Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Antiangiogenic–immune-checkpoint inhibitor combinations: lessons from phase III clinical trials

Abstract

Antiangiogenic agents, generally antibodies or tyrosine-kinase inhibitors that target the VEGF–VEGFR pathway, are currently among the few combination partners clinically proven to improve the efficacy of immune-checkpoint inhibitors (ICIs). This benefit has been demonstrated in pivotal phase III trials across different cancer types, some with practice-changing results; however, numerous phase III trials have also had negative results. The rationale for using antiangiogenic drugs as partners for ICIs relies primarily on blocking the multiple immunosuppressive effects of VEGF and inducing several different vascular-modulating effects that can stimulate immunity, such as vascular normalization leading to increased intratumoural blood perfusion and flow, and inhibition of pro-apoptotic effects of endothelial cells on T cells, among others. Conversely, VEGF blockade can also cause changes that suppress antitumour immunity, such as increased tumour hypoxia, and reduced intratumoural ingress of co-administered ICIs. As a result, the net clinical benefits from antiangiogenic–ICI combinations will be determined by the balance between the opposing effects of VEGF signalling and its inhibition on the antitumour immune response. In this Perspective, we summarize the results from the currently completed phase III trials evaluating antiangiogenic agent–ICI combinations. We also discuss strategies to improve the efficacy of these combinations, focusing on aspects that include the deleterious functions of VEGF–VEGFR inhibition on antitumour immunity, vessel co-option as a driver of non-angiogenic tumour growth, clinical trial design, or the rationale for drug selection, dosing and scheduling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Balance between beneficial and detrimental effects of antiangiogenic–ICI combinations.
Fig. 2: Overall survival improvement caused by antiangiogenic–ICI combinations in different cancers.

Similar content being viewed by others

References

  1. Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Blasutig, I. M. et al. The phoenix rises: the rebirth of cancer immunotherapy. Clin. Chem. 63, 1190–1195 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Abi-Aad, S. J., Zouein, J., Chartouni, A., Naim, N. & Kourie, H. R. Simultaneous inhibition of PD-1 and LAG-3: the future of immunotherapy? Immunotherapy 15, 611–618 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Syn, N. L., Teng, M. W. L., Mok, T. S. K. & Soo, R. A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18, e731–e741 (2017).

    Article  PubMed  Google Scholar 

  6. Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gide, T. N., Wilmott, J. S., Scolyer, R. A. & Long, G. V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin. Cancer Res. 24, 1260–1270 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Andrews, A. Treating with checkpoint inhibitors – figure $1 million per patient. Am. Health Drug. Benefits 8, 9 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Baxi, S. et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ 360, k793 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carreau, N. A. & Pavlick, A. C. Nivolumab and ipilimumab: immunotherapy for treatment of malignant melanoma. Future Oncol. 15, 349–358 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Nikoo, M. et al. Nivolumab plus ipilimumab combination therapy in cancer: current evidence to date. Int. Immunopharmacol. 117, 109881 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Baas, P. et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet 397, 375–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C. et al. The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis. J. Cell Physiol. 235, 4913–4927 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    Article  PubMed  Google Scholar 

  16. Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug. Discov. 22, 476–495 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, E. V. Developing combination strategies using PD-1 checkpoint inhibitors to treat cancer. Semin. Immunopathol. 41, 21–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Heijmen, L. et al. Monitoring hypoxia and vasculature during bevacizumab treatment in a murine colorectal cancer model. Contrast Media Mol. imaging 9, 237–245 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Franco, M. et al. Targeted anti-VEGFR-2 therapy leads to short and long term impairment of vascular function and increases in tumor hypoxia. Cancer Res. 66, 3639–3648 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Chang, W. H. & Lai, A. G. The hypoxic tumour microenvironment: a safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett. 487, 34–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Kopecka, J. et al. Hypoxia as a driver of resistance to immunotherapy. Drug. Resist. Updat. 59, 100787 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, B. et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 40, 24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with antiangiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T-cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, C. G. et al. VEGF-A drives TOX-dependent T-cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci. Immunol. 4, eaay0555 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents – overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).

    Article  PubMed  Google Scholar 

  31. Huijbers, E. J. M. et al. Tumors resurrect an embryonic vascular program to escape immunity. Sci. Immunol. 7, eabm6388 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen, E. et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

    Article  PubMed  Google Scholar 

  38. Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, Y. Y. et al. Immunomodulatory effects of current targeted therapies on hepatocellular carcinoma: implication for the future of immunotherapy. Semin. Liver Dis. 38, 379–388 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Wietecha, M. S., Cerny, W. L. & DiPietro, L. A. Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. Curr. Top. Microbiol. Immunol. 367, 3–32 (2013).

    PubMed  Google Scholar 

  42. Kikuchi, H. et al. Increased CD8+ T-cell infiltration and efficacy for multikinase inhibitors after PD-1 blockade in hepatocellular carcinoma. J. Natl Cancer Inst. 114, 1301–1305 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Manning, E. A. et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin. Cancer Res. 13, 3951–3959 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Usatorre, A. et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci. Transl. Med. 13, eabd1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoffmann, E. et al. Vascular response patterns to targeted therapies in murine breast cancer models with divergent degrees of malignancy. Breast Cancer Res. 25, 56 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sorensen, A. G. et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 72, 402–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  48. Batchelor, T. T. et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl Acad. Sci. USA 110, 19059–19064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, E. et al. An agonistic anti-Tie2 antibody suppresses the normal-to-tumor vascular transition in the glioblastoma invasion zone. Exp. Mol. Med. 55, 470–484 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan, K. A., Wu, F. T., Cruz-Munoz, W. & Kerbel, R. S. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol. Med. 13, e08253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017).

    Article  PubMed  Google Scholar 

  52. Gengenbacher, N. et al. Timed Ang2-targeted therapy identifies the angiopoietin–tie pathway as key regulator of fatal lymphogenous metastasis. Cancer Discov. 11, 424–445 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, J. et al. Tie2 activation promotes choriocapillary regeneration for alleviating neovascular age-related macular degeneration. Sci. Adv. 5, eaau6732 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park, H. R. et al. Angiopoietin-2-dependent spatial vascular destabilization promotes T-cell exclusion and limits immunotherapy in melanoma. Cancer Res. 83, 1968–1983 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, Y. et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial. EClinicalMedicine 62, 102106 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tzuri, N. et al. Developing a dual VEGF/PDL1 inhibitor based on high-affinity scFv heterodimers as an anti-cancer therapeutic strategy. Sci. Rep. 13, 11923 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hassanzadeh Eskafi, A. et al. Investigation of the therapeutic potential of recombinant bispecific bivalent anti-PD-L1/VEGF nanobody in inhibition of angiogenesis. Immunopharmacol. Immunotoxicol. 45, 197–202 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Lai, X. & Friedman, A. How to schedule VEGF and PD-1 inhibitors in combination cancer therapy? BMC Syst. Biol. 13, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug. Discov. 3, 391–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zandberg, D. P. et al. Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck. J. Immunother. Cancer 9, e002088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rapisarda, A. et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol. Cancer Ther. 8, 1867–1877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schito, L. et al. Metronomic chemotherapy offsets HIFα induction upon maximum-tolerated dose in metastatic cancers. EMBO Mol. Med. 12, e11416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Conley, S. J. et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl Acad. Sci. USA 109, 2784–2789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Riesterer, O. et al. Ionizing radiation antagonizes tumor hypoxia induced by antiangiogenic treatment. Clin. Cancer Res. 12, 3518–3524 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Rapisarda, A. & Melillo, G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat. Rev. Clin. Oncol. 9, 378–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto, S. et al. Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res. 71, 6350–6359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Z. et al. “γδT-cell-IL17A-neutrophil” axis drives immunosuppression and confers breast cancer resistance to high-dose anti-VEGFR2 therapy. Front. Immunol. 12, 699478 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shigeta, K. et al. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology 71, 1247–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Ma, J. & Waxman, D. J. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol. Cancer Ther. 7, 3670–3684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ou, D. L. et al. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J. Immunother. Cancer 9, e001657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Abbott, B. Cancer doctors rethink aggressive treatments: cervical, rectal cancer patients responded as well to less invasive care, studies show. The Wall Street Journal www.wsj.com/articles/for-some-cancers-less-treatment-is-a-better-bet-ed94d8ef (2023).

  74. Kerbel, R. S. & Andre, N. Commentary: adjuvant metronomic chemotherapy for locoregionally advanced nasopharyngeal carcinoma. Lancet 398, 278–279 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Chen, Y. P. et al. Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: a multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet 398, 303–313 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, X. et al. Effect of capecitabine maintenance therapy using lower dosage and higher frequency vs observation on disease-free survival among patients with early-stage triple-negative breast cancer who had received standard treatment: the SYSUCC-001 randomized clinical trial. JAMA 325, 50–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Bisogno, G. et al. Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 20, 1566–1575 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Patil, V. M. et al. Low-dose immunotherapy in head and neck cancer: a randomized study. J. Clin. Oncol. 41, 222–232 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Mitchell, A. P. & Goldstein, D. A. Cost savings and increased access with ultra-low-dose immunotherapy. J. Clin. Oncol. 41, 170–173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liao, M. Z. et al. Model-informed therapeutic dose optimization strategies for antibody-drug conjugates in oncology: what can we learn from US Food and Drug Administration-approved antibody–drug conjugates? Clin. Pharmacol. Ther. 110, 1216–1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ueda, S., Saeki, T., Osaki, A., Yamane, T. & Kuji, I. Bevacizumab induces acute hypoxia and cancer progression in patients with refractory breast cancer: multimodal functional imaging and multiplex cytokine analysis. Clin. Cancer Res. 23, 5769–5778 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Arjaans, M. et al. VEGF pathway targeting agents, vessel normalization and tumor drug uptake: from bench to bedside. Oncotarget 7, 21247–21258 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Heskamp, S. et al. Bevacizumab reduces tumor targeting of antiepidermal growth factor and anti-insulin-like growth factor 1 receptor antibodies. Int. J. Cancer 133, 307–314 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Pastuskovas, C. V. et al. Effects of anti-VEGF on pharmacokinetics, biodistribution, and tumor penetration of trastuzumab in a preclinical breast cancer model. Mol. Cancer Ther. 11, 752–762 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Dobosz, M., Ntziachristos, V., Scheuer, W. & Strobel, S. Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 16, 1–13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Arjaans, M. et al. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res. 73, 3347–3355 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Thomas, V. A. & Balthasar, J. P. Sorafenib decreases tumor exposure to an anti-carcinoembryonic antigen monoclonal antibody in a mouse model of colorectal cancer. AAPS J. 18, 923–932 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Chung, T. K., Warram, J., Day, K. E., Hartman, Y. & Rosenthal, E. L. Time-dependent pretreatment with bevacuzimab increases tumor specific uptake of cetuximab in preclinical oral cavity cancer studies. Cancer Biol. Ther. 16, 790–798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goldstein, D. A. & Ratain, M. J. Alternative dosing regimens for atezolizumab: right dose, wrong frequency. Cancer Chemother. Pharmacol. 84, 1153–1155 (2019).

    Article  PubMed  Google Scholar 

  90. Deng, R. et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. mAbs 8, 593–603 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paulsen, E. E. et al. Impact of microvessel patterns and immune status in NSCLC: a non-angiogenic vasculature is an independent negative prognostic factor in lung adenocarcinoma. Front. Oncol. 13, 1157461 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3, 411–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. López-Camarillo, C., Ruiz-García, E., Starling, N. & Marchat, L. A. Editorial: neovascularization, angiogenesis and vasculogenic mimicry in cancer. Front. Oncol. 10, 1140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ali, Z. et al. Intussusceptive vascular remodeling precedes pathological neovascularization. Arterioscler. Thromb. Vasc. Biol. 39, 1402–1418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pezzella, F. et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am. J. Pathol. 151, 1417–1423 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Bridgeman, V. L. et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J. Pathol. 241, 362–374 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cuypers, A., Truong, A. K., Becker, L. M., Saavedra-García, P. & Carmeliet, P. Tumor vessel co-option: the past & the future. Front. Oncol. 12, 965277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Donnem, T. et al. Non-angiogenic tumours and their influence on cancer biology. Nat. Rev. Cancer 18, 323–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Vermeulen, P. B. et al. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J. Pathol. 195, 336–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Kusters, B. et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res. 62, 341–345 (2002).

    CAS  PubMed  Google Scholar 

  102. Ribatti, D. & Pezzella, F. Vascular co-option and other alternative modalities of growth of tumor vasculature in glioblastoma. Front. Oncol. 12, 874554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van Dam, P. J. et al. Histopathological growth patterns as a candidate biomarker for immunomodulatory therapy. Semin. Cancer Biol. 52, 86–93 (2018).

    Article  PubMed  Google Scholar 

  104. Höppener, D. J. et al. Enrichment of the tumour immune microenvironment in patients with desmoplastic colorectal liver metastasis. Br. J. Cancer 123, 196–206 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Frentzas, S. et al. Vessel co-option mediates resistance to antiangiogenic therapy in liver metastases. Nat. Med. 22, 1294–1302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guerin, E., Man, S., Xu, P. & Kerbel, R. S. A model of postsurgical advanced metastatic breast cancer more accurately replicates the clinical efficacy of antiangiogenic drugs. Cancer Res. 73, 2743–2748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cuypers, A. et al. Generation of vessel co-option lung metastases mouse models for single-cell isolation of metastases-derived cells and endothelial cells. Star. Protoc. 3, 101691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Teuwen, L. A. et al. Tumor vessel co-option probed by single-cell analysis. Cell Rep. 35, 109253 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Choueiri, T. K. et al. Lenvatinib plus pembrolizumab versus sunitinib as first-line treatment of patients with advanced renal cell carcinoma (CLEAR): extended follow-up from the phase 3, randomised, open-label study. Lancet Oncol. 24, 228–238 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    Article  PubMed  Google Scholar 

  114. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Ren, Z. et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol. 22, 977–990 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Qin, S. et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet 402, 1133–1146 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tomita, Y. et al. Efficacy and safety of avelumab plus axitinib in elderly patients with advanced renal cell carcinoma: extended follow-up results from JAVELIN Renal 101. ESMO open. 7, 100450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kelley, R. K. et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 23, 995–1008 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Finn, R. S. et al. Primary results from the phase III LEAP-002 study: lenvatinib plus pembrolizumab versus lenvatinib as first-line (1L) therapy for advanced hepatocellular carcinoma (aHCC) [abstract LBA34]. Ann. Oncol. 33, S1401 (2022).

    Article  Google Scholar 

  121. Moore, K. N. et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 39, 1842–1855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Merck. Merck and Eisai provide update on two phase 3 trials evaluating KEYTRUDA® (pembrolizumab) plus LENVIMA® (lenvatinib) in patients with certain types of metastatic non-small cell lung cancer. Merck www.merck.com/news/merck-and-eisai-provide-update-on-two-phase-3-trials-evaluating-keytruda-pembrolizumab-plus-lenvima-lenvatinib-in-patients-with-certain-types-of-metastatic-non-small-cell-lung-cancer/ (2023).

  123. Yang, J. C. H. et al. Pembrolizumab (Pembro) with or without lenvatinib (Lenva) in first-line metastatic NSCLC with PD-L1 TPS≥1% (LEAP-007): a phase III, randomized, double-blind study [abstract 120O]. Ann. Oncol. 32, S1429–S1430 (2021).

    Article  Google Scholar 

  124. Loriot, Y. et al. First-line pembrolizumab (pembro) with or without lenvatinib (lenva) in patients with advanced urothelial carcinoma (LEAP-011): a phase 3, randomized, double-blind study [abstract]. J. Clin. Oncol. 40 (Suppl. 6), 432 (2022).

    Article  Google Scholar 

  125. Merck. Merck and Eisai provide update on phase 3 LEAP-010 trial evaluating KEYTRUDA® (pembrolizumab) plus LENVIMA® (lenvatinib) in patients with certain types of recurrent or metastatic head and neck squamous cell carcinoma. Merck www.merck.com/news/merck-and-eisai-provide-update-on-phase-3-leap-010-trial-evaluating-keytruda-pembrolizumab-plus-lenvima-lenvatinib-in-patients-with-certain-types-of-recurrent-or-metastatic-head-and-ne/ (2023).

  126. Makker, V. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N. Engl. J. Med. 386, 437–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Merck. Merck and Eisai provide update on phase 3 LEAP-001 trial evaluating KEYTRUDA (pembrolizumab) plus LENVIMA (lenvatinib) as first-line treatment for patients with advanced or recurrent endometrial carcinoma. Merck www.merck.com/news/merck-and-eisai-provide-update-on-phase-3-leap-001-trial-evaluating-pembrolizumab-plus-lenvima-lenvatinib-as-first-line-treatment-for-patients-with-advanced-or-recurrent-endometrial-carcinom/ (2023).

  128. Ipsen. Exelixis and Ipsen announce positive results from phase 3 CONTACT-02 pivotal trial evaluating cabozantinib in combination with atezolizumab in metastatic castration-resistant prostate cancer. Ipsen www.ipsen.com/press-releases/exelixis-and-ipsen-announce-positive-results-from-phase-3-contact-02-pivotal-trial-evaluating-cabozantinib-in-combination-with-atezolizumab-in-metastatic-castration-resistant-prostate-cancer/ (2023).

  129. Fojo, T. & Grady, C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J. Natl Cancer Inst. 101, 1044–1048 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Anagnostou, V. et al. Immuno-oncology trial endpoints: capturing clinically meaningful activity. Clin. Cancer Res. 23, 4959–4969 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tran, T. T. et al. Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI insight 8, e157347 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. McDermott, D. F. et al. Open-label, single-arm phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced clear cell renal cell carcinoma. J. Clin. Oncol. 39, 1020–1028 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Verset, G. et al. Pembrolizumab monotherapy for previously untreated advanced hepatocellular carcinoma: data from the open-label, phase II KEYNOTE-224 trial. Clin. Cancer Res. 28, 2547–2554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kurtz, J. E. et al. Atezolizumab combined with bevacizumab and platinum-based therapy for platinum-sensitive ovarian cancer: placebo-controlled randomized phase III ATALANTE/ENGOT-ov29 trial. J. Clin. Oncol. 41, Jco2300529 (2023).

    Article  Google Scholar 

  135. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. West, H. J. et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J. Immunother. Cancer 10, e003027 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mettu, N. B. et al. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer: a randomized clinical trial. JAMA Netw. Open. 5, e2149040 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fukuoka, S. et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol. 38, 2053–2061 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Fakih, M. et al. Regorafenib plus nivolumab in patients with mismatch repair-proficient/microsatellite stable metastatic colorectal cancer: a single-arm, open-label, multicentre phase 2 study. EClinicalMedicine 58, 101917 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yukami, H. et al. Updated efficacy outcomes of anti-PD-1 antibodies plus multikinase inhibitors for patients with advanced gastric cancer with or without liver metastases in clinical trials. Clin. Cancer Res. 28, 3480–3488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oaknin, A. et al. Atezolizumab plus bevacizumab and chemotherapy for metastatic, persistent, or recurrent cervical cancer (BEATcc): a randomised, open-label, phase 3 trial. Lancet 403, 31–43 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Atkins, M. B. et al. Phase II study of nivolumab and salvage nivolumab/ipilimumab in treatment-naive patients with advanced clear cell renal cell carcinoma (HCRN GU16-260-Cohort A). J. Clin. Oncol. 40, 2913–2923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Duan, J. et al. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in patients with cancer: a systematic review and meta-analysis. JAMA Oncol. 6, 375–384 (2020).

    Article  PubMed  Google Scholar 

  145. Cheng, A. L. et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 76, 862–873 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Merck. Merck and Eisai provide update on phase 3 trials of KEYTRUDA® (pembrolizumab) plus LENVIMA® (lenvatinib) in certain patients with advanced melanoma (LEAP-003) and metastatic colorectal cancer (LEAP-017). Merck www.merck.com/news/merck-and-eisai-provide-update-on-phase-3-trials-of-keytruda-pembrolizumab-plus-lenvima-lenvatinib-in-certain-patients-with-advanced-melanoma-leap-003-and-metastatic-colorectal-cance/ (2023).

  147. Neal, J. et al. CONTACT-01: efficacy and safety from a phase III study of atezolizumab (atezo) + cabozantinib (cabo) vs docetaxel (doc) monotherapy in patients (pts) with metastatic NSCLC (mNSCLC) previously treated with checkpoint inhibitors and chemotherapy [abstact 60]. J. Thorac. Oncol. 18, S39–S40 (2023).

    Article  Google Scholar 

  148. Mirati Therapeutics. Mirati Therapeutics provides update on the phase 3 SAPPHIRE study evaluating sitravatinib in combination with OPDIVO®. PR Newswire www.prnewswire.com/news-releases/mirati-therapeutics-provides-update-on-the-phase-3-sapphire-study-evaluating-sitravatinib-in-combination-with-opdivo-301833958.html (2023).

  149. Pal, S. K. et al. Atezolizumab plus cabozantinib versus cabozantinib monotherapy for patients with renal cell carcinoma after progression with previous immune checkpoint inhibitor treatment (CONTACT-03): a multicentre, randomised, open-label, phase 3 trial. Lancet 402, 185–195 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Reck, M. et al. Anti-angiogenic agents for NSCLC following first-line immunotherapy: rationale, recent updates, and future perspectives. Lung Cancer 179, 107173 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Jonasch, E. et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Iliopoulos, O. et al. Belzutifan treatment for von Hippel–Lindau (VHL) disease-associated central nervous system (CNS) hemangioblastomas (HBs) in the phase 2 LITESPARK-004 study [abstract]. J. Clin. Oncol. 41, 2008 (2023).

    Article  Google Scholar 

  153. Albiges, L. et al. Belzutifan plus lenvatinib for patients (pts) with advanced clear cell renal cell carcinoma (ccRCC) after progression on a PD-1/L1 and VEGF inhibitor: preliminary results of arm B5 of the phase 1/2 KEYMAKER-U03B study [abstract]. J. Clin. Oncol. 41, 4553 (2023).

    Article  Google Scholar 

  154. Albiges, L. et al. Belzutifan versus everolimus in participants (pts) with previously treated advanced clear cell renal cell carcinoma (ccRCC): randomized open-label phase III LITESPARK-005 study [abstract LBA88]. Ann. Oncol. 34, S1329–S1330 (2023).

    Article  Google Scholar 

  155. Choueiri, T. K. et al. Belzutifan plus cabozantinib for patients with advanced clear cell renal cell carcinoma previously treated with immunotherapy: an open-label, single-arm, phase 2 study. Lancet Oncol. 24, 553–562 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Andre, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Santos, L. V., Cruz, M. R., Lopes Gde, L. & Lima, J. P. VEGF-A levels in bevacizumab-treated breast cancer patients: a systematic review and meta-analysis. Breast Cancer Res. Treat. 151, 481–489 (2015).

    Article  PubMed  Google Scholar 

  158. Greten, T. F. et al. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 20, 780–798 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Zhu, A. X. et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 28, 1599–1611 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Rosellini, M. et al. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat. Rev. Urol. 20, 133–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Akalu, Y. T., Rothlin, C. V. & Ghosh, S. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol. Rev. 276, 165–177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vargas-Leal, V. et al. Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. J. Immunol. 175, 2301–2308 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Maiorano, B. A., Ciardiello, D., Maiello, E. & Roviello, G. Comparison of anti-programmed cell death ligand 1 therapy combinations vs sunitinib for metastatic renal cell carcinoma: a meta-analysis. JAMA Netw. Open. 6, e2314144 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kim, C. et al. Association of high levels of antidrug antibodies against atezolizumab with clinical outcomes and T-cell responses in patients with hepatocellular carcinoma. JAMA Oncol. 8, 1825–1829 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zheng, X. et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J. Clin. Invest. 128, 2104–2115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kammertoens, T. et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 545, 98–102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, S. et al. Anlotinib alters tumor immune microenvironment by downregulating PD-L1 expression on vascular endothelial cells. Cell Death Dis. 11, 309 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Reckamp, K. L. et al. Phase II randomized study of ramucirumab and pembrolizumab versus standard of care in advanced non-small-cell lung cancer previously treated with immunotherapy-lung-MAP S1800A. J. Clin. Oncol. 40, 2295–2306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McCoach, C. E. et al. Exploratory analysis of the association of depth of response and survival in patients with metastatic non-small-cell lung cancer treated with a targeted therapy or immunotherapy. Ann. Oncol. 28, 2707–2714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Grünwald, V. et al. Depth of remission is a prognostic factor for survival in patients with metastatic renal cell carcinoma. Eur. Urol. 67, 952–958 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Heinemann, V. et al. Early tumour shrinkage (ETS) and depth of response (DpR) in the treatment of patients with metastatic colorectal cancer (mCRC). Eur. J. Cancer 51, 1927–1936 (2015).

    Article  PubMed  Google Scholar 

  173. Saijo, K. et al. Depth of response may predict clinical outcome in patients with recurrent/metastatic head and neck cancer treated with pembrolizumab-containing regimens. Front. Oncol. 13, 1230731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schreiber, R. D. et al. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Yau, T. et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 6, e204564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Albiges, L. et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 5, e001079 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Yau, T. et al. Nivolumab plus cabozantinib with or without ipilimumab for advanced hepatocellular carcinoma: results from cohort 6 of the CheckMate 040 trial. J. Clin. Oncol. 41, 1747–1757 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Merle, P. et al. Ipilimumab with atezolizumab-bevacizumab in patients with advanced hepatocellular carcinoma: the PRODIGE 81-FFCD 2101-TRIPLET-HCC trial. Dig. Liver Dis. 55, 464–470 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Choueiri, T. K. et al. Cabozantinib plus nivolumab and ipilimumab in renal-cell carcinoma. N. Engl. J. Med. 388, 1767–1778 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rini, B. I. et al. Prospective cardiovascular surveillance of immune checkpoint inhibitor-based combination therapy in patients with advanced renal cell cancer: data from the phase III JAVELIN Renal 101 trial. J. Clin. Oncol. 40, 1929–1938 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.-Y.K. is the recipient of grants from the National Science and Technology Council, Taiwan (R.O.C.) (111-2917-I-002-008) and the National Taiwan University Hospital. R.S.K. receives grant support from the Canadian Institutes for Health Research (CIHR). The authors are grateful to clinical colleagues, especially G. Bjarnason, (Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto), and to basic research colleagues for critical reading of the manuscript. We also thank C. Cheng for her excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to all aspects related to the preparation of this manuscript.

Corresponding authors

Correspondence to Hung-Yang Kuo, Kabir A. Khan or Robert S. Kerbel.

Ethics declarations

Competing interests

R.S.K. has received research funding from Genentech and Novelty Nobility, and is a consultant for Novelty Nobility, OncoHost and PharmAbcine. H.-Y.K. and K.A.K. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. De Palma, A. Dudley, D. Fukumura, who co-reviewed with V. Salameti, and B. Rini for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, HY., Khan, K.A. & Kerbel, R.S. Antiangiogenic–immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00886-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00886-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer