 channel. eLife 9, e53311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yin, Y. et al. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 363, eaav9334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pumroy, R. A. et al. Molecular mechanism of TRPV2 channel modulation by cannabidiol. eLife 8, e48792 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sauguet, L. et al. Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nat. Commun. 4, 1697 (2013).

    Article  PubMed  Google Scholar 

  108. Kim, J. J. et al. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 585, 303–308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Miller, P. S. et al. Structural basis for GABAA receptor potentiation by neurosteroids. Nat. Struct. Mol. Biol. 24, 986–992 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dong, Y. Y. et al. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347, 1256–1259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kintzer, A. F. & Stroud, R. M. Structure, inhibition and regulation of two-pore channel TRPC1 from Arabidopsis thaliana. Nature 531, 258–262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Alam, A., Kowal, J., Broude, E., Roninson, I. & Locher, K. P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363, 753–756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ho, H. et al. Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 557, 196–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Jackson, S. M. et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Canul-Tec, J. C. et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544, 446–452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoo, J. et al. GlcNAc-1-P-transferase-tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat. Struct. Mol. Biol. 25, 217–224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Guo, Y. et al. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science 347, 551–555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Long, T., Sun, Y., Hassan, A., Qi, X. & Li, X. Structure of nevanimibe-bound tetrameric human ACAT1. Nature 581, 339–343 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ikonen, E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Ingólfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    Article  PubMed  Google Scholar 

  124. Simons, K. & Sampaio, J. L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sezgin, E., Levental, E., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell. Biol. 18, 361–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Parker, J. L. & Newstead, S. Structural basis of nucleotide sugar transport across the Golgi membrane. Nature 551, 521–524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Papasergi-Scott, M. M. et al. Structures of metabotropic GABAB receptor. Nature 584, 310–314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bevers, E. M. & Williamson, P. L. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96, 605–645 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Dickson, E. J. & Hille, B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem. J. 476, 1–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G. & Engelman, D. M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl Acad. Sci. USA 101, 4083–4088 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Litvinov, D. Y., Savushkin, E. V. & Dergunov, A. D. Intracellular and plasma membrane events in cholesterol transport and homeostasis. J. Lipids 2018, 3965054 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Lorent, J. H. et al. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 8, 1219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Di Meo, F. et al. In silico pharmacology: drug membrane partitioning and crossing. Pharmacol. Res. 111, 471–486 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank F. Broccatelli, S. Staben, J. Tellis and E. Villemure for critical input on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Matthew Volgraf.

Ethics declarations

Competing interests

J.P. and M.V. are employees and shareholders of Genentech, Inc., a member of the Roche Group.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks B. Roth, S. Natesan and J. Clemens for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payandeh, J., Volgraf, M. Ligand binding at the protein–lipid interface: strategic considerations for drug design. Nat Rev Drug Discov 20, 710–722 (2021). https://doi.org/10.1038/s41573-021-00240-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00240-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing