Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Alkaptonuria

Abstract

Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients’ quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical features of ochronosis.
Fig. 2: Prevalence of AKU worldwide.
Fig. 3: Tyrosine catabolism and AKU.
Fig. 4: Overview of the HGD gene and HGD protein.
Fig. 5: Pathogenic mechanism of AKU.

Similar content being viewed by others

References

  1. Garrod, A. The incidence of alkaptonuria. A study in chemical individuality. Lancet 160, 1616–1620 (1902).

    Article  Google Scholar 

  2. Fernândez-Canon, J. M. et al. The molecular basis of alkaptonuria. Nat. Genet. 14, 19–24 (1996). The authors describe the cloning of the human HGD gene and demonstrate for the first time, to our knowledge, that it harbours missense variants that co-segregate with the disease in the families.

    Article  PubMed  Google Scholar 

  3. Vilboux, T. et al. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Hum. Mutat. 30, 1611–1619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zannoni, V. G., Seegmiller, J. E. & La Du, B. N. Nature of the defect in alcaptonuria. Nature 193, 952–953 (1962).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Phornphutkul, C. et al. Natural history of alkaptonuria. N. Engl. J. Med. 347, 2111–2121 (2002). This is the reference study for the definition of the natural history of AKU.

    Article  CAS  PubMed  Google Scholar 

  6. Gallagher, J. A., Ranganath, L. R. & Zatkova, A. in Brenner’s Encyclopedia of Genetics 2nd edn (eds Malay, S. & Hughes, K.) 71–75 (Elsevier, 2013).

  7. Chow, W. Y. et al. Pigmentation chemistry and radical-based collagen degradation in alkaptonuria and osteoarthritic cartilage. Angew. Chem. Int. Ed. 59, 11937–11942 (2020). The authors propose that collagen degradation in AKU occurs via transient glycyl radicals, and this process is enhanced due to the redox environment generated by pigmentation.

    Article  CAS  Google Scholar 

  8. Bernini, A. et al. A molecular spectroscopy approach for the investigation of early phase ochronotic pigment development in alkaptonuria. Sci. Rep. 11, 22562 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Barrios, P. C. & Font, R. L. Pigmented conjunctival lesions as initial manifestation of ochronosis. Arch. Ophthalmol. 122, 1060–1063 (2004).

    Article  Google Scholar 

  10. Ranganath, L. R. et al. Reversal of ochronotic pigmentation in alkaptonuria following nitisinone therapy: analysis of data from the United Kingdom National Alkaptonuria Centre. JIMD Rep. 55, 75–87 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dewan, K., MacDonald, C. B. & Shires, C. B. Blue man: ochronosis in otolaryngology. Clin. Case Rep. 10, e05717 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mannoni, A. et al. Ochronosis, and ochronotic arthropathy. Semin. Arthritis Rheum. 33, 239–248 (2004).

    Article  PubMed  Google Scholar 

  13. Millucci, L. et al. Amyloidosis, inflammation, and oxidative stress in the heart of an alkaptonuric patient. Mediators Inflamm. 2014, 258471 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Millucci, L. et al. Diagnosis of secondary amyloidosis in alkaptonuria. Diagn. Pathol. 9, 185 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Millucci, L. et al. Secondary amyloidosis in an alkaptonuric aortic valve. Int. J. Cardiol. 172, e121–e123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Křížek, V. Urolithiasis and prostatolithiasis in alcaptonuria with ochronosis. Int. Urol. Nephrol. 3, 245–250 (1971).

    Article  PubMed  Google Scholar 

  17. Introne, W. J. et al. Exacerbation of the ochronosis of alkaptonuria due to renal insufficiency and improvement after renal transplantation. Mol. Genet. Metab. 77, 136–142 (2022).

    Article  Google Scholar 

  18. Lazaro, J. S., Lutz, R. & Deirmengian, G. K. Bilateral patellar tendon rupture following total knee arthroplasty in a patient with alkaptonuria: a case report. Cureus 15, e38597 (2023).

    PubMed  PubMed Central  Google Scholar 

  19. Zatkova, A., Ranganath, L. & Kadasi, L. Alkaptonuria: current perspectives. Appl. Clin. Genet. 13, 37–47 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ranganath, L. R. & Cox, T. F. Natural history of alkaptonuria revisited: analyses based on scoring systems. J. Inherit. Metab. Dis. 34, 1141–1151 (2011). The authors applied advanced statistical methods to describe the natural history by quantitating the features of AKU, revealing distinct phases of the disease: a pre-ochronotic phase and an ochronotic phase.

    Article  PubMed  Google Scholar 

  21. Introne, W. J., Perry, M. & Chen, M. Alkaptonuria. GeneReviews [Internet] www.ncbi.nlm.nih.gov/books/NBK1454/ (updated 10 June 2021).

  22. Milch, R. A. Studies of alcaptonuria: inheritance of 47 cases in eight highly inter-related Dominican kindreds. Am. J. Hum. Genet. 12, 76–85 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Al-Sbou, M., Mwafi, N. & Lubad, M. A. Identification of forty cases with alkaptonuria in one village in Jordan. Rheumatol. Int. 32, 3737–3740 (2012).

    Article  PubMed  Google Scholar 

  24. Al-Sbou, M. & Mwafi, N. Nine cases of alkaptonuria in one family in southern Jordan. Rheumatol. Int. 32, 621–625 (2012).

    Article  PubMed  Google Scholar 

  25. Sakthivel, S. et al. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence. Ann. Hum. Genet. 78, 155–164 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Srsen, S. & Varga, F. Screening for alkaptonuria in the newborn in Slovakia. Lancet 2, 576 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Zatková, A. et al. High frequency of alkaptonuria in Slovakia: evidence for the appearance of multiple mutations in HGO involving different mutational hot spots. Am. J. Hum. Genet. 67, 1333–1339 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zatkova, A. An update on molecular genetics of alkaptonuria (AKU). J. Inherit. Metab. Dis. 34, 1127–1136 (2011).

    Article  PubMed  Google Scholar 

  29. Zatkova, A. et al. Identification of 11 novel homogentisate 1,2 dioxygenase variants in alkaptonuria patients and establishment of a novel LOVD-based HGD mutation database. JIMD Rep. 4, 55–65 (2012). The authors report on the establishment of a disease-specific HGD mutation database that summarizes all AKU gene variants identified so far in patients with AKU. This database is still active and regularly updated.

    Article  PubMed  Google Scholar 

  30. Soltysova, A., Kuzin, A., Samarkina, E. & Zatkova, A. Alkaptonuria in Russia. Eur. J. Hum. Genet. 30, 237–242 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Cox, T. F. & Ranganath, L. A quantitative assessment of alkaptonuria: testing the reliability of two disease severity scoring systems. J. Inherit. Metab. Dis. 34, 1153–1162 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Perry, M. B., Suwannarat, P., Furst, G. P., Gahl, W. A. & Gerber, L. H. Musculoskeletal findings and disability in alkaptonuria. J. Rheumatol. 33, 2280–2285 (2006).

    PubMed  Google Scholar 

  33. Ranganath, L. R., Khedr, M., Vinjamuri, S. & Gallagher, J. A. Frequency, diagnosis, pathogenesis and management of osteoporosis in alkaptonuria: data analysis from the UK National Alkaptonuria Centre. Osteoporos. Int. 32, 927–938 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Ranganath, L. R. et al. Homogentisic acid is not only eliminated by glomerular filtration and tubular secretion but also produced in the kidney in alkaptonuria. J. Inherit. Metab. Dis. 43, 737–747 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Mistry, J. B., Bukhari, M. & Taylor, A. M. Alkaptonuria. Rare Dis. 1, e27475 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kitahara, Y., Kaku, N., Tagomori, H. & Tsumura, H. Alkaptonuria with rapidly destructive arthropathy of the hip: a case report and literature review. Acta Orthop. Traumatol. Turc. 55, 563–568 (2021).

    Article  PubMed  Google Scholar 

  37. Ranganath, L. R., Khedr, M., Mistry, A., Vinjamuri, S. & Gallagher, J. A. Treatment of osteoporotic fractures in alkaptonuria by teriparatide stimulates bone formation and decreases fracture rate – a report of two cases. Bone Rep. 15, 101151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gómez-Lechón Quirós, L. et al. Family history of ochronotic arthropathy. Rheumatol. Int. 41, 1869–1874 (2021).

    Article  PubMed  Google Scholar 

  39. Taylor, A. M. et al. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 63, 3887–3896 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Taylor, A. M. et al. Identification of trabecular excrescences, novel microanatomical structures, present in bone in osteoarthropathies. Eur. Cell Mater. 23, 300–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Ebrahim, I. C., Hoang, T. D., Vietor, N. O., Schacht, J. P. & Shakir, M. K. M. Dilemmas in the diagnosis and management of osteoporosis in a patient with alkaptonuria: successful treatment with teriparatide. Clin. Case Rep. 10, e6729 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Genovese, F. et al. Investigating the robustness and diagnostic potential of extracellular matrix remodelling biomarkers in alkaptonuria. JIMD Rep. 24, 29–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brunetti, G. et al. Mechanisms of enhanced osteoclastogenesis in alkaptonuria. Am. J. Pathol. 188, 1059–1068 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Cox, T. et al. Subclinical ochronosis features in alkaptonuria: a cross-sectional study. BMJ Innov. 5, 82–91 (2019).

    Article  Google Scholar 

  45. Genovese, F. et al. Nitisinone treatment affects biomarkers of bone and cartilage remodelling in alkaptonuria patients. Int. J. Mol. Sci. 24, 10996 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Avadhanula, S. et al. Assessment of thyroid function in patients with alkaptonuria. JAMA Netw. open. 3, e201357 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kujawa, M. J. et al. Clinical presentation of 13 children with alkaptonuria. J. Inherit. Metab. Dis. 46, 916–930 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Ranganath, L. et al. Increased prevalence of Parkinson’s disease in alkaptonuria. JIMD Rep. 64, 282–292 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cannon Homaei, S. et al. ADHD symptoms in neurometabolic diseases: underlying mechanisms and clinical implications. Neurosci. Biobehav. Rev. 132, 838–856 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Mitchell, J. J., Trakadis, Y. J. & Scriver, C. R. Phenylalanine hydroxylase deficiency. Genet. Med. 13, 607–617 (2011).

    Article  Google Scholar 

  51. Arıcı, A. & Altun, H. Successful treatment of attention-deficit/hyperactivity disorder accompanying to alkaptonuria with methylphenidate and risperidone. Psychiatry Clin. Psychopharmacol. 29, 110–113 (2019).

    Article  Google Scholar 

  52. Urbánek, T. & Rovenský, J. in Alkaptonuria and Ochronosis (eds Rovenský, J., Urbánek, T., Oľga, B. & Gallagher, J. A.) 91–98 (Springer, 2015). This monograph is a comprehensive review of clinical experience and research in the field of alkaptonuria and ochronosis.

  53. Bernardini, G. et al. Homogentisate 1,2 dioxygenase is expressed in brain: implications in alkaptonuria. J. Inherit. Metab. Dis. 38, 807–814 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Braconi, D., Millucci, L., Spiga, O. & Santucci, A. Cell and tissue models of alkaptonuria. Drug. Discov. Today Dis. Model. 31, 3–10 (2020).

    Article  Google Scholar 

  55. Millucci, L. et al. Amyloidosis in alkaptonuria. J. Inherit. Metab. Dis. 38, 797–805 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Millucci, L. et al. Alkaptonuria is a novel human secondary amyloidogenic disease. Biochim. Biophys. Acta - Mol. Basis Dis. 1822, 1682–1691 (2012). This paper defines for the first time to our knowledge AKU as a novel type II AA amyloidosis and suggests the use of low doses of methotrexate to treat this comorbidity.

    Article  CAS  Google Scholar 

  57. Millucci, L. et al. Histological and ultrastructural characterization of alkaptonuric tissues. Calcif. Tissue Int. 101, 50–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Geminiani, M. et al. Cytoskeleton aberrations in alkaptonuric chondrocytes. J. Cell. Physiol. 232, 1728–1738 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Braconi, D. et al. Inflammatory and oxidative stress biomarkers in alkaptonuria: data from the DevelopAKUre project. Osteoarthr. Cartil. 26, 1078–1086 (2017).

    Article  Google Scholar 

  60. Braconi, D. et al. Comparative proteomics in alkaptonuria provides insights into inflammation and oxidative stress. Int. J. Biochem. Cell Biol. 81, 271–280 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Braconi, D. et al. Effects of nitisinone on oxidative and inflammatory markers in alkaptonuria: results from SONIA1 and SONIA2 studies. Cells 11, 3668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pollak, M. R. et al. Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nat. Genet. 5, 201–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Janocha, S. et al. The human gene for alkaptonuria (AKU) maps to chromosome 3q. Genomics 19, 5–8 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Fernandez-Canon, J. M. & Penalva, M. A. Molecular characterization of a gene encoding a homogentisate dioxygenase from Aspergillus nidulans and identification of its human and plant homologues. J. Biol. Chem. 270, 21199–21205 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Granadino, B., De Bernabé, D. B. V., Fernández-Cañón, J. M., Peñalva, M. A. & De Córdoba, S. R. The human homogentisate 1,2-dioxygenase (HGO) gene. Genomics 43, 115–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Nemethova, M. et al. Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on “black bone disease” in Italy. Eur. J. Hum. Genet. 24, 66–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Soltysova, A., Sekelska, M. & Zatkova, A. Breakpoints characterisation of the genomic deletions identified by MLPA in alkaptonuria patients. Eur. J. Hum. Genet. 31, 485–489 (2022).

    Article  PubMed  Google Scholar 

  68. Ascher, D. B. et al. Homogentisate 1,2-dioxygenase (HGD) gene variants, their analysis and genotype-phenotype correlations in the largest cohort of patients with AKU. Eur. J. Hum. Genet. 27, 888–902 (2019). The authors summarize data on AKU-causing variants in the largest cohort of clinically well described patients with AKU and in the first genotype–phenotype correlations study also demonstrate that the severity of AKU does not significantly depend on the residual activity of mutated HGD enzyme.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lai, C. Y. et al. A novel deep intronic variant strongly associates with alkaptonuria. NPJ Genom. Med. 6, 89 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bychkov, I. et al. Alkaptonuria in Russia: mutational spectrum and novel variants. Eur. J. Med. Genet. 64, 104165 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Titus, G. P. et al. Crystal structure of human homogentisate dioxygenase. Nat. Struct. Biol. 7, 542–546 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Karmakar, M. et al. HGDiscovery: an online tool providing functional and phenotypic information on novel variants of homogentisate 1,2-dioxigenase. Curr. Res. Struct. Biol. 4, 271–277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodríguez, J. M. et al. Structural and functional analysis of mutations in alkaptonuria. Hum. Mol. Genet. 9, 2341–2350 (2000).

    Article  PubMed  Google Scholar 

  74. Lequeue, S. et al. A robust bacterial high-throughput screening system to evaluate single nucleotide polymorphisms of human homogentisate 1,2-dioxygenase in the context of alkaptonuria. Sci. Rep. 12, 19452 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Zatkova, A., Olsson, B., Ranganath, L. R. & Imrich, R. Analysis of the phenotype differences in siblings with alkaptonuria. Metabolites 12, 990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gupta, V. et al. Dominant negative mutations affect oligomerization of human pyruvate kinase M2 isozyme and promote cellular growth and polyploidy. J. Biol. Chem. 285, 16864–16873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stoner, R. & Blivaiss, B. B. Reaction of quinone of homogentisic acid with biological amines. Arthritis Rheum. 10, 53–60 (1967).

    Article  CAS  PubMed  Google Scholar 

  78. Martin, J. P. J. & Batkoff, B. Homogentisic acid autoxidation and oxygen radical generation: implications for the etiology of alkaptonuric arthritis. Free. Radic. Biol. Med. 3, 241–250 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Tokuhara, Y. et al. Detection of novel visible-light region absorbance peaks in the urine after alkalization in patients with alkaptonuria. PLoS ONE 9, 4–6 (2014).

    Article  Google Scholar 

  80. Tokuhara, Y. et al. Absorbance measurements of oxidation of homogentisic acid accelerated by the addition of alkaline solution with sodium hypochlorite pentahydrate. Sci. Rep. 8, 11364 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  81. Eslami, M., Namazian, M. & Zare, H. R. Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies. J. Phys. Chem. B 117, 2757–2763 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Eslami, M., Zare, H. R. & Namazian, M. The effect of solvents on the electrochemical behavior of homogentisic acid. J. Electroanal. Chem. 720–721, 76–83 (2014).

    Article  Google Scholar 

  83. David, C., Daro, A., Szalai, E., Atarhouch, T. & Mergeay, M. Formation of polymeric pigments in the presence of bacteria and comparison with chemical oxidative coupling – II. Catabolism of tyrosine and hydroxyphenylacetic acid by Alcaligenes eutrophus CH34 and mutants. Eur. Polym. J. 32, 669–679 (1996).

    Article  CAS  Google Scholar 

  84. Turick, C. E., Knox, A. S., Becnel, J. M., Ekechukwu, A. A. & Millike, C. E. in Biopolymers (ed. Elnashar, M.) 449–472 (InTech, 2010).

  85. Galeb, H. A. et al. The polymerization of homogentisic acid in vitro as a model for pyomelanin formation. Macromol. Chem. Phys. 223, 2100489 (2022).

    Article  CAS  Google Scholar 

  86. Galeb, H. A. et al. Phenolic polymers as model melanins. Macromol. Chem. Phys. 224, 2300025 (2023).

    Article  CAS  Google Scholar 

  87. Braconi, D. et al. Redox-proteomics of the effects of homogentisic acid in an in vitro human serum model of alkaptonuric ochronosis. J. Inherit. Metab. Dis. 34, 1163–1176 (2011).

    Article  PubMed  Google Scholar 

  88. Braconi, D. et al. Evaluation of anti-oxidant treatments in an in vitro model of alkaptonuric ochronosis. Rheumatology 49, 1975–1983 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Braconi, D., Millucci, L., Ghezzi, L. & Santucci, A. Redox proteomics gives insights into the role of oxidative stress in alkaptonuria. Exp. Rev. Proteom. 10, 521–535 (2013).

    Article  CAS  Google Scholar 

  90. Spreafico, A. et al. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria. Rheumatology 52, 1667–1673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tinti, L. et al. Evaluation of antioxiodant drugs for the treatment of ochronotic alkaptonuria in an in vitro human cell model. J. Cell. Physiol. 225, 84–91 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Millucci, L. et al. Chondroptosis in alkaptonuric cartilage. J. Cell. Physiol. 230, 1148–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Braconi, D. et al. Homogentisic acid induces aggregation and fibrillation of amyloidogenic proteins. Biochim. Biophys. Acta Gen. Subj. 1861, 135–146 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Braconi, D. et al. Biochemical and proteomic characterization of alkaptonuric chondrocytes. J. Cell. Physiol. 227, 3333–3343 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Braconi, D. et al. Proteomic and redox-proteomic evaluation of homogentisic acid and ascorbic acid effects on human articular chondrocytes. J. Cell. Biochem. 111, 922–932 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Millucci, L. et al. Angiogenesis in alkaptonuria. J. Inherit. Metab. Dis. 39, 801–806 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Gambassi, S. et al. Smoothened-antagonists reverse homogentisic acid-induced alterations of Hedgehog signaling and primary cilium length in alkaptonuria. J. Cell. Physiol. 232, 3103–3111 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Thorpe, S. D. et al. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria. J. Cell. Physiol. 232, 2407–2417 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Galderisi, S. et al. Homogentisic acid induces autophagy alterations leading to chondroptosis in human chondrocytes: implications in alkaptonuria. Arch. Biochem. Biophys. 717, 109137 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Gallagher, J. A., Dillon, J. P., Sireau, N., Timmis, O. & Ranganath, L. R. Alkaptonuria: an example of a “fundamental disease” – A rare disease with important lessons for more common disorders. Semin. Cell Dev. Biol. 52, 53–57 (2016). In this paper, the authors present the ‘exposed collagen hypothesis’ to describe the mechanism of ochronotic pigmentation of the joint cartilages, and describe AKU as a ‘fundamental disease’ — that is, a rare genetic disease that is a gateway to understanding common conditions and human physiology.

    Article  CAS  PubMed  Google Scholar 

  101. Hughes, J. H. et al. Anatomical distribution of ochronotic pigment in alkaptonuric mice is associated with calcified cartilage chondrocytes at osteochondral interfaces. Calcif. Tissue Int. 108, 207–218 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Gallagher, J. A., Dillon, J. P. & Ranganath, L. R. Development of an effective therapy for alkaptonuria – lessons for osteoarthritis. Rheumatol. Immunol. Res. 2, 79–85 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Srsen, S. & Srsnová K, L. A. Clinical manifestation of alkaptonuria in relation to age. Bratisl. Lek. List. 77, 662–669 (1982).

    CAS  Google Scholar 

  104. Srsen S, S. K. Diagnosis of alkaptonuria in children. Padiatr. Padol. 14, 163–167 (1979).

    PubMed  Google Scholar 

  105. Zibolena, M., Srsnovab, K. & Srsenb, S. Increased urolithiasis in patients with alkaptonuria in childhood. Clin. Genet. 58, 79–80 (2000).

    Article  Google Scholar 

  106. Gucev, Z. S. et al. Early-onset ocular ochronosis in a girl with alkaptonuria (AKU) and a novel mutation in homogentisate 1,2-dioxygenase (HGD). Prilozi 32, 305–311 (2011).

    CAS  PubMed  Google Scholar 

  107. Taylor, A. M. et al. Calculi and intracellular ochronosis in the submandibular tissues from a patient with alkaptonuria. J. Clin. Pathol. 63, 186–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Davison, A. S., Milan, A. M., Gallagher, J. A. & Ranganath, L. R. Acute fatal metabolic complications in alkaptonuria. J. Inherit. Metab. Dis. 39, 203–210 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Faria, B., Vidinha, J., Pêgo, C., Correia, H. & Sousa, T. Impact of chronic kidney disease on the natural history of alkaptonuria. CKJ Clin. Kidney J. 5, 352–355 (2012).

    Article  PubMed  Google Scholar 

  110. Heng, A. E. et al. Hemolysis in a patient with alkaptonuria and chronic kidney failure. Am. J. Kidney Dis. 56, e1–e4 (2010).

    Article  PubMed  Google Scholar 

  111. Ranganath, L. R., Jarvis, J. C. & Gallagher, J. A. Recent advances in management of alkaptonuria (invited review; best practice article). J. Clin. Pathol. 66, 367–373 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Lang, J., Narendrula, A., El-Zawahry, A., Sindhwani, P. & Ekwenna, O. Global trends in incidence and burden of urolithiasis from 1990 to 2019: an analysis of global burden of disease study data. Eur. Urol. Open. Sci. 35, 37–46 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hyun, J. S. Clinical significance of prostatic calculi: a review. World J. Mens. Health 36, 15 (2018).

    Article  PubMed  Google Scholar 

  114. Davison, A. S., Luangrath, E., Selvi, E. & Ranganath, L. R. Fatal acute haemolysis and methaemoglobinaemia in a man with renal failure and alkaptonuria – is nitisinone the solution? Mol. Genet. Metab. Rep. 23, 100588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hugar, S. B., Shulman, J., Yanta, J. & Nine, J. Ochronosis presenting as methemoglobinemia. J. Forensic Sci. 64, 913–916 (2019).

    Article  PubMed  Google Scholar 

  116. Freeman, A. R. & Wills, S. M. Fatal methemoglobinemia complicating alkaptonuria (ochronosis): a rare presentation. Forensic Sci. Med. Pathol. 14, 236–240 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Isa, Y. et al. A rare case of acquired methemoglobinemia associated with alkaptonuria. Intern. Med. 53, 1797–1800 (2014).

    Article  PubMed  Google Scholar 

  118. Ahuja, V., Atter, P., Mundotiya, S. & Garg, S. Perioperative anesthetic challenges in alkaptonuria patient with comorbid conditions. J. Anaesthesiol. Clin. Pharmacol. 38, 152–153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pandey, R., Kumar, A., Garg, R., Khanna, P. & Darlong, V. Perioperative management of patient with alkaptonuria and associated multiple comorbidities. J. Anaesthesiol. Clin. Pharmacol. 27, 259–261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ranganath, L. R., Khedr, M., Vinjamuri, S. & Gallagher, J. A. Characterizing the alkaptonuria joint and spine phenotype and assessing the effect of homogentisic acid lowering therapy in a large cohort of 87 patients. J. Inherit. Metab. Dis. 44, 666–676 (2021).

    Article  PubMed  Google Scholar 

  121. Ranganath, L. R., Gallagher, J. A., Davidson, J. & Vinjamuri, S. Characterising the arthroplasty in spondyloarthropathy in a large cohort of eighty-seven patients with alkaptonuria. J. Inherit. Metab. Dis. 44, 656–665 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Rudebeck, M., Scott, C., Sireau, N. & Ranganath, L. A patient survey on the impact of alkaptonuria symptoms as perceived by the patients and their experiences of receiving diagnosis and care. JIMD Rep. 53, 71–79 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ranganath, L. R., Heseltine, T., Khedr, M. & Fisher, M. F. Evaluating the aortic stenosis phenotype before and after the effect of homogentisic acid lowering therapy: analysis of a large cohort of eighty-one alkaptonuria patients. Mol. Genet. Metab. 133, 324–331 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Ahmad, M. S. Z. et al. Association of alkaptonuria and low dose nitisinone therapy with cataract formation in a large cohort of patients. JIMD Rep. 63, 351–360 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Srsen, S., Vondrácek, J. & Srsnová K, S. J. Analysis of the life span of alkaptonuric patients. Cas. Lek. Ces 124, 1288–1291 (1985).

    CAS  Google Scholar 

  126. Foot, C. L. & Fraser, J. F. Uroscopic rainbow: modern matula medicine. Postgrad. Med. J. 82, 126–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Davison, A. S., Milan, A. M., Hughes, A. T., Dutton, J. J. & Ranganath, L. R. Serum concentrations and urinary excretion of homogentisic acid and tyrosine in normal subjects. Clin. Chem. Lab. Med. 53, e81–e83 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Ranganath, L. R. et al. Efficacy and safety of once-daily nitisinone for patients with alkaptonuria (SONIA 2): an international, multicentre, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 8, 762–772 (2020). To our knowledge, this is the first long-term randomized trial to show that nitisinone is effective in treating alkaptonuria, partially reversing the ochronotic process and reducing the rate of disease progression.

    Article  CAS  PubMed  Google Scholar 

  129. Jacomelli, G., Micheli, V., Bernardini, G., Millucci, L. & Santucci, A. Quick diagnosis of alkaptonuria by homogentisic acid determination in urine paper spots. JIMD Rep. 31, 51 (2017).

    Article  PubMed  Google Scholar 

  130. Oláh, A. V. et al. Urinary homogentisic acid in alkaptonuric and healthy children. Clin. Chem. Lab. Med. 41, 356–359 (2003).

    Article  PubMed  Google Scholar 

  131. Hughes, A. T. et al. Serum markers in alkaptonuria: simultaneous analysis of homogentisic acid, tyrosine and nitisinone by liquid chromatography tandem mass spectrometry. Ann. Clin. Biochem. 52, 597–605 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Rovenský, J., Krátka, M. & Urbánek, T. in Alkaptonuria and Ochronosis (eds Rovenský, J, Urbánek, T., Oľga, B. & Gallagher, J. A.) 53–57 (Springer, 2015).

  133. Imrich, R. et al. Radiological evolution of spinal disease in alkaptonuria and the effect of nitisinone. RMD Open 8, e002422 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rovenský, J., Krátka, M. & Urbánek, T. in Alkaptonuria and Ochronosis (eds Rovenský, J., Urbánek, T., Oľga, B. & Gallagher, J. A.) 73–77 (Springer, 2015).

  135. Hannoush, H. et al. Aortic stenosis and vascular calcifications in alkaptonuria. Mol. Genet. Metab. 105, 198–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Fincke, M. L. Inborn errors of metabolism. J. Am. Diet. Assoc. 46, 280–284 (1995).

    Article  Google Scholar 

  137. Blachier, F. et al. Tolerable amounts of amino acids for human supplementation: summary and lessons from published peer-reviewed studies. Amino Acids 53, 1313–1328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. De Haas, V. et al. The success of dietary protein restriction in alkaptonuria patients is age-dependent. J. Inherit. Metab. Dis. 21, 791–798 (1998).

    Article  PubMed  Google Scholar 

  139. Arnoux, J. B. et al. Old treatments for new insights and strategies: proposed management in adults and children with alkaptonuria. J. Inherit. Metab. Dis. 38, 791–796 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Judd, S. et al. The nutritional status of people with alkaptonuria: an exploratory analysis suggests a protein/energy dilemma. JIMD Rep. 53, 45–60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Morava, E., Kosztolányi, G., Engelke, U. F. H. & Wevers, R. A. Reversal of clinical symptoms and radiographic abnormalities with protein restriction and ascorbic acid in alkaptonuria. Ann. Clin. Biochem. 40, 108–111 (2003).

    Article  PubMed  Google Scholar 

  142. Ranganath, L. R. et al. Temporal adaptations in the phenylalanine/tyrosine pathway and related factors during nitisinone-induced tyrosinaemia in alkaptonuria. Mol. Genet. Metab. https://doi.org/10.1016/j.ymgme.2022.05.006 (2022).

  143. Hughes, J. H. et al. Dietary restriction of tyrosine and phenylalanine lowers tyrosinemia associated with nitisinone therapy of alkaptonuria. J. Inherit. Metab. Dis. 43, 259–268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sealock, R. R., Galdston, M. & Steele, J. M. Administration of ascorbic acid to an alkaptonuric patient. Proc. Soc. Exp. Biol. Med. 1940 44, 580–583 (1940).

    Article  CAS  Google Scholar 

  145. Lustberg, T. J., Schulman, J. D. & Seegmiller, J. E. Decreased binding of 14C-homogentisic acid induced by ascorbic acid in connective tissues of rats with experimental alcaptonuria. Nature 228, 770–771 (1970).

    Article  CAS  PubMed  ADS  Google Scholar 

  146. Wolff, J. A. et al. Effects of ascorbic acid in alkaptonuria: alterations in benzoquinone acetic acid and an ontogenic effect in infancy. Pediatr. Res. 26, 140–144 (1989).

    Article  CAS  PubMed  Google Scholar 

  147. Lock, E. A. From weed killer to wonder drug. Adv. Exp. Med. Biol. 959, 175–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Lock, E. A. The discovery of the mode of action of nitisinone. Metabolites 12, 902 (2022). This monograph is a comprehensive review of the discovery of the mode of action of nitisinone and its use for the treatment of inborn errors of tyrosine metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Anikster, Y., Nyhan, W. L. & Gahl, W. A. NTBC and alkaptonuria. Am. J. Hum. Genet. 63, 920 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Suwannarat, P. et al. Use of nitisinone in patients with alkaptonuria. Metabolism 54, 719–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Introne, W. J. et al. A 3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol. Genet. Metab. 103, 307–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ranganath, L. R. et al. Suitability of nitisinone In alkaptonuria 1 (SONIA 1): an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid. Ann. Rheum. Dis. 75, 362–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. European Medicines Agency. Assessment report: Orfadin. European Medicines Agency https://www.ema.europa.eu/en/documents/variation-report/orfadin-h-c-555-ii-0071-epar-assessment-report-variation_en.pdf (2020).

  154. Sloboda, N. et al. Efficacy of low dose nitisinone in the management of alkaptonuria. Mol. Genet. Metab. 127, 184–190 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Spiga, O. et al. A new integrated and interactive tool applicable to inborn errors of metabolism: application to alkaptonuria. Comput. Biol. Med. 103, 1–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Bernini, A., Spiga, O. & Santucci, A. Structure-function relationship of homogentisate 1,2-dioxygenase: understanding the genotype-phenotype correlations in the rare genetic disease alkaptonuria. Curr. Protein Pept. Sci. 24, 380–392 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Spiga, O., Cicaloni, V., Bernini, A., Zatkova, A. & Santucci, A. ApreciseKUre: an approach of precision medicine in a rare disease. BMC Med. Inform. Decis. Mak. 17, 42 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Rossi, A. et al. AKUImg: a database of cartilage images of alkaptonuria patients. Comput. Biol. Med. 122, 103863 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Cicaloni, V. et al. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease. FASEB J. 33, 12696–12703 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Spiga, O. et al. Machine learning application for development of a data-driven predictive model able to investigate quality of life scores in a rare disease. Orphanet J. Rare Dis. 15, 46 (2020). The authors present a proof-of-principle study for the application of machine learning in AKU and rare diseases in general.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Spiga, O. et al. Machine learning application for patient stratification and phenotype/genotype investigation in a rare disease. Brief. Bioinform. 22, bbaa434 (2021).

    Article  PubMed  Google Scholar 

  162. Spiga, O. et al. Towards a precision medicine approach based on machine learning for tailoring medical treatment in alkaptonuria. Int. J. Mol. Sci. 22, 1187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Langford, B. et al. Alkaptonuria severity score index revisited: analysing the AKUSSI and its subcomponent features. JIMD Rep. 41, 53–62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cant, H. E. O. et al. Improving the clinical accuracy and flexibility of the alkaptonuria severity score index. JIMD Rep. 63, 361–370 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Laxon, S., Ranganath, L. & Timmis, O. Living with alkaptonuria. BMJ 343, d5155 (2011). The authors offer a first-hand patient’s perspective potentially relevant for both patients and physicians.

    Article  PubMed  Google Scholar 

  166. Sestini, S. et al. Social and medical needs of rare metabolic patients: results from a MetabERN survey. Orphanet J. Rare Dis. 16, 336 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kılavuz, S. et al. Demographic, phenotypic and genotypic features of alkaptonuria patients: a single centre experience. J. Pediatr. Res. 5, 7–11 (2018).

    Article  Google Scholar 

  168. Akbaba, A. I., Ozgül, R. K. & Dursun, A. Presentation of 14 alkaptonuria patients from Turkey. J. Pediatr. Endocrinol. Metab. 33, 289–294 (2020).

    Article  PubMed  Google Scholar 

  169. Kisa, P. T. et al. Alkaptonuria in Turkey: clinical and molecular characteristics of 66 patients. Eur. J. Med. Genet. 64, 104197 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Ranganath, L. R. et al. Comparing nitisinone 2 mg and 10 mg in the treatment of alkaptonuria – an approach using statistical modelling. JIMD Rep. 2022 63, 80–92 (2022).

    Google Scholar 

  171. Khedr, M. et al. Nitisinone causes acquired tyrosinosis in alkaptonuria. J. Inherit. Metab. Dis. 43, 1014–1023 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Couce, M. L. et al. Evolution of tyrosinemia type 1 disease in patients treated with nitisinone in Spain. Medicine 98, e17303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Barone, H. et al. Tyrosinemia type 1 and symptoms of ADHD: biochemical mechanisms and implications for treatment and prognosis. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. 183, 95–105 (2020).

    Article  CAS  Google Scholar 

  174. Van Vliet, K. et al. Emotional and behavioral problems, quality of life and metabolic control in NTBC-treated tyrosinemia type 1 patients. Orphanet J. Rare Dis. 14, 285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ellaway, C. J. et al. Outcome of tyrosinaemia type III. J. Inherit. Metab. Dis. 24, 824–832 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Laschi, M. et al. Inhibition of para-hydroxyphenylpyruvate dioxygenase by analogues of the herbicide nitisinone as a strategy to decrease homogentisic acid levels, the causative agent of alkaptonuria. ChemMedChem 11, 674–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Governa, P. et al. Survey on the recent advances in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition by diketone and triketone derivatives and congeneric compounds: structural analysis of HPPD/inhibitor complexes and structure-activity relationship considerations. J. Agric. Food Chem. 70, 6963–6981 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Santucci, A., Bernardini, G., Braconi, D., Petricci, E. & Manetti, F. 4-Hydroxyphenylpyruvate dioxygenase and its inhibition in plants and animals: small molecules as herbicides and agents for the treatment of human inherited diseases. J. Med. Chem. 60, 4101–4125 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Zaib, S. et al. Identification of potential inhibitors for the treatment of alkaptonuria using an integrated in silico computational strategy. Molecules 28, 2623 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Puurunen, M. K. et al. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat. Metab. 3, 1125–1132 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Yadav, A. et al. Novel chemical scaffolds to inhibit the neutral amino acid transporter B0AT1 (SLC6A19), a potential target to treat metabolic diseases. Front. Pharmacol. 11, 140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bernini, A. et al. Toward a generalized computational workflow for exploiting transient pockets as new targets for small molecule stabilizers: application to the homogentisate 1,2-dioxygenase mutants at the base of rare disease alkaptonuria. Comput. Biol. Chem. 70, 133–141 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  183. Bernini, A., Galderisi, S., Spiga, O., Amarabom, C. O. & Santucci, A. Transient pockets as mediators of gas molecules routes inside proteins: the case study of dioxygen pathway in homogentisate 1,2-dioxygenase and its implication in alkaptonuria development. Comput. Biol. Chem. 88, 107356 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Kobak, A. C., Oder, G., Kobak, Ş., Argin, M. & Inal, V. Ochronotic arthropathy: disappearance of alkaptonuria after liver transplantation for hepatitis B-related cirrhosis. J. Clin. Rheumatol. 11, 323–325 (2005).

    Article  PubMed  Google Scholar 

  185. Oishi, K., Arnon, R., Wasserstein, M. P. & Diaz, G. A. Liver transplantation for pediatric inherited metabolic disorders: considerations for indications, complications, and perioperative management. Pediatr. Transplant. 20, 756–769 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Gardin, A., Remih, K., Gonzales, E., Andersson, E. R. & Strnad, P. Modern therapeutic approaches to liver-related disorders. J. Hepatol. 76, 1392–1409 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Hughes, J. H. et al. Conditional targeting in mice reveals that hepatic homogentisate 1,2-dioxygenase activity is essential in reducing circulating homogentisic acid and for effective therapy in the genetic disease alkaptonuria. Hum. Mol. Genet. 28, 3928–3939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lequeue, S. et al. An AAV-mediated liver-directed gene therapy metabolically corrects alkaptonuria in an Hgd deficient mouse model [abstract 941]. J. Inher Metab. Dis. 46 (Suppl. 1), 284 (2023).

    Google Scholar 

  189. Hegedus, Z. L. & Nayak, U. Homogentisic acid and structurally related compounds as intermediates in plasma soluble melanin formation and in tissue toxicities. Arch. Physiol. Biochem. 102, 175–181 (1994).

    CAS  Google Scholar 

  190. Tinti, L., Spreafico, A., Chellini, F., Galeazzi, M. & Santucci, A. A novel ex vivo organotypic culture model of alkaptonuria-ochronosis. Clin. Exp. Rheumatol. 29, 693–696 (2011).

    CAS  PubMed  Google Scholar 

  191. Taylor, A. M. et al. Ultrastructural examination of tissue in a patient with alkaptonuric arthropathy reveals a distinct pattern of binding of ochronotic pigment. Rheumatology 49, 1412–1414 (2010).

    Article  PubMed  Google Scholar 

  192. Angeles, A. P., Badger, R., Gruber, H. E. & Seegmiller, J. E. Chondrocyte growth inhibition induced by homogentisic acid and its partial prevention with ascorbic acid. J. Rheumatol. 16, 512–517 (1989).

    CAS  PubMed  Google Scholar 

  193. Galderisi, S. et al. Homogentisic acid induces cytoskeleton and extracellular matrix alteration in alkaptonuric cartilage. J. Cell. Physiol. 236, 6011–6024 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Schiavone, M. L. et al. Homogentisic acid affects human osteoblastic functionality by oxidative stress and alteration of the Wnt/β-catenin signaling pathway. J. Cell. Physiol. 235, 6808–6816 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Tinti, L. et al. Development of an in vitro model to investigate joint ochronosis in alkaptonuria. Rheumatology 50, 271–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Mitri, E. et al. A new light on alkaptonuria: a Fourier-transform infrared microscopy (FTIRM) and low energy X-ray fluorescence (LEXRF) microscopy correlative study on a rare disease. Biochim. Biophys. Acta Gen. Subj. 1861, 1000–1008 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Bernardini, G. et al. Homogentisic acid induces morphological and mechanical aberration of ochronotic cartilage in alkaptonuria. J. Cell. Physiol. 234, 6696–6708 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Schiavone, M. L. et al. Mechanisms involved in the unbalanced redox homeostasis in osteoblastic cellular model of alkaptonuria. Arch. Biochem. Biophys. 690, 108416 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Moran, T. J. & Yunis, E. J. Studies on ochronosis: 2. Effects of injection of homogentisic acid and ochronotic pigment in experimental animals. Am. J. Pathol. 40, 359–369 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Blivaiss, B. B., Rosenberg, E. F., Kutuzov, H. & Stoner, R. Experimental ochronosis. Induction in rats by long-term feeding with L-tyrosine. Arch. Pathol. 82, 45–53 (1966).

    CAS  PubMed  Google Scholar 

  201. Fayette, M. A. et al. Biochemical and molecular confirmation of alkaptonuria in a Sumatran orangutan (Pongo abelii). Mol. Genet. Metab. 139, 1076288 (2023).

    Article  Google Scholar 

  202. Montagutelli, X. et al. aku, a mutation of the mouse homologous to human alkaptonuria, maps to chromosome 16. Genomics 19, 9–11 (1994).

    Article  CAS  PubMed  Google Scholar 

  203. Taylor, A. M. et al. Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition. Osteoarthr. Cartil. 20, 880–886 (2012).

    Article  CAS  Google Scholar 

  204. Preston, A. J. et al. Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone. Ann. Rheum. Dis. 73, 284–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Hughes, J. H., Bou-Gharios, G., Ranganath, L. R. & Gallagher, J. A. The contribution of mouse models in the rare disease alkaptonuria. Drug. Discov. Today Dis. Model. 31, 37–43 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

A.S. acknowledges funding from Ministero dell’Università e della Ricerca (MUR) for her research (grants P2022RYR5W-PRIN 2022 PNRR and Tuscany Health Ecosystem (THE)-PNRR). W.J.I. is supported by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health. The authors thank the anonymous patient for their contribution in Box 3.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (G.B. and D.B.); Epidemiology (W.J.I. and N.S.); Mechanisms/pathophysiology (A.Z., G.B., D.B., A.S., L.R.R. and M.J.K.); Diagnosis, screening and prevention (M.J.K. and W.J.I.); Management (L.R.R., W.J.I., J.A.G., O.S. and M.G.); Quality of life (L.R.R. and N.S.); Outlook (G.B., D.B., A.S. and A.Z.); Overview of the Primer (G.B.).

Corresponding author

Correspondence to Giulia Bernardini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks F. Maillot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that patient participants provided informed consent for publication of their experiences.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardini, G., Braconi, D., Zatkova, A. et al. Alkaptonuria. Nat Rev Dis Primers 10, 16 (2024). https://doi.org/10.1038/s41572-024-00498-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00498-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing