Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uncovering atherosclerotic cardiovascular disease by PET imaging

Abstract

Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.

Key points

  • Non-invasive imaging is essential for characterization of tissue-level disease states, and PET imaging in particular has tremendous potential for imaging atherosclerotic cardiovascular disease.

  • [18F]Fluorodeoxyglucose PET imaging has prognostic value for coronary events and can be used as a surrogate end point for cardiovascular disease in interventional studies.

  • Sodium [18F]fluoride is a stable marker of the risk of future cardiovascular events, and a high uptake of this tracer in the coronary arteries is associated with an increased risk of future myocardial infarction, whereas 68Ga-DOTATATE discriminates high-risk from low-risk coronary lesions and can inform on the effects of anti-inflammatory therapy.

  • Advanced omics techniques can provide important biological insights, including heterocellular interactions, on atherosclerotic plaque pathology, which could drive the development of new radiotracers.

  • Whole-body imaging has broadened our perspective on atherosclerotic cardiovascular disease by providing mechanistic insights into disease pathways and adding diagnostic value.

  • Advances in PET technology have the potential to improve sensitivity and specificity, increase information depth, increase quantification accuracy and lower radiation exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative PET images of atherosclerosis.
Fig. 2: Imaging the systemic inflammatory effects that aggravate atherosclerosis.
Fig. 3: Technological advances to overcome limitations in PET imaging of atherosclerosis.
Fig. 4: PET tracer development and in vivo tracer labelling techniques.
Fig. 5: Advances in PET imaging technologies.

Similar content being viewed by others

References

  1. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Antonopoulos, A. S. et al. Biomarkers of vascular inflammation for cardiovascular risk prognostication. JACC Cardiovasc. Imaging 15, 460–471 (2022).

    Article  PubMed  Google Scholar 

  4. Mézquita, A. J. V. et al. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat. Rev. Cardiol. 20, 696–714 (2023).

    Article  PubMed  Google Scholar 

  5. Fernández-Friera, L. et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J. Am. Coll. Cardiol. 73, 1371–1382 (2019).

    Article  PubMed  Google Scholar 

  6. Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging 8, 493–494 (2015).

    Article  PubMed  Google Scholar 

  7. Ripa, R. S. et al. Effect of liraglutide on arterial inflammation assessed as [18F]FDG uptake in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Circ. Cardiovasc. Imaging 14, e012174 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Devesa, A. et al. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur. Heart J. 43, 1809–1828 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moss, A. et al. Coronary atherosclerotic plaque activity and future coronary events. JAMA Cardiol. 8, 755–764 (2023).

    Article  PubMed  Google Scholar 

  11. Kwiecinski, J. et al. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J. Am. Coll. Cardiol. 75, 3061–3074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fletcher, A. J. et al. Thoracic aortic 18F-sodium fluoride activity and ischemic stroke in patients with established cardiovascular disease. JACC Cardiovasc. Imaging 15, 1274–1288 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eberhardt, N. & Giannarelli, C. How single-cell technologies have provided new insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 243–252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tawakol, A. et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818–1824 (2006).

    Article  PubMed  Google Scholar 

  15. Cheng, V. Y. et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J. Nucl. Med. 53, 575–583 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705–713 (2014).

    Article  PubMed  Google Scholar 

  17. Figueroa, A. L. et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc. Imaging 6, 1250–1259 (2013).

    Article  PubMed  Google Scholar 

  18. Moon, S. H. et al. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc. Imaging 8, 949–956 (2015).

    Article  PubMed  Google Scholar 

  19. Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahota, A. et al. Atherosclerosis inflammation and burden in young adult smokers and vapers measured by PET/MR. Atherosclerosis 325, 110–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Kundel, V. et al. Sleep duration and vascular inflammation using hybrid positron emission tomography/magnetic resonance imaging: results from the Multi-Ethnic Study of Atherosclerosis (MESA). J. Clin. Sleep Med. 17, 2009–2018 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maier, A. et al. Pulmonary artery 18F-fluorodeoxyglucose uptake by PET/CMR as a marker of pulmonary hypertension in sarcoidosis. JACC Cardiovasc. Imaging 15, 108–120 (2022).

    Article  PubMed  Google Scholar 

  24. Tarkin, J. M., Joshi, F. R. & Rudd, J. H. F. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Robson, P. M. et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc. Imaging 10, 1103–1112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Majeed, K. et al. Coronary 18F-sodium fluoride PET detects high-risk plaque features on optical coherence tomography and CT-angiography in patients with acute coronary syndrome. Atherosclerosis 319, 142–148 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Doris, M. K. et al. Coronary 18F-fluoride uptake and progression of coronary artery calcification. Circ. Cardiovasc. Imaging 13, e011438 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Daghem, M. et al. Temporal changes in coronary 18F-fluoride plaque uptake in patients with coronary atherosclerosis. J. Nucl. Med. 64, 1478–1486 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chowdhury, M. M. et al. Vascular positron emission tomography and restenosis in symptomatic peripheral arterial disease: a prospective clin. study. JACC Cardiovasc. Imaging 13, 1008–1017 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Syed, M. B. J. et al. 18F-sodium fluoride positron emission tomography and computed tomography in acute aortic syndrome. JACC Cardiovasc. Imaging 15, 1291–1304 (2022).

    Article  PubMed  Google Scholar 

  31. Ndlovu, H. et al. [68Ga]Ga-NODAGAZOL uptake in atherosclerotic plaques correlates with the cardiovascular risk profile of patients. Ann. Nucl. Med. 36, 684–692 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Toner, Y. C. et al. Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Sci. Rep. 12, 6185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X. et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res. 2, 52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rominger, A. et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J. Nucl. Med. 51, 193–197 (2010).

    Article  PubMed  Google Scholar 

  35. Jensen, J. K., Madsen, J. S., Jensen, M. E. K., Kjaer, A. & Ripa, R. S. [64Cu]Cu-DOTATATE PET metrics in the investigation of atherosclerotic inflammation in humans. J. Nucl. Cardiol. 30, 986–1000 (2023).

    Article  PubMed  Google Scholar 

  36. Tarkin, J. M. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774–1791 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen, J. K. et al. Effect of 26 weeks of liraglutide treatment on coronary artery inflammation in type 2 diabetes quantified by [64Cu]Cu-DOTATATE PET/CT: results from the LIRAFLAME trial. Front. Endocrinol. 12, 790405 (2021).

    Article  Google Scholar 

  38. Oostveen, R. F. et al. Atorvastatin lowers 68Ga-DOTATATE uptake in coronary arteries, bone marrow and spleen in individuals with type 2 diabetes. Diabetologia 66, 2164–2169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ćorovi, Ć. A. et al. Somatostatin receptor PET/MR imaging of inflammation in patients with large vessel vasculitis and atherosclerosis. J. Am. Coll. Cardiol. 81, 336–354 (2023).

    Article  Google Scholar 

  40. Li, X. et al. [68Ga]Pentixafor-PET/MRI for the detection of chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging 45, 558–566 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Weiberg, D. et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J. Nucl. Med. 59, 266–272 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bot, I. et al. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J. Mol. Cell. Cardiol. 74, 44–52 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Derlin, T. et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1934–1944 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khare, H. A. et al. In vivo detection of urokinase-type plasminogen activator receptor (uPAR) expression in arterial atherogenesis using [64Cu]Cu-DOTA-AE105 positron emission tomography (PET). Atherosclerosis 352, 103–111 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Pugliese, F. et al. Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J. Am. Coll. Cardiol. 56, 653–661 (2010).

    Article  PubMed  Google Scholar 

  47. Lamare, F. et al. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT. J. Nucl. Med. 52, 33–39 (2011).

    Article  PubMed  Google Scholar 

  48. Gaemperli, O. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur. Heart J. 33, 1902–1910 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Dietz, M. et al. Imaging angiogenesis in atherosclerosis in large arteries with 68Ga-NODAGA-RGD PET/CT: relationship with clinical atherosclerotic cardiovascular disease. EJNMMI Res. 11, 71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jenkins, W. S. et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart 105, 1868–1875 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Joshi, F. R. et al. Vascular imaging with 18F-fluorodeoxyglucose positron emission tomography is influenced by hypoxia. J. Am. Coll. Cardiol. 69, 1873–1874 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. van der Valk, F. M. et al. In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc. Imaging 8, 1340–1341 (2015).

    Article  PubMed  Google Scholar 

  53. Nie, X. et al. 64Cu-ATSM positron emission tomography/magnetic resonance imaging of hypoxia in human atherosclerosis. Circ. Cardiovasc. Imaging 13, e009791 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kato, K. et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur. J. Nucl. Med. Mol. Imaging 36, 1622–1628 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Vöö, S. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 18F-fluorocholine positron emission tomography-computed tomography: prospective study on vulnerable atheroma with immunohistochemical validation. Circ. Cardiovasc. Imaging 9, e004467 (2016).

    Article  PubMed  Google Scholar 

  56. Ye, Y.-X. et al. Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ. Res. 117, 835–845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bing, R. et al. 18F-GP1 positron emission tomography and bioprosthetic aortic valve thrombus. JACC Cardiovasc. Imaging 15, 1107–1120 (2022).

    Article  PubMed  Google Scholar 

  58. Pasterkamp, G., den Ruijter, H. M. & Giannarelli, C. False utopia of one unifying description of the vulnerable atherosclerotic plaque: a call for recalibration that appreciates the diversity of mechanisms leading to atherosclerotic disease. Arterioscler. Thromb. Vasc. Biol. 42, e86–e95 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. de Winther, M. P. J. et al. Translational opportunities of single-cell biology in atherosclerosis. Eur. Heart J. 44, 1216–1230 (2022).

    Article  PubMed Central  Google Scholar 

  60. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112–125 (2023).

    Article  Google Scholar 

  64. Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc. Res. 119, 2508–2521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Parry, R. et al. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur. Heart J. Cardiovasc. Imaging 23, e504–e525 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Detering, L. et al. CC chemokine receptor 5 targeted nanoparticles imaging the progression and regression of atherosclerosis using positron emission tomography/computed tomography. Mol. Pharm. 18, 1386–1396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Poels, K. et al. Immuno-PET imaging of atherosclerotic plaques with [89Zr]Zr-anti-CD40 mAb—proof of concept. Biology 11, 408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ronald, J. A. et al. A PET imaging strategy to visualize activated T cells in acute graft-versus-host disease elicited by allogenic hematopoietic cell transplant. Cancer Res. 77, 2893–2902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mokry, M. et al. Transcriptomic-based clustering of human atherosclerotic plaques identifies subgroups with different underlying biology and clinical presentation. Nat. Cardiovasc. Res. 1, 1140–1155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Papaspyridonos, M. et al. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 26, 1837–1844 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Jiangming Sun, P. et al. Spatial transcriptional mapping reveals site-specific pathways underlying human atherosclerotic plaque rupture. J. Am. Coll. Cardiol. 81, 2213–2227 (2023).

    Article  PubMed  Google Scholar 

  73. Toczek, J. et al. Positron emission tomography imaging of vessel wall matrix metalloproteinase activity in abdominal aortic aneurysm. Circ. Cardiovasc. Imaging 16, e014615 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kiugel, M. et al. Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the detection of metalloproteinase 2/9 expression in mouse atherosclerotic plaques. Molecules 23, 3168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fujimoto, S. et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions. J. Am. Coll. Cardiol. 52, 1847–1857 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Ohshima, S. et al. Effect of an antimicrobial agent on atherosclerotic plaques: assessment of metalloproteinase activity by molecular imaging. J. Am. Coll. Cardiol. 55, 1240–1249 (2010).

    Article  PubMed  Google Scholar 

  77. Razavian, M. et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J. Nucl. Med. 52, 1795–1802 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Ohshima, S. et al. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein e or low-density-lipoprotein receptor. J. Nucl. Med. 50, 612–617 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Franck, G. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 318, 60–69 (2021).

    Article  Google Scholar 

  80. Partida, R. A., Libby, P., Crea, F. & Jang, I.-K. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J. 39, 2070–2076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kolte, D., Libby, P. & Jang, I.-K. New insights into plaque erosion as a mechanism of acute coronary syndromes. JAMA 325, 1043–1044 (2021).

    Article  PubMed  Google Scholar 

  82. Jia, H. et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur. Heart J. 38, 792–800 (2017).

    CAS  PubMed  Google Scholar 

  83. Panizzi, P. et al. Multimodal imaging of bacterial-host interface in mice and piglets with Staphylococcus aureus endocarditis. Sci. Transl. Med. 12, eaay2104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakamura, I. et al. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. Biochem. Biophys. Res. Commun. 433, 47–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Li, X. et al. Targeting P-selectin by gallium-68–labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques. Arterioscler. Thromb. Vasc. Biol. 34, 1661–1667 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Izquierdo-Garcia, D. et al. Imaging high-risk atherothrombosis using a novel fibrin-binding positron emission tomography probe. Stroke 53, 595–604 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Nahrendorf, M. et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging 2, 1213–1222 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Senders, M. L. et al. Nanobody-facilitated multiparametric PET/MRI phenotyping of atherosclerosis. JACC Cardiovasc. Imaging 12, 2015–2026 (2019).

    Article  PubMed  Google Scholar 

  89. van der Meer, I. M. et al. Risk factors for progression of atherosclerosis measured at multiple sites in the arterial tree: the Rotterdam Study. Stroke 34, 2374–2379 (2003).

    Article  PubMed  Google Scholar 

  90. Belcaro, G. et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study (1)). Atherosclerosis 156, 379–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Laclaustra, M. et al. Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J. Am. Coll. Cardiol. 67, 1263–1274 (2016).

    Article  PubMed  Google Scholar 

  92. Fernández-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131, 2104–2113 (2015).

    Article  PubMed  Google Scholar 

  93. Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Riksen, N. P., Bekkering, S., Mulder, W. J. M. & Netea, M. G. Trained immunity in atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 20, 799–811 (2023).

    Article  PubMed  Google Scholar 

  95. Keeter, W. C., Ma, S., Stahr, N., Moriarty, A. K. & Galkina, E. V. Atherosclerosis and multi-organ-associated pathologies. Semin. Immunopathol. 44, 363–374 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Janssen, H., Koekkoek, L. L. & Swirski, F. K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat. Rev. Cardiol. 21, 157–169 (2023).

    Article  PubMed  Google Scholar 

  97. Tawakol, A. et al. Stress-associated neurobiological pathway linking socioeconomic disparities to cardiovascular disease. J. Am. Coll. Cardiol. 73, 3243–3255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Osborne, M. T. et al. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. Eur. Heart J. 41, 772–782 (2020).

    Article  PubMed  Google Scholar 

  99. Abohashem, S. et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. Eur. Heart J. 42, 761–772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mezue, K. et al. Reduced stress-related neural network activity mediates the effect of alcohol on cardiovascular risk. J. Am. Coll. Cardiol. 81, 2315–2325 (2023).

    Article  PubMed  Google Scholar 

  101. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425–432 (2017).

    PubMed  Google Scholar 

  103. Kang, D. O. et al. Stress-associated neurobiological activity is linked with acute plaque instability via enhanced macrophage activity: a prospective serial 18F-FDG-PET/CT imaging assessment. Eur. Heart J. 42, 1883–1895 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Tarkin, J. M. et al. 68Ga-DOTATATE PET identifies residual myocardial inflammation and bone marrow activation after myocardial infarction. J. Am. Coll. Cardiol. 73, 2489–2491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Verweij, S. L. et al. Prolonged hematopoietic and myeloid cellular response in patients after an acute coronary syndrome measured with 18F-DPA-714 PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1956–1963 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Thackeray, J. T. et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging 8, 1417–1426 (2015).

    Article  PubMed  Google Scholar 

  107. Thackeray, J. T. et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol. 71, 263–275 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Janssen, A. W. M. et al. Arterial wall inflammation assessed by 18F-FDG-PET/CT is higher in individuals with type 1 diabetes and associated with circulating inflammatory proteins. Cardiovasc. Res. 119, 1942–1951 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tall, A. R. & Fuster, J. J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat. Cardiovasc. Res. 1, 116–124 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rohde, D. et al. Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. Nat. Cardiovasc. Res. 1, 28–44 (2022).

    Article  PubMed  Google Scholar 

  113. Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Patel, N. H. et al. Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: an observational study. Atherosclerosis 339, 20–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaiser, H. et al. Association between vascular inflammation and inflammation in adipose tissue, spleen, and bone marrow in patients with psoriasis. Life 11, 305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schwartz, D. M. et al. PET/CT-based characterization of 18F-FDG uptake in various tissues reveals novel potential contributions to coronary artery disease in psoriatic arthritis. Front. Immunol. 13, 909760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stotts, C., Corrales-Medina, V. F. & Rayner, K. J. Pneumonia-induced inflammation, resolution and cardiovascular disease: causes, consequences and clinical opportunities. Circ. Res. 132, 751–774 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Corrales-Medina, V. F. et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA 313, 264 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chow, E. J. et al. Acute cardiovascular events associated with influenza in hospitalized adults. Ann. Intern. Med. 173, 605–613 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Boczar, K. E. et al. Vascular inflammation during and after community-acquired pneumonia as measured by 18F-FDG-PET/CT imaging. JACC Cardiovasc. Imaging 16, 562–564 (2023).

    Article  PubMed  Google Scholar 

  121. Montecucco, F. & Mach, F. Update on statin-mediated anti-inflammatory activities in atherosclerosis. Semin. Immunopathol. 31, 127–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Tawakol, A. et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J. Am. Coll. Cardiol. 62, 909–917 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Pirro, M. et al. Effect of statin therapy on arterial wall inflammation based on 18F-FDG PET/CT: a systematic review and meta-analysis of interventional studies. J. Clin. Med. 8, 118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palaskas, N., Lopez‐Mattei, J., Durand, J. B., Iliescu, C. & Deswal, A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J. Am. Heart Assoc. 9, e013757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Vuong, J. T. et al. Immune checkpoint therapies and atherosclerosis: mechanisms and clinical implications: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79, 577–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suero-Abreu, G. A., Zanni, M. V. & Neilan, T. G. Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC CardioOncol. state-of-the-art review. JACC CardioOncol. 4, 598–615 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Calabretta, R. et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation 142, 2396–2398 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Poels, K. et al. Immune checkpoint inhibitor therapy aggravates t cell–driven plaque inflammation in atherosclerosis. JACC CardioOncol. 2, 599–610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bauer, D., Sarrett, S. M., Lewis, J. S. & Zeglis, B. M. Click chemistry: a transformative technology in nuclear medicine. Nat. Protoc. 18, 1659–1668 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Keinänen, O. et al. Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. Proc. Natl Acad. Sci. USA 117, 28316–28327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Cherry, S. R. et al. Total-body imaging: transforming the role of positron emission tomography. Sci. Transl. Med. 9, eaaf6169 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cherry, S. R. et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J. Nucl. Med. 59, 3–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. van Rijsewijk, N. D. et al. Ultra-low dose infection imaging of a newborn without sedation using long axial field-of-view PET/CT. Eur. J. Nucl. Med. Mol. Imaging 50, 622–623 (2023).

    Article  PubMed  Google Scholar 

  135. Chen, W. et al. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [18F]-FDG. Eur. J. Nucl. Med. Mol. Imaging 49, 4145–4155 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Derlin, T., Werner, R. A., Weiberg, D., Derlin, K. & Bengel, F. M. Parametric imaging of biologic activity of atherosclerosis using dynamic whole-body positron emission tomography. JACC Cardiovasc. Imaging 15, 2098–2108 (2022).

    Article  PubMed  Google Scholar 

  137. Derlin, T. et al. Exploring vessel wall biology in vivo by ultra-sensitive total-body positron emission tomography. J. Nucl. Med. 64, 416–422 (2022).

    Article  PubMed  Google Scholar 

  138. Evans, N. R. et al. Dual-tracer positron-emission tomography for identification of culprit carotid plaques and pathophysiology in vivo. Circ. Cardiovasc. Imaging 13, e009539 (2020).

    Article  PubMed  Google Scholar 

  139. Bell, C. et al. Dual acquisition of 18F-FMISO and 18F-FDOPA. Phys. Med. Biol. 59, 3925 (2014).

    Article  PubMed  Google Scholar 

  140. Andreyev, A., Celler, A. & Dual-isotope, P. E. T. using positron-gamma emitters. Phys. Med. Biol. 56, 4539–4556 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Pratt, E. C. et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron–electron annihilation and prompt gamma emissions. Nat. Biomed. Eng. 7, 1028–1039 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Moskal, P. & Stępień, E. Ł. Perspectives on translation of positronium imaging into clinics. Front. Phys. 10, https://doi.org/10.3389/fphy.2022.969806 (2022).

  143. Chen, H. M., Horn, J. Dvan & Jean, Y. C. Applications of positron annihilation spectroscopy to life science. Defect. Diffus. Forum 331, 275–293 (2012).

    Article  CAS  Google Scholar 

  144. Moskal, P. & Stępień, E. Ł. Positronium as a biomarker of hypoxia. Bio-Algorithms Med-Syst. 17, 311–319 (2021).

    Article  Google Scholar 

  145. Shibuya, K., Saito, H., Nishikido, F., Takahashi, M. & Yamaya, T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun. Phys. 3, 173 (2020).

    Article  CAS  Google Scholar 

  146. Dulski, K. et al. The J-PET detector—a tool for precision studies of ortho-positronium decays. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers Detect. Associated Equip. 1008, 165452 (2021).

    Article  CAS  Google Scholar 

  147. Moskal, P. et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 7, eabh4394 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Föllmer, B. et al. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat. Rev. Cardiol. 21, 51–64 (2023).

    Article  PubMed  Google Scholar 

  149. IMAGINE-NAHUNET-PET scanners. International Atomic Energy Agency. https://public.tableau.com/views/IMAGINE-NAHUNET-PETScanners/PETScanners?:embed=y&:showVizHome=no&:host_url=https%3A%2F%2Fpublic.tableau.com%2F&:embed_code_version=3&:tabs=no&:toolbar=yes&:animate_transition=yes&:display_static_image=no&:display_spinner=no&:display_overlay=yes&:display_count=yes&:language=en-GB&:loadOrderID=0 (2024).

  150. IAEA. Radiation in everyday life. https://www.iaea.org/Publications/Factsheets/English/radlife (2014).

  151. Rominger, A. et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J. Nucl. Med. 50, 1611–1620 (2009).

    Article  PubMed  Google Scholar 

  152. Tahara, N. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 48, 1825–1831 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Kwiecinski, J. et al. Bypass grafting and native coronary artery disease activity. JACC Cardiovasc. Imaging 15, 875–887 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Liu, Y. et al. Molecular imaging of atherosclerotic plaque with 64Cu-labeled natriuretic peptide and PET. J. Nucl. Med. 51, 85–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, Y., Pierce, R., Luehmann, H. P., Sharp, T. L. & Welch, M. J. PET imaging of chemokine receptors in vascular injury-accelerated atherosclerosis. J. Nucl. Med. 54, 1135–1141 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Baba, O. et al. CXCR4-binding positron emission tomography tracers link monocyte recruitment and endothelial injury in murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 41, 822–836 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Luehmann, H. P. et al. PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J. Nucl. Med. 57, 1124–1129 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Laitinen, I. et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging 2, 331–338 (2009).

    Article  PubMed  Google Scholar 

  159. Su, H. et al. Atherosclerotic plaque uptake of a novel integrin tracer 18F-flotegatide in a mouse model of atherosclerosis. J. Nucl. Cardiol. 21, 553–562 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ståhle, M. et al. Evaluation of glucagon-like peptide-1 receptor expression in nondiabetic and diabetic atherosclerotic mice using PET tracer 68Ga-NODAGA-exendin-4. Am. J. Physiol. Endocrinol. Metab. 320, E989–E998 (2021).

    Article  PubMed  Google Scholar 

  161. Maekawa, K. et al. Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 337, 7–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Kopecky, C. et al. Translocator protein localises to CD11b+ macrophages in atherosclerosis. Atherosclerosis 284, 153–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Cuhlmann, S. et al. In vivo mapping of vascular inflammation using the translocator protein tracer 18F-FEDAA1106. Mol. Imaging 13, https://doi.org/10.2310/7290.2014.00014 (2014).

  164. Hellberg, S. et al. 18-kDa translocator protein ligand 18F-FEMPA: biodistribution and uptake into atherosclerotic plaques in mice. J. Nucl. Cardiol. 24, 862–871 (2017).

    Article  PubMed  Google Scholar 

  165. Hellberg, S. et al. Positron emission tomography imaging of macrophages in atherosclerosis with 18F-GE-180, a radiotracer for translocator protein (TSPO). Contrast Media Mol. Imaging 2018, e9186902 (2018).

    Article  Google Scholar 

  166. Ahmed, M. et al. Molecular imaging of inflammation in a mouse model of atherosclerosis using a zirconium-89-labeled probe. Int. J. Nanomed. 15, 6137–6152 (2020).

    Article  CAS  Google Scholar 

  167. Silvola, J. M. U. et al. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Sci. Rep. 8, 9720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rinne, P. et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol. Imaging Biol. 18, 99–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Fu, Z. et al. P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur. J. Nucl. Med. Mol. Imaging 49, 2595–2604 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Palani, S. et al. Exploiting glutamine consumption in atherosclerotic lesions by positron emission tomography tracer (2S,4R)-4-18F-fluoroglutamine. Front. Immunol. 13, 821423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Varasteh, Z. et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Res. 9, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kim, E. J. et al. Novel PET imaging of atherosclerosis with 68Ga-labeled NOTA-neomannosylated human serum albumin. J. Nucl. Med. 57, 1792–1797 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Tahara, N. et al. 2-Deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 20, 215–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Varasteh, Z. et al. Imaging atherosclerotic plaques by targeting galectin-3 and activated macrophages using (89Zr)-DFO- galectin3-F(ab’)2 mAb. Theranostics 11, 1864–1876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Keliher, E. J. et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 8, 14064 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Majmudar, M. D. et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ. Res. 112, 755–761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nahrendorf, M. et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117, 379–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Nahrendorf, M. et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler. Thromb. Vasc. Biol. 31, 750–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nahrendorf, M. et al. Imaging cardiovascular and lung macrophages with the positron emission tomography sensor 64Cu-macrin in mice, rabbits, and pigs. Circ. Cardiovasc. Imaging 13, e010586 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Pérez-Medina, C. et al. In vivo PET imaging of HDL in multiple atherosclerosis models. JACC Cardiovasc. Imaging 9, 950–961 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Seo, J. W. et al. 64Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug. Chem. 25, 231–239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yang, T. et al. 18F-ASEM imaging for evaluating atherosclerotic plaques linked to α7-nicotinic acetylcholine receptor. Front. Bioeng. Biotechnol. 9, 684221 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wang, D., Yao, Y., Wang, S., Zhang, H. & He, Z.-X. The availability of the α7-nicotinic acetylcholine receptor in early identification of vulnerable atherosclerotic plaques: a study using a novel 18F-label radioligand PET. Front. Bioeng. Biotechnol. 9, 640037 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Senders, M. L. et al. PET/MR imaging of malondialdehyde-acetaldehyde epitopes with a human antibody detects clinically relevant atherothrombosis. J. Am. Coll. Cardiol. 71, 321–335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Elmaleh, D. R. et al. Detection of inflamed atherosclerotic lesions with diadenosine-5′,5′′′-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 15992–15996 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. De Dominicis, C. et al. [18F]ZCDD083: a PFKFB3-targeted PET tracer for atherosclerotic plaque imaging. ACS Med. Chem. Lett. 11, 933–939 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Tarkin, J. M. et al. Imaging atherosclerosis. Circ. Res. 118, 750–769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Stendahl, J. C., Kwan, J. M., Pucar, D. & Sadeghi, M. M. Radiotracers to address unmet clinical needs in cardiovascular imaging, part 1: technical considerations and perfusion and neuronal imaging. J. Nucl. Med. 63, 649–658 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Stendahl, J. C., Kwan, J. M., Pucar, D. & Sadeghi, M. M. Radiotracers to address unmet clinical needs in cardiovascular imaging, part 2: inflammation, fibrosis, thrombosis, calcification, and amyloidosis imaging. J. Nucl. Med. 63, 986–994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Aboyans, V. et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 39, 763–816 (2018).

    Article  PubMed  Google Scholar 

  191. Mendieta, G. et al. Determinants of progression and regression of subclinical atherosclerosis over 6 years. J. Am. Coll. Cardiol. 82, 2069–2083 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Pontone, G. et al. Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging-part I. Eur. Heart J. Cardiovasc. Imaging 23, 299–314 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  193. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385, 2383–2391 (2015).

    Article  Google Scholar 

  194. Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kaiser, Y. et al. Association of lipoprotein(a) with atherosclerotic plaque progression. J. Am. Coll. Cardiol. 79, 223–233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tzolos, E. et al. Pericoronary adipose tissue attenuation, low-attenuation plaque burden, and 5-year risk of myocardial infarction. JACC Cardiovasc. Imaging 15, 1078–1088 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Yoon, Y. E. et al. Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J. Am. Coll. Cardiol. 60, 2316–2322 (2012).

    Article  PubMed  Google Scholar 

  198. Hagar, M. T. et al. Accuracy of ultrahigh-resolution photon-counting CT for detecting coronary artery disease in a high-risk population. Radiology 307, e223305 (2023).

    Article  PubMed  Google Scholar 

  199. von Zur Mühlen, C. et al. Coronary magnetic resonance imaging after routine implantation of bioresorbable vascular scaffolds allows non-invasive evaluation of vascular patency. PLoS ONE 13, e0191413 (2018).

    Article  Google Scholar 

  200. Whittington, B., Dweck, M. R., van Beek, E. J. R., Newby, D. & Williams, M. C. PET-MRI of coronary artery disease. J. Magn. Reson. Imaging 57, 1301–1311 (2023).

    Article  PubMed  Google Scholar 

  201. Schindler, A. et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data. JACC Cardiovasc. Imaging 13, 395–406 (2020).

    Article  PubMed  Google Scholar 

  202. Mintz, G. S., Matsumura, M., Ali, Z. & Maehara, A. Clinical utility of intravascular imaging: past, present, and future. JACC Cardiovasc. Imaging 15, 1799–1820 (2022).

    Article  PubMed  Google Scholar 

  203. Dilsizian, V. et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J. Nucl. Cardiol. 23, 1187–1226 (2016).

    Article  PubMed  Google Scholar 

  204. Maddahi, J. et al. Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery disease. J. Am. Coll. Cardiol. 76, 391–401 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Almeida, A. G. et al. Multimodality imaging of myocardial viability: an expert consensus document from the European Association of Cardiovascular Imaging (EACVI). Eur. Heart J. Cardiovasc. Imaging 22, e97–e125 (2021).

    Article  PubMed  Google Scholar 

  206. Neumann, F.-J. et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).

    Article  PubMed  Google Scholar 

  207. Rischpler, C. et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ. Cardiovasc. Imaging 9, e004316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lavine, K. J. et al. CCR2 imaging in human ST-segment elevation myocardial infarction. Nat. Cardiovasc. Res. 2, 874–880 (2023).

    Article  Google Scholar 

  209. Maier, A. et al. Multiparametric immunoimaging maps inflammatory signatures in murine myocardial infarction models. JACC Basic Transl. Sci. 2, 874–880 (2023).

    Google Scholar 

  210. Werner, R. A. et al. CXCR4-targeted imaging of post-infarct myocardial tissue inflammation: prognostic value after reperfused myocardial infarction. JACC Cardiovasc. Imaging 15, 372–374 (2022).

    Article  PubMed  Google Scholar 

  211. Hess, A. et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur. Heart J. 41, 3564–3575 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Heckmann, M. B. et al. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ. Cardiovasc. Imaging 13, e010628 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Diekmann, J. et al. Cardiac fibroblast activation in patients early after acute myocardial infarction: integration with MR tissue characterization and subsequent functional outcome. J. Nucl. Med. 63, 1415–1423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Marchesseau, S. et al. Hybrid PET/CT and PET/MRI imaging of vulnerable coronary plaque and myocardial scar tissue in acute myocardial infarction. J. Nucl. Cardiol. 25, 2001–2011 (2018).

    Article  PubMed  Google Scholar 

  215. Jenkins, W. S. A. et al. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart 103, 607–615 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Taylor, M. et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med. 42, 55–62 (2001).

    CAS  PubMed  Google Scholar 

  217. Maes, A. F. et al. Early assessment of regional myocardial blood flow and metabolism in thrombolysis in myocardial infarction flow grade 3 reperfused myocardial infarction using carbon-11-acetate. J. Am. Coll. Cardiol. 37, 30–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  218. Morooka, M. et al. 11C-Methionine PET of acute myocardial infarction. J. Nucl. Med. 50, 1283–1287 (2009).

    Article  PubMed  Google Scholar 

  219. Fallavollita, J. A. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J. Am. Coll. Cardiol. 63, 141–149 (2014).

    Article  PubMed  Google Scholar 

  220. Lavine, K. J. & Liu, Y. The dynamic cardiac cellular landscape: visualization by molecular imaging. Nat. Rev. Cardiol. 19, 345–347 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M. received support from the Berta Ottenstein Program for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg, and the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) research grant Project #492563001, and is a member of SFB1425, funded by the DFG Project #422681845. M.M.T.v.L received support from the NIH grant R01HL169500. Z.A.F. received support from the NIH grants P01HL131478, P01AI168258, R01HL166720 and R01DA049547. The authors thank K. Joyes (Icahn School of Medicine at Mount Sinai, USA) for editing the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and M.M.T.v.L. wrote the article. A.M., A.J.P.T., S.A.N., E.L., Z.A.F. and M.M.T.v.L. made substantial contributions to the discussion of content. All authors researched data for the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Mandy M. T. van Leent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Marc Dewey, who co-reviewed with Bernhard Föllmer; Thomas H. Schindler and Jason Tarkin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, A., Teunissen, A.J.P., Nauta, S.A. et al. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01009-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01009-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing