Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease

Abstract

The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.

Key points

  • Ischaemic heart disease causes adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure, and is the leading cause of death globally.

  • Non-coding RNAs (ncRNAs) are functional RNA molecules that are not translated into proteins; these molecules are involved in cardiovascular homeostasis and the regulation of mechanisms that lead to ischaemic heart disease.

  • ncRNAs are being investigated for their capacity to combat ischaemic cardiac remodelling, promote therapeutic angiogenesis and replace cardiomyocyte loss, and as biomarkers of cardiac injury and remodelling.

  • The various classes of ncRNA interact among themselves and with mRNAs and RNA-binding proteins, establishing complex regulatory networks; post-transcriptional modifications expand the therapeutic target repertoire of ncRNAs.

  • ncRNAs are released extracellularly and circulate in biological fluids in protected forms; as such, they have potential as actionable biomarkers, supporting a theranostic approach to personalized medicine.

  • Improved techniques for nucleic acid detection promise the discovery of new ncRNA species, while developments in drug formulation and delivery support the translation of ncRNA therapeutics to clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-coding RNAs and ischaemic heart disease.
Fig. 2: Non-coding RNAs as therapeutic targets in ischaemic heart disease.

Similar content being viewed by others

References

  1. Berry, C. et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J. Am. Heart Assoc. 8, e011104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mihatov, N., Januzzi, J. L. Jr & Gaggin, H. K. Type 2 myocardial infarction due to supply-demand mismatch. Trends Cardiovasc. Med. 27, 408–417 (2017).

    Article  PubMed  Google Scholar 

  3. Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). J. Am. Coll. Cardiol. 72, 2231–2264 (2018).

    Article  PubMed  Google Scholar 

  4. Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).

    Article  PubMed  Google Scholar 

  5. Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Circulation 138, e618–e651 (2018).

    Article  PubMed  Google Scholar 

  6. Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P. & Al-Lamee, R. Mortality from ischemic heart disease. Circ. Cardiovasc. Qual. Outcomes 12, e005375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Taubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Vedin, O. et al. Significance of ischemic heart disease in patients with heart failure and preserved, midrange, and reduced ejection fraction: a nationwide cohort study. Circ. Heart Fail. 10, e003875 (2017).

    Article  PubMed  Google Scholar 

  9. Shah, S. J. et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 39, 3439–3450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. John, J. E. et al. Coronary artery disease and heart failure with preserved ejection fraction: the ARIC study. J. Am. Heart Assoc. 11, e021660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elgendy, I. Y. & Pepine, C. J. Heart failure with preserved ejection fraction: is ischemia due to coronary microvascular dysfunction a mechanistic factor? Am. J. Med. 132, 692–697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Elgendy, I. Y., Mahtta, D. & Pepine, C. J. Medical therapy for heart failure caused by ischemic heart disease. Circ. Res. 124, 1520–1535 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marwick, T. H. Ejection fraction pros and cons: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2360–2379 (2018).

    Article  MathSciNet  PubMed  Google Scholar 

  14. Chapman, A. R. et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation 137, 1236–1245 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berry, C. Stable coronary syndromes: the case for consolidating the nomenclature of stable ischemic heart disease. Circulation 136, 437–439 (2017).

    Article  PubMed  Google Scholar 

  16. Reynolds, H. R. et al. Coronary arterial function and disease in women with no obstructive coronary arteries. Circ. Res. 130, 529–551 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herscovici, R. et al. Ischemia and no obstructive coronary artery disease (INOCA): what is the risk? J. Am. Heart Assoc. 7, e008868 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Christiansen, M. N. et al. Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012. Circulation 135, 1214–1223 (2017).

    Article  PubMed  Google Scholar 

  19. Srivaratharajah, K. et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ. Heart Fail. 9, e002562 (2016).

    Article  PubMed  Google Scholar 

  20. Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  21. Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016 — 40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Andersson, C. & Vasan, R. S. Epidemiology of heart failure with preserved ejection fraction. Heart Fail. Clin. 10, 377–388 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ashokprabhu, N. D., Quesada, O., Alvarez, Y. R. & Henry, T. D. INOCA/ANOCA: mechanisms and novel treatments. Am. Heart J. 30, 100302 (2023).

    Google Scholar 

  24. Schirone, L. et al. An overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Cells 11, 1165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Das, S. et al. Noncoding RNAs in cardiovascular disease: current knowledge, tools and technologies for investigation, and future directions: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 13, e000062 (2020).

    Article  PubMed  Google Scholar 

  26. Santovito, D. & Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat. Rev. Cardiol. 19, 620–638 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Frantz, S., Hundertmark, M. J., Schulz-Menger, J., Bengel, F. M. & Bauersachs, J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur. Heart J. 43, 2549–2561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan, Y. et al. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol. Ther. 29, 2253–2267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spencer, H. L. et al. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc. Res. 116, 1981–1994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Zhong, N., Nong, X., Diao, J. & Yang, G. piRNA-6426 increases DNMT3B-mediated SOAT1 methylation and improves heart failure. Aging 14, 2678–2694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao, X. Q. et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 22, 1319–1331 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Rajan, K. S. et al. Abundant and altered expression of PIWI-interacting RNAs during cardiac hypertrophy. Heart Lung Circ. 25, 1013–1020 (2016).

    Article  PubMed  Google Scholar 

  34. Sun, Y. H., Lee, B. & Li, X. Z. The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm. Genome 33, 293–311 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Kufel, J. & Grzechnik, P. Small nucleolar RNAs tell a different tale. Trends Genet. 35, 104–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. van Ingen, E. et al. C/D box snoRNA SNORD113-6 guides 2′-O-methylation and protects against site-specific fragmentation of tRNALeu(TAA) in vascular remodeling. Mol. Ther. Nucleic Acids 30, 162–172 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brameier, M., Herwig, A., Reinhardt, R., Walter, L. & Gruber, J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Jagielski, N. P., Rai, A. K., Rajan, K. S., Mangal, V. & Garikipati, V. N. S. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. Mol. Ther. Nucleic Acids 35, 102087 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Valkov, N. & Das, S. Y RNAs: biogenesis, function and implications for the cardiovascular system. Adv. Exp. Med. Biol. 1229, 327–342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, X. et al. Extracellular vesicle-encapsulated adeno-associated viruses for therapeutic gene delivery to the heart. Circulation 148, 405–425 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Kuhle, B., Chen, Q. & Schimmel, P. tRNA renovatio: rebirth through fragmentation. Mol. Cell 83, 3953–3971 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Li, Q. et al. tRNA-derived small non-coding RNAs in response to ischemia inhibit angiogenesis. Sci. Rep. 6, 20850 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen, L. et al. A novel class of tRNA-derived small non-coding RNAs respond to myocardial hypertrophy and contribute to intergenerational inheritance. Biomolecules 8, 54 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nojima, T. & Proudfoot, N. J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol. 23, 389–406 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y., Syed, J. & Sugiyama, H. RNA–DNA triplex formation by long noncoding RNAs. Cell Chem. Biol. 23, 1325–1333 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ritter, N. et al. The lncRNA locus handsdown regulates cardiac gene programs and is essential for early mouse development. Dev. Cell 50, 644–657.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Balas, M. M. et al. Establishing RNA–RNA interactions remodels lncRNA structure and promotes PRC2 activity. Sci. Adv. 7, eabc9191 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, J. et al. LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells. Development 148, dev199628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, J. et al. Long noncoding RNA ahit protects against cardiac hypertrophy through SUZ12 (suppressor of Zeste 12 protein homolog)-mediated downregulation of MEF2A (myocyte enhancer factor 2A). Circ. Heart Fail. 13, e006525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saldana-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ounzain, S. et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell Cardiol. 89, 98–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Micheletti, R. et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl. Med. 9, eaai9118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Plaisance, I. et al. A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification. Cardiovasc. Res. 119, 1361–1376 (2022).

    Article  PubMed Central  Google Scholar 

  56. Ward, Z., Pearson, J., Schmeier, S., Cameron, V. & Pilbrow, A. Insights into circular RNAs: their biogenesis, detection, and emerging role in cardiovascular disease. RNA Biol. 18, 2055–2072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barrett, S. P. & Salzman, J. Circular RNAs: analysis, expression and potential functions. Development 143, 1838–1847 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, Z. et al. Exon–intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article  PubMed  Google Scholar 

  60. Li, X. et al. lncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol. Ther. Nucleic Acids 17, 297–309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu, Y. et al. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction. Cell Death Discov. 7, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, S. et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139, 2857–2876 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Garikipati, V. N. S. et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat. Commun. 10, 4317 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alarcon, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chamorro-Jorganes, A. et al. METTL3 regulates angiogenesis by modulating let-7e-5p and miRNA-18a-5p expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 41, e325–e337 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Li, L. et al. m6A methylation in cardiovascular diseases: from mechanisms to therapeutic potential. Front. Genet. 13, 908976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, J. et al. N6-methyladenosine modification opens a new chapter in circular RNA biology. Front. Cell Dev. Biol. 9, 709299 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sweaad, W. K. et al. Relevance of N6-methyladenosine regulators for transcriptome: implications for development and the cardiovascular system. J. Mol. Cell Cardiol. 160, 56–70 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Cusenza, V. Y., Tameni, A., Neri, A. & Frazzi, R. The lncRNA epigenetics: the significance of m6A and m5C lncRNA modifications in cancer. Front. Oncol. 13, 1063636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Marceca, G. P. et al. MiREDiBase, a manually curated database of validated and putative editing events in microRNAs. Sci. Data 8, 199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van der Kwast, R. et al. Adenosine-to-inosine editing of vasoactive microRNAs alters their targetome and function in ischemia. Mol. Ther. Nucleic Acids 21, 932–953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang, Q. et al. ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding. RNA 19, 1525–1536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kokot, K. E. et al. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res. Cardiol. 117, 32 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vlachogiannis, N. I. et al. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J. Mol. Cell Cardiol. 160, 111–120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Novikova, I. V., Hennelly, S. P. & Sanbonmatsu, K. Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40, 5034–5051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gong, J. et al. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Res. 45, D79–D84 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Caporali, A. et al. p75NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat. Commun. 6, 8024 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Chang, Y. J. et al. Extracellular microRNA-92a mediates endothelial cell–macrophage communication. Arterioscler. Thromb. Vasc. Biol. 39, 2492–2504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, J. et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ. Res. 128, e1–e23 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Mathiyalagan, P. et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb. Circ. Res. 120, 1466–1476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang, F. et al. Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice. Mol. Ther. Nucleic Acids 24, 951–960 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jeppesen, D. K., Zhang, Q., Franklin, J. L. & Coffey, R. J. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 33, 667–681 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Emanueli, C. et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS ONE 11, e0154274 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. He, D. et al. Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Theranostics 9, 4494–4507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, H. et al. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J. Exp. Med. 216, 2202–2220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cheng, H. et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res. Ther. 11, 224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Freeman, D. W. et al. Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes 67, 2377–2388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cable, J. et al. Exosomes, microvesicles, and other extracellular vesicles-a Keystone Symposia report. Ann. N. Y. Acad. Sci. 1523, 24–37 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Ben-Aicha, S. et al. High-density lipoprotein remodelled in hypercholesterolaemic blood induce epigenetically driven down-regulation of endothelial HIF-1α expression in a preclinical animal model. Cardiovasc. Res. 116, 1288–1299 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Q. et al. Transfer of functional cargo in exomeres. Cell Rep. 27, 940–954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Davidson, S. M. et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc. Res. 119, 45–63 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. exRNA Atlas: data, tools & computable knowledge. https://exrna-atlas.org (US National Instiutes of Health, 2024).

  101. Murillo, O. D. et al. exRNA atlas analysis reveals distinct extracellular rna cargo types and their carriers present across human biofluids. Cell 177, 463–477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rozowsky, J. et al. exceRpt: a comprehensive analytic platform for extracellular RNA profiling. Cell Syst. 8, 352–357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T. & Lowenstein, C. J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl Acad. Sci. USA 105, 1516–1521 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heymans, S. et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128, 1420–1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Bang, C. et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136–2146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Foinquinos, A. et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat. Commun. 11, 633 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ucar, A. et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 3, 1078 (2012).

    Article  ADS  PubMed  Google Scholar 

  111. Lei, Z. et al. miR-132/212 impairs cardiomyocytes contractility in the failing heart by suppressing SERCA2a. Front. Cardiovasc. Med. 8, 592362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Batkai, S. et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur. Heart J. 42, 192–201 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909–914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rawal, S. et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc. Res. 113, 90–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Masson, S. et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur. J. Heart Fail. 20, 78–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Huang, J. P. et al. Exosomal microRNAs miR-30d-5p and miR-126a-5p are associated with heart failure with preserved ejection fraction in STZ-induced type 1 diabetic rats. Int. J. Mol. Sci. 23, 7514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Hinkel, R. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128, 1066–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Abplanalp, W. T. et al. Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid Ther. 30, 335–345 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Porrello, E. R. et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 109, 670–679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Besnier, M. et al. miR-15a/-16 inhibit angiogenesis by targeting the Tie2 coding sequence: therapeutic potential of a miR-15a/16 decoy system in limb ischemia. Mol. Ther. Nucleic Acids 17, 49–62 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Spinetti, G. et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Yang, Y. et al. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ. Res. 117, 450–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang, W. et al. Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat. Commun. 9, 700 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  125. Chen, J. et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res. 112, 1557–1566 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tian, Y. et al. A microRNA–Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 7, 279ra238 (2015).

    Article  Google Scholar 

  127. Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Gabisonia, K. et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ounzain, S. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. 36, 353–368 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Ballantyne, M. D. et al. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation 133, 2050–2065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bell, R. D. et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler. Thromb. Vasc. Biol. 34, 1249–1259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Martens, C. R., Bansal, S. S. & Accornero, F. Cardiovascular inflammation: RNA takes the lead. J. Mol. Cell Cardiol. 129, 247–256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, M., Gu, H., Xu, W. & Zhou, X. Down-regulation of lncRNA MALAT1 reduces cardiomyocyte apoptosis and improves left ventricular function in diabetic rats. Int. J. Cardiol. 203, 214–216 (2016).

    Article  PubMed  Google Scholar 

  134. Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377–1388 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Cai, B. et al. The long noncoding RNA CAREL controls cardiac regeneration. J. Am. Coll. Cardiol. 72, 534–550 (2018).

    Article  PubMed  Google Scholar 

  137. Ponnusamy, M. et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139, 2668–2684 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, Y. et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol. Ther. 27, 29–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Piccoli, M. T. et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res. 121, 575–583 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Aghagolzadeh, P. et al. Assessment of the cardiac noncoding transcriptome by single-cell RNA sequencing identifies FIXER, a conserved profibrogenic long noncoding RNA. Circulation 148, 778–797 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Yuan, Q. et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct. Target. Ther. 8, 99 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Alhamadani, F. et al. Adverse drug reactions and toxicity of the food and drug administration-approved antisense oligonucleotide drugs. Drug Metab. Dispos. 50, 879–887 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Khorkova, O. et al. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin. Drug Discov. 18, 1011–1029 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lim, K. R. Q. & Yokota, T. Invention and early history of gapmers. Methods Mol. Biol. 2176, 3–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Vasquez, G. et al. Site-specific incorporation of 5′-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Res. 49, 1828–1839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, D., Mastaglia, F. L., Fletcher, S. & Wilton, S. D. Precision medicine through antisense oligonucleotide-mediated exon skipping. Trends Pharmacol. Sci. 39, 982–994 (2018).

    Article  PubMed  Google Scholar 

  148. Gramlich, M. et al. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol. Med. 7, 562–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Plaisance, I. et al. A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification. Cardiovasc. Res. 119, 1361–1376 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Kramer, M. C. et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168–2182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, X. M., Zhou, J., Mao, Y., Ji, Q. & Qian, S. B. Programmable RNA N6-methyladenosine editing by CRISPR–Cas9 conjugates. Nat. Chem. Biol. 15, 865–871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nose, K., Hidaka, K., Yano, T., Tomita, Y. & Fukuda, M. Short-chain guide RNA for site-directed A-to-I RNA editing. Nucleic Acid Ther. 31, 58–67 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Khosravi, H. M. & Jantsch, M. F. Site-directed RNA editing: recent advances and open challenges. RNA Biol. 18, 41–50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W. & Hare, J. M. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ. Res. 120, 1139–1150 (2017).

    Article  PubMed  Google Scholar 

  156. von Degenfeld, G. et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J. Am. Coll. Cardiol. 42, 1120–1128 (2003).

    Article  Google Scholar 

  157. Mavropoulos, S. A., Yamada, K. P., Sakata, T. & Ishikawa, K. Cardiac gene delivery in large animal models: antegrade techniques. Methods Mol. Biol. 2573, 147–158 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Gao, L. et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712–1730 (2018).

    Article  PubMed  Google Scholar 

  159. Kikuchi, K., McDonald, A. D., Sasano, T. & Donahue, J. K. Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation 111, 264–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Kopechek, J. A. et al. Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function. Theranostics 9, 7088–7098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Clarke, D. E., Pashuck, E. T., Bertazzo, S., Weaver, J. V. M. & Stevens, M. M. Self-healing, self-assembled beta-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels. J. Am. Chem. Soc. 139, 7250–7255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yuan, J. et al. Microneedle patch loaded with exosomes containing microRNA-29b prevents cardiac fibrosis after myocardial infarction. Adv. Healthc. Mater. 12, e2202959 (2023).

    Article  PubMed  Google Scholar 

  163. Greenberg, B. et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387, 1178–1186 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Katz, M. G., Fargnoli, A. S., Weber, T., Hajjar, R. J. & Bridges, C. R. Use of adeno-associated virus vector for cardiac gene delivery in large-animal surgical models of heart failure. Hum. Gene Ther. Clin. Dev. 28, 157–164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Subramanian, M. et al. RNAi-mediated rheostat for dynamic control of AAV-delivered transgenes. Nat. Commun. 14, 1970 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bozoglu, T. et al. Endothelial retargeting of AAV9 in vivo. Adv. Sci. 9, e2103867 (2022).

    Article  Google Scholar 

  167. Zhang, H., Zhan, Q., Huang, B., Wang, Y. & Wang, X. AAV-mediated gene therapy: advancing cardiovascular disease treatment. Front. Cardiovasc. Med. 9, 952755 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Yue, R. et al. Mesenchymal stem cell-derived exosomal microRNA-182-5p alleviates myocardial ischemia/reperfusion injury by targeting GSDMD in mice. Cell Death Discov. 8, 202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Aggarwal, R. et al. Surgical porcine model of chronic myocardial ischemia treated by exosome-laden collagen patch and off-pump coronary artery bypass graft. J. Vis. Exp. https://doi.org/10.3791/65553 (2023).

    Article  PubMed  Google Scholar 

  171. Cheng, G., Zhu, D., Huang, K. & Caranasos, T. G. Minimally invasive delivery of a hydrogel-based exosome patch to prevent heart failure. J. Mol. Cell Cardiol. 169, 113–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Herrera-Barrera, M. et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 9, eadd4623 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Naidu, G. S. et al. A combinatorial library of lipid nanoparticles for cell type-specific mRNA delivery. Adv. Sci. 10, e2301929 (2023).

    Article  Google Scholar 

  175. Hald Albertsen, C. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ge, X., Chen, L., Zhao, B. & Yuan, W. Rationale and application of PEGylated lipid-based system for advanced target delivery of siRNA. Front. Pharmacol. 11, 598175 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Scognamiglio, I. et al. Transferrin-conjugated SNALPs encapsulating 2′-O-methylated miR-34a for the treatment of multiple myeloma. Biomed. Res. Int. 2014, 217365 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lou, J. et al. Reactive oxygen species (ROS) activated liposomal cell delivery using a boronate-caged guanidine lipid. Chemistry 28, e202201057 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05350969 (2024).

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03603431 (2019).

  182. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article  Google Scholar 

  183. Schulte, C. et al. Serial measurements of protein and microRNA biomarkers to specify myocardial infarction subtypes. J. Mol. Cell Cardiol. 1, 100014 (2022).

    Google Scholar 

  184. D’Alessandra, Y. et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 31, 2765–2773 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Blanco-Dominguez, R. et al. A novel circulating MicroRNA for the detection of acute myocarditis. N. Engl. J. Med. 384, 2014–2027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Koch, C. et al. Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers. Nat. Nanotechnol. 18, 1483–1491 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  187. Almaghrbi, H., Giordo, R., Pintus, G. & Zayed, H. Non-coding RNAs as biomarkers of myocardial infarction. Clin. Chim. Acta 540, 117222 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Lalem, T. & Devaux, Y. Circulating microRNAs to predict heart failure after acute myocardial infarction in women. Clin. Biochem. 70, 1–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Wen, Z. J. et al. Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol. Ther. Nucleic Acids 26, 828–848 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Devaux, Y. et al. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ. Cardiovasc. Genet. 6, 290–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Scrutinio, D., Conserva, F., Guida, P. & Passantino, A. Long-term prognostic potential of microRNA-150-5p in optimally treated heart failure patients with reduced ejection fraction: a pilot study. Minerva Cardiol. Angiol. 70, 439–446 (2022).

    Article  PubMed  Google Scholar 

  192. Abu-Halima, M. et al. Micro-RNA 150-5p predicts overt heart failure in patients with univentricular hearts. PLoS ONE 14, e0223606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lin, X., Zhang, S. & Huo, Z. Serum circulating miR-150 is a predictor of post-acute myocardial infarction heart failure. Int. Heart J. 60, 280–286 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Aonuma, T. et al. MiR-150 attenuates maladaptive cardiac remodeling mediated by long noncoding RNA MIAT and directly represses profibrotic Hoxa4. Circ. Heart Fail. 15, e008686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kawaguchi, S. et al. SPRR1A is a key downstream effector of MiR-150 during both maladaptive cardiac remodeling in mice and human cardiac fibroblast activation. Cell Death Dis. 14, 446 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Aonuma, T. et al. Cardiomyocyte microRNA-150 confers cardiac protection and directly represses proapoptotic small proline-rich protein 1A. JCI Insight 6, e150405 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tang, Y. et al. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc. Res. 106, 387–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Li, J. et al. Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J. Biol. Chem. 288, 23586–23596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Xiao, J. et al. Circulating miR-30d predicts survival in patients with acute heart failure. Cell. Physiol. Biochem. 41, 865–874 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Melman, Y. F. et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study. Circulation 131, 2202–2216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Vausort, M. et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J. Am. Coll. Cardiol. 68, 1247–1248 (2016).

    Article  PubMed  Google Scholar 

  202. Salgado-Somoza, A., Zhang, L., Vausort, M. & Devaux, Y. The circular RNA MICRA for risk stratification after myocardial infarction. Int. J. Cardiol. Heart Vasc. 17, 33–36 (2017).

    PubMed  PubMed Central  Google Scholar 

  203. Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808 (2004).

    Article  PubMed  Google Scholar 

  204. Badimon, L. et al. Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovasc. Res. 117, 1823–1840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Firat, H. et al. FIMICS: a panel of long noncoding RNAs for cardiovascular conditions. Heliyon 9, e13087 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sopic, M. et al. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res. Cardiol. 118, 16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jusic, A., Stellos, K., Ferreira, L., Baker, A. H. & Devaux, Y. (Epi)transcriptomics in cardiovascular and neurological complications of COVID-19. J. Mol. Cell Cardiol. 1, 100013 (2022).

    Google Scholar 

  208. Vausort, M. et al. Regulation of N6-methyladenosine after myocardial infarction. Cells 11, 2271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Robinson, E. L., Emanueli, C., Martelli, F. & Devaux, Y. Leveraging non-coding RNAs to fight cardiovascular disease: the EU-CardioRNA network. Eur. Heart J. 42, 4881–4883 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. de Gonzalo-Calvo, D. et al. Consensus guidelines for the validation of qRT-PCR assays in clinical research by the CardioRNA consortium. Mol. Ther. Methods Clin. Dev. 24, 171–180 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. de Gonzalo-Calvo, D., Perez-Boza, J., Curado, J., Devaux, Y. & EU-CardioRNA COST Action CA17129. Challenges of microRNA-based biomarkers in clinical application for cardiovascular diseases. Clin. Transl. Med. 12, e585 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. de Gonzalo-Calvo, D., Sopic, M., Devaux, Y. & EU-CardioRNA COST Action CA17129. Methodological considerations for circulating long noncoding RNA quantification. Trends Mol. Med. 28, 616–618 (2022).

    Article  PubMed  Google Scholar 

  213. Lakkisto, P. et al. Development of circulating microRNA-based biomarkers for medical decision-making: a friendly reminder of what should NOT be done. Crit. Rev. Clin. Lab. Sci. 60, 141–152 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Vanhaverbeke, M. et al. Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: a position paper from the EU-CardioRNA COST action CA17129. Cardiovasc. Res. 118, 3183–3197 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Schuldt, A. Great expectations of small RNAs. Nat. Rev. Mol. Cell Biol. 11, 676 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  217. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  218. Thum, T. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Hullinger, T. G. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  221. Ramanujam, D. et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation 143, 1513–1525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Qiao, L. et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J. Clin. Invest. 129, 2237–2250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Hinkel, R. et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J. Am. Coll. Cardiol. 75, 1788–1800 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Mayourian, J. et al. Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ. Res. 122, 933–944 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. De Rosa, S. et al. Transcoronary concentration gradients of circulating microRNAs in heart failure. Eur. J. Heart Fail. 20, 1000–1010 (2018).

    Article  PubMed  Google Scholar 

  226. Galluzzo, A. et al. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. Esc. Heart Fail. 8, 2907–2919 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Yan, M. et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc. Res. 105, 340–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Boxhammer, E. et al. MicroRNA-30d-5p-A potential new therapeutic target for prevention of ischemic cardiomyopathy after myocardial infarction. Cells 12, 2369 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Li, J. et al. Targeting miR-30d reverses pathological cardiac hypertrophy. EBioMedicine 81, 104108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hua, C. C., Liu, X. M., Liang, L. R., Wang, L. F. & Zhong, J. C. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases. Front. Cardiovasc. Med. 8, 784044 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Matsushima, S. & Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309, H1375–H1389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Seeger, T. & Boon, R. A. MicroRNAs in cardiovascular ageing. J. Physiol. 594, 2085–2094 (2016).

    Article  CAS  PubMed  Google Scholar 

  233. Zhu, J. N. et al. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci. Rep. 7, 11879 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  234. Rogg, E. M. et al. Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action. Circulation 138, 2545–2558 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Zhu, W. & Li, X. Liquid biopsy in coronary heart disease. Methods Mol. Biol. 2695, 279–293 (2023).

    Article  CAS  PubMed  Google Scholar 

  236. Jakob, P. et al. Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126, 2962–2975 (2012).

    Article  CAS  PubMed  Google Scholar 

  237. Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Matkovich, S. J. et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res. 106, 166–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  239. Hu, S. et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122, S124–S131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zaccagnini, G. et al. Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death Dis. 12, 435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Cambier, L. et al. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol. Med. 9, 337–352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Busscher, D., Boon, R. A. & Juni, R. P. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin. Sci. 136, 1157–1178 (2022).

    Article  Google Scholar 

  243. Boulberdaa, M. et al. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol. Ther. 24, 978–990 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bhatt, D. L., Lopes, R. D. & Harrington, R. A. Diagnosis and treatment of acute coronary syndromes: a review. JAMA 327, 662–675 (2022).

    Article  PubMed  Google Scholar 

  245. Mukherjee, D. Myocardial infarction with nonobstructive coronary arteries: a call for individualized treatment. J. Am. Heart Assoc. 8, e013361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Byrne, R. A. et al. 2023 ESC guidelines for the management of acute coronary syndromes. Eur. Heart J. 44, 3720–3826 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.C. has received funding from the British Heart Foundation (Research Excellence Award 3 RE/18/5/34216 and project grant PG/22/10916). Y.D. has received funding from the EU Horizon 2020 project COVIRNA (grant agreement no. 101016072), the National Research Fund (grant no. 14/BM/8225223, C17/BM/11613033 and COVID-19/2020-1/14719577/miRCOVID), the Ministry of Higher Education and Research, and the Heart Foundation-Daniel Wagner of Luxembourg. R.K. has received funding from the Health Research Council New Zealand (grant no. 22/632). F.M. is supported by the Italian Ministry of Health projects Ricerca Corrente 2024 1.07.128, The Italian Cardiology Network IRCCS RCR-2022-23682288, RF-2019-12368521, POS T4 CAL.HUB.RIA cod. T4-AN-09, and by the Next Generation EU-NRRP M6C2 Inv. 2.1 PNRR-MAD-2022-12375790. F.M. has also received funding from Telethon Foundation (#4462 GGP19035A), by AFM-Telethon (#23054) and by Next Generation EU PNRR/2022/C9/MCID/I8 FibroThera. P.K.S. acknowledges the support of Integrated MRes/PhD 4-year studentship from a British Heart Foundation/National Heart and Lung Institute grant (FS/4yPhD/F/22/34178) and Diabetes UK grant (20/0006187). P.K.S. has also received funding from pharmaceutical companies F. Hoffmann-La Roche Ltd (Systems-PD, project ID: 5466496) and UCB Biopharma SPRL (EPINET 2). T.P. has received funding from the Swiss National Science Foundation: grants no. CRSII5_173738 and no. 31003A_182322. C.E. acknowledges the support of the following relevant awards from the British Heart Foundation: grants CH/15/1/3119, RG/20/9/35101, PG/22/11063, PG/23/11369 and RE/18/4/34215. Y.D., F.M., T.P. and C.E. were core members of the EU-CardioRNA COST Action CA17129 (www.cardiorna.eu). A.C., Y.D., F.M. and C.E. are also part of  the AtheroNET COST Action CA21153. Both are funded by COST (European Cooperation in Science and Technology; www.cost.eu). We are grateful to J. Hill for English proofing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Costanza Emanueli.

Ethics declarations

Competing interests

A.C. is a co-founder of MIRAVA Therapeutics. Y.D. holds patents and licensing agreements related to the use of RNAs for diagnostic and therapeutic purposes and is a member of the Scientific Advisory Board of the molecular diagnostics company Firalis SA. T.P. is a co-founder of Haya Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Saumya Das and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caporali, A., Anwar, M., Devaux, Y. et al. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01001-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01001-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing