Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects

Abstract

The surge in reports describing non-coding RNAs (ncRNAs) has focused attention on their possible biological roles and effects on development and disease. ncRNAs have been touted as previously uncharacterized regulators of gene expression and cellular processes, possibly working to fine-tune these functions. The sheer number of ncRNAs identified has outpaced the capacity to characterize each molecule thoroughly and to reliably establish its clinical relevance; it has, nonetheless, created excitement about their potential as molecular targets for novel therapeutic approaches to treat human disease. In this Review, we focus on one category of ncRNAs — long non-coding RNAs — and their expression, functions and molecular mechanisms in cardiac hypertrophy and heart failure. We further discuss the prospects for this specific class of ncRNAs as novel targets for the diagnosis and treatment of these conditions.

Key points

  • Long non-coding RNAs (lncRNAs) are a class of non-coding RNA that can regulate gene expression at multiple levels, including transcription, RNA splicing and protein translation.

  • There are a variety of classes of lncRNA, based on their structures and/or mechanisms of action, but their study has been limited by their low levels of expression and relatively poor conservation between species.

  • LncRNAs are crucial regulators of cell differentiation, development and disease; in the heart, their expression is often associated with stress conditions, and they participate in the pathophysiological remodelling associated with cardiac hypertrophy and heart failure.

  • Studies have shown that dysregulation of lncRNAs is associated with a variety of cardiac diseases, including coronary artery disease, myocardial infarction, heart failure and arrhythmias.

  • Indications from studies in animal models and humans reveal that lncRNAs have great potential as biomarkers for disease diagnosis and as novel targets for the treatment of cardiac disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: lncRNA mechanisms of action.
Fig. 2: lncRNA regulation of cardiac hypertrophy induced by calcium and NFAT.
Fig. 3: lncRNA regulation of miRNA-dependent cardiac hypertrophy.
Fig. 4: lncRNA regulation of chromatin-mediated cardiac hypertrophy.

Similar content being viewed by others

References

  1. ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  2. Pennisi, E. Genomics. ENCODE project writes eulogy for junk DNA. Science 337, 1159–1161 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Neppl, R. L. & Wang, D. Z. The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes. Dis. 1, 18–39 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Amaral, P. P., Clark, M. B., Gascoigne, D. K., Dinger, M. E. & Mattick, J. S. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 39, D146–D151 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Quek, X. C. et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 43, D168–D173 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma, L., Bajic, V. B. & Zhang, Z. On the classification of long non-coding RNAs. RNA Biol. 10, 925–933 (2013).

    Article  PubMed  Google Scholar 

  10. Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Noh, J. H., Kim, K. M., McClusky, W. G., Abdelmohsen, K. & Gorospe, M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip. Rev. RNA 9, e1471 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qin, T., Li, J. & Zhang, K. Q. Structure, regulation, and function of linear and circular long non-coding RNAs. Front. Genet. 11, 150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, S., Chen, L. & Zhou, X. Circular RNAs in the regulation of cardiac hypertrophy. Mol. Ther. Nucleic Acids 27, 484–490 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Darbellay, F. & Necsulea, A. Comparative transcriptomics analyses across species, organs, and developmental stages reveal functionally constrained lncRNAs. Mol. Biol. Evol. 37, 240–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Gao, J. et al. Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts. PLoS Biol. 19, e3001229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. See, K. et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat. Commun. 8, 225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yan, Y. et al. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol. Ther. 29, 2253–2267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article  PubMed  Google Scholar 

  21. Ounzain, S. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. 36, 353–368 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Matkovich, S. J., Edwards, J. R., Grossenheider, T. C., de Guzman Strong, C. & Dorn, G. W. II Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc. Natl Acad. Sci. USA 111, 12264–12269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Izumo, S. et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J. Clin. Invest. 79, 970–977 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Izumo, S., Nadal-Ginard, B. & Mahdavi, V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl Acad. Sci. USA 85, 339–343 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, K. C. et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiao, X. G., Touma, M. & Wang, Y. Decoding the noncoding transcripts in human heart failure. Circulation 129, 958–960 (2014).

    Article  PubMed  Google Scholar 

  27. Li, Z. et al. LncExpDB: an expression database of human long non-coding RNAs. Nucleic Acids Res. 49, D962–D968 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Mas-Ponte, D. et al. LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23, 1080–1087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bridges, M. C., Daulagala, A. C. & Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol. 220, e202009045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carlevaro-Fita, J. & Johnson, R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol. Cell 73, 869–883 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Yu, B. & Shan, G. Functions of long noncoding RNAs in the nucleus. Nucleus 7, 155–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rashid, F., Shah, A. & Shan, G. Long non-coding RNAs in the cytoplasm. Genomics Proteom. Bioinforma. 14, 73–80 (2016).

    Article  CAS  Google Scholar 

  33. Olgun, G., Sahin, O. & Tastan, O. Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics 19, 650 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y. et al. Long non-coding RNA DSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma. Cell Death Dis. 9, 851 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gil, N. & Ulitsky, I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet. 21, 102–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, W., Liu, Y., Ma, H., Ren, Z. & Yan, J. Cis-acting: a pattern of lncRNAs for gene regulation in induced pluripotent stem cells from patients with Down syndrome determined by integrative analysis of lncRNA and mRNA profiling data. Exp. Ther. Med. 22, 701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan, P., Luo, S., Lu, J. Y. & Shen, X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr. Opin. Genet. Dev. 46, 170–178 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Anderson, K. M. et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539, 433–436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yotova, I. Y. et al. Identification of the human homolog of the imprinted mouse Air non-coding RNA. Genomics 92, 464–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Zwart, R., Sleutels, F., Wutz, A., Schinkel, A. H. & Barlow, D. P. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes. Dev. 15, 2361–2366 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santoro, F. et al. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 140, 1184–1195 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Hosen, M. R. et al. Airn regulates Igf2bp2 translation in cardiomyocytes. Circ. Res. 122, 1347–1353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L. et al. A heart-enriched antisense long non-coding RNA regulates the balance between cardiac and skeletal muscle triadin. Biochim. Biophys. Acta Mol. Cell Res. 1865, 247–258 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, Y. et al. Cardiomyocyte-specific long noncoding RNA regulates alternative splicing of the triadin gene in the heart. Circulation 146, 699–714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roux-Buisson, N. et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum. Mol. Genet. 21, 2759–2767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Altmann, H. M. et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the triadin knockout syndrome. Circulation 131, 2051–2060 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Y. et al. Long non-coding RNA CCRR controls cardiac conduction via regulating intercellular coupling. Nat. Commun. 9, 4176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sato, M. et al. The lncRNA Caren antagonizes heart failure by inactivating DNA damage response and activating mitochondrial biogenesis. Nat. Commun. 12, 2529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anderson, D. M. et al. A myocardin-adjacent lncRNA balances SRF-dependent gene transcription in the heart. Genes. Dev. 35, 835–840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vacante, F. et al. CARMN loss regulates smooth muscle cells and accelerates atherosclerosis in mice. Circ. Res. 128, 1258–1275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong, K. et al. CARMN is an evolutionarily conserved smooth muscle cell-specific LncRNA that maintains contractile phenotype by binding myocardin. Circulation 144, 1856–1875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ni, H. et al. A smooth muscle cell-enriched long noncoding RNA regulates cell plasticity and atherosclerosis by interacting with serum response factor. Arterioscler. Thromb. Vasc. Biol. 41, 2399–2416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lyu, Y. et al. Cpmer: a new conserved eEF1A2-binding partner that regulates Eomes translation and cardiomyocyte differentiation. Stem Cell Rep. 17, 1154–1169 (2022).

    Article  Google Scholar 

  55. Lv, L. et al. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol. Ther. Nucleic Acids 10, 387–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, J. et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler. Thromb. Vasc. Biol. 31, 368–375 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Huang, Z. P. et al. Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects. Arterioscler. Thromb. Vasc. Biol. 30, 2575–2586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurdi, M. & Booz, G. W. Carvedilol protects the infarcted heart by upregulating miR-133: first evidence that disease state affects β-adrenergic arrestin-biased signaling? J. Mol. Cell Cardiol. 76, 12–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Malizia, A. P. & Wang, D. Z. MicroRNAs in cardiomyocyte development. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 183–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Townley-Tilson, W. H., Callis, T. E. & Wang, D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol. 42, 1252–1255 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Viereck, J. et al. Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur. Heart J. 41, 3462–3474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reik, W. et al. Allelic methylation of H19 and IGF2 in the Beckwith–Wiedemann syndrome. Hum. Mol. Genet. 3, 1297–1301 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Miyoshi, N. et al. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver–Russell syndrome gene. Proc. Natl Acad. Sci. USA 95, 1102–1107 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, B. et al. Long noncoding RNA H19: a novel therapeutic target emerging in oncology via regulating oncogenic signaling pathways. Front. Cell Dev. Biol. 9, 796740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pagiatakis, C., Hall, I. F. & Condorelli, G. Long non-coding RNA H19: a new avenue for RNA therapeutics in cardiac hypertrophy? Eur. Heart J. 41, 3475–3476 (2020).

    Article  PubMed  Google Scholar 

  66. Fernandez-Ruiz, I. H19 in cardiac hypertrophy. Nat. Rev. Cardiol. 17, 612 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Omura, J. et al. Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation 142, 1464–1484 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, L. et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res. 111, 56–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Rigaud, V. O. C. et al. RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation 147, 324–337 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Keniry, A. et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 14, 659–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Y. et al. The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin. Nat. Cell Biol. 22, 1332–1345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ritso, M. & Rudnicki, M. A. H19 lncRNA to dystrophin’s rescue. Nat. Cell Biol. 22, 1289–1290 (2020).

    Article  PubMed  Google Scholar 

  73. Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377–1388 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, Y. et al. LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ. Res. 122, 1354–1368 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y. et al. Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci. Rep. 6, 22384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nelson, B. R. et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351, 271–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zou, B. et al. Knockdown of ZFAS1 improved the cardiac function of myocardial infarction rats via regulating Wnt/β-catenin signaling pathway. Aging 13, 12919–12928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thorenoor, N. et al. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget 7, 622–637 (2016).

    Article  PubMed  Google Scholar 

  79. Askarian-Amiri, M. E. et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17, 878–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ghafouri-Fard, S., Kamali, M. J., Abak, A., Shoorei, H. & Taheri, M. LncRNA ZFAS1: role in tumorigenesis and other diseases. Biomed. Pharmacother. 142, 111999 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Viereck, J. et al. Long noncoding RNA Chast promotes cardiac remodeling. Sci. Transl. Med. 8, 326ra322 (2016).

    Article  Google Scholar 

  82. Wang, Z. et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat. Med. 22, 1131–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Viereck, J. & Thum, T. Long noncoding RNAs in pathological cardiac remodeling. Circ. Res. 120, 262–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, S. et al. EZH2 dynamically associates with non-coding RNAs in mouse hearts after acute angiotensin II treatment. Front. Cardiovasc. Med. 8, 585691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003).

    Article  PubMed  Google Scholar 

  86. Arun, G., Aggarwal, D. & Spector, D. L. MALAT1 long non-coding RNA: functional implications. Noncoding RNA 6, 22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lorenzen, J. M. & Thum, T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat. Rev. Nephrol. 12, 360–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Gast, M. et al. Long noncoding RNA MALAT1-derived mascRNA is involved in cardiovascular innate immunity. J. Mol. Cell Biol. 8, 178–181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Michalik, K. M. et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 114, 1389–1397 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Thum, T. & Fiedler, J. LINCing MALAT1 and angiogenesis. Circ. Res. 114, 1366–1368 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Peters, T. et al. Long non-coding RNA Malat-1 is dispensable during pressure overload-induced cardiac remodeling and failure in mice. PLoS ONE 11, e0150236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sone, M. et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J. Cell Sci. 120, 2498–2506 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Ohnishi, Y. et al. Identification of 187 single nucleotide polymorphisms (SNPs) among 41 candidate genes for ischemic heart disease in the Japanese population. Hum. Genet. 106, 288–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Ishii, N. et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet. 51, 1087–1099 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Frade, A. F. et al. Myocardial infarction-associated transcript, a long noncoding RNA, is overexpressed during dilated cardiomyopathy due to chronic Chagas disease. J. Infect. Dis. 214, 161–165 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. de Gonzalo-Calvo, D. et al. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci. Rep. 6, 37354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang, L. et al. Ablation of lncRNA Miat attenuates pathological hypertrophy and heart failure. Theranostics 11, 7995–8007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bai, X. et al. LncRNA MIAT impairs cardiac contractile function by acting on mitochondrial translocator protein TSPO in a mouse model of myocardial infarction. Signal. Transduct. Target. Ther. 6, 172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aonuma, T. et al. MiR-150 attenuates maladaptive cardiac remodeling mediated by long noncoding RNA MIAT and directly represses profibrotic Hoxa4. Circ. Heart Fail. 15, e008686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fasolo, F. et al. Long noncoding RNA MIAT controls advanced atherosclerotic lesion formation and plaque destabilization. Circulation 144, 1567–1583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fasolo, F., Di Gregoli, K., Maegdefessel, L. & Johnson, J. L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res. 115, 1732–1756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Heidecker, B. et al. The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur. Heart J. 31, 1188–1196 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, Y. et al. The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem. Biophys. Res. Commun. 505, 807–815 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Xiao, L. et al. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J. Cell Physiol. 234, 13680–13692 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. van Putten, M. et al. Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice. FASEB J. 27, 2484–2495 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. van Putten, M. et al. Low dystrophin levels in heart can delay heart failure in mdx mice. J. Mol. Cell Cardiol. 69, 17–23 (2014).

    Article  PubMed  Google Scholar 

  108. Liu, S. J., Dang, H. X., Lim, D. A., Feng, F. Y. & Maher, C. A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer 21, 446–460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tan, W. L. et al. HOTAIR inhibited intracellular Ca2+ via regulation of Cav1.2 channel in human cardiomyocytes. Cell Mol. Biol. 61, 79–83 (2015).

    CAS  PubMed  Google Scholar 

  110. Lai, Y. et al. HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol. Cell Biochem. 432, 179–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Fei, Q. et al. Downregulation of hotair or LSD1 impaired heart regeneration in the neonatal mouse. DNA Cell Biol. 40, 1177–1184 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Weiss, A. & Leinwand, L. A. The mammalian myosin heavy chain gene family. Annu. Rev. Cell Dev. Biol. 12, 417–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Gorza, L. et al. Myosin types in the human heart. An immunofluorescence study of normal and hypertrophied atrial and ventricular myocardium. Circ. Res. 54, 694–702 (1984).

    Article  CAS  PubMed  Google Scholar 

  114. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  PubMed  Google Scholar 

  115. van Rooij, E. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17, 662–673 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Callis, T. E. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, J. & Wang, D. Z. An epigenetic “LINK(RNA)” to pathological cardiac hypertrophy. Cell Metab. 20, 555–557 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wang, Z. & Wang, Y. Dawn of the Epi-LncRNAs: new path from Myheart. Circ. Res. 116, 235–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lin, H. et al. Antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779. Circulation 143, 2277–2292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. He, M., Lin, H. & Liao, Y. Response by He et al. to letter regarding article, “antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779”. Circulation 144, e271–e272 (2021).

    Article  PubMed  Google Scholar 

  122. Wu, G., Gao, F. & Zhang, X. Letter by Wu et al. regarding article, “antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779”. Circulation 144, e270 (2021).

    Article  PubMed  Google Scholar 

  123. Lee, L. A., Broadwell, L. J., Buvoli, M. & Leinwand, L. A. Nonproductive splicing prevents expression of MYH7b protein in the mammalian heart. J. Am. Heart Assoc. 10, e020965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bell, M. L., Buvoli, M. & Leinwand, L. A. Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol. Cell Biol. 30, 1937–1945 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, J. et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol. Med. 8, 1212–1228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Broadwell, L. J. et al. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J. Biol. Chem. 296, 100694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ballarino, M. et al. Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol. Cell Biol. 35, 728–736 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ballarino, M. et al. Correction for Ballarino et al., “Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation”. Mol. Cell Biol. 38, e00167-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ballarino, M. et al. Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice. EMBO J. 37, e99697 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Desideri, F. et al. Intronic determinants coordinate charme lncRNA nuclear activity through the interaction with MATR3 and PTBP1. Cell Rep. 33, 108548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, F. et al. Long noncoding RNA Cfast regulates cardiac fibrosis. Mol. Ther. Nucleic Acids 23, 377–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Huang, Z. P. et al. Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovasc. Res. 112, 543–554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wiesel, P., Mazzolai, L., Nussberger, J. & Pedrazzini, T. Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension 29, 1025–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Micheletti, R. et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl. Med. 9, eaai9118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Uchida, S. Besides imprinting: meg3 regulates cardiac remodeling in cardiac hypertrophy. Circ. Res. 121, 486–487 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Piccoli, M. T. et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res. 121, 575–583 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Li, T. H. et al. Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury. Neural Regen. Res. 17, 824–831 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Vangoor, V. R., Gomes-Duarte, A. & Pasterkamp, R. J. Long non-coding RNAs in motor neuron development and disease. J. Neurochem. 156, 777–801 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Uroda, T. et al. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol. Cell 75, 982–995.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liang, H. et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d. Theranostics 8, 1180–1194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leisegang, M. S. LET’s sponge: how the lncRNA PFL promotes cardiac fibrosis. Theranostics 8, 874–877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mackowiak, S. D. et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 16, 179 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bi, P. et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science 356, 323–327 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Makarewich, C. A. et al. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife 7, e38319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Firat, H. et al. FIMICS: a panel of long noncoding RNAs for cardiovascular conditions. Heliyon 9, e13087 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schulte, C. et al. Comparative analysis of circulating noncoding RNAs versus protein biomarkers in the detection of myocardial injury. Circ. Res. 125, 328–340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Haemmig, S. & Feinberg, M. W. Targeting LncRNAs in cardiovascular disease: options and expeditions. Circ. Res. 120, 620–623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo, C., Ma, X., Gao, F. & Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 11, 1143157 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dai, W. & Lee, D. Interfering with long chain noncoding RNA ANRIL expression reduces heart failure in rats with diabetes by inhibiting myocardial oxidative stress. J. Cell Biochem. 120, 18446–18456 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Qian, Y. et al. A long noncoding RNA CHAIR protects the heart from pathological stress. Clin. Sci. 134, 1843–1857 (2020).

    Article  CAS  Google Scholar 

  152. Dorn, G. W.II & Matkovich, S. J. Ménage à trois: intimate relationship among a microRNA, long noncoding RNA, and mRNA. Circ. Res. 114, 1362–1365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gong, L., Zhu, L. & Yang, T. Fendrr involves in the pathogenesis of cardiac fibrosis via regulating miR-106b/SMAD3 axis. Biochem. Biophys. Res. Commun. 524, 169–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Song, C. et al. Inhibition of lncRNA Gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ULK1 axis in mice. Mol. Ther. 29, 1120–1137 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Bischoff, F. C. et al. Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ. Res. 121, 368–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Cooke, J. P. & Leeper, N. J. A missing LNC in vascular diseases. Circ. Res. 121, 320–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cai, B. et al. Long noncoding RNA-DACH1 (dachshund homolog 1) regulates cardiac function by inhibiting SERCA2a (sarcoplasmic reticulum calcium ATPase 2a). Hypertension 74, 833–842 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Li, H. et al. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation 145, 1218–1233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Makarewich, C. A. & Thum, T. Exercise-induced long noncoding RNAs as new players in cardiac hypertrophy. Circulation 145, 1234–1237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, J. et al. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep. 9, 460 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hoepfner, J. et al. The long non-coding RNA NRON promotes the development of cardiac hypertrophy in the murine heart. Mol. Ther. 30, 1265–1274 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Li, B. et al. Sirt1 antisense long noncoding RNA promotes cardiomyocyte proliferation by enhancing the stability of sirt1. J. Am. Heart Assoc. 7, e009700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yu, J. et al. Long noncoding RNA Ahit protects against cardiac hypertrophy through SUZ12 (suppressor of zeste 12 protein homolog)-mediated downregulation of MEF2A (myocyte enhancer factor 2A). Circ. Heart Fail. 13, e006525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, M. et al. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J. Cell Mol. Med. 23, 7685–7698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gao, R. et al. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144, 303–317 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Larrasa-Alonso, J. et al. The SRSF4-GAS5-glucocorticoid receptor axis regulates ventricular hypertrophy. Circ. Res. 129, 669–683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Matkovich, S. J. A balancing act in cardiac hypertrophy. Cardiovasc. Res. 111, 8–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, X. et al. Overexpression of cytosolic long noncoding RNA cytb protects against pressure-overload-induced heart failure via sponging microRNA-103-3p. Mol. Ther. Nucleic Acids 27, 1127–1145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xu, Y., Luo, Y., Liang, C. & Zhang, T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J. Mol. Cell Cardiol. 139, 47–61 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Zhuang, A. et al. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience 24, 102537 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fan, J. et al. LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ. Res. 128, 1708–1723 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Li, X. et al. Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc. Res. 114, 1642–1655 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Meloni, M., Riley, P. R. & Baker, A. H. A new “lnc” between non-coding RNA and cardiac regeneration. Cardiovasc. Res. 114, 1569–1570 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Wang, K. et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat. Commun. 6, 6779 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Liu, C. Y. et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat. Commun. 9, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ounzain, S. et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell Cardiol. 89, 98–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Chen, G. et al. Loss of long non-coding RNA CRRL promotes cardiomyocyte regeneration and improves cardiac repair by functioning as a competing endogenous RNA. J. Mol. Cell Cardiol. 122, 152–164 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Chen, Y. et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol. Ther. 27, 29–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Wu, H. et al. Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther. 25, 511–523 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Vausort, M., Wagner, D. R. & Devaux, Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ. Res. 115, 668–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Greco, S. et al. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res. 113, 453–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Kontaraki, J. E. et al. The long non-coding RNAs MHRT, FENDRR and CARMEN, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy. Clin. Exp. Pharmacol. Physiol. 45, 1213–1217 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Martens, L. et al. A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy. RNA Biol. 18, 409–415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gomez, J. et al. Genetic variation at the long noncoding RNA H19 gene is associated with the risk of hypertrophic cardiomyopathy. Epigenomics 10, 865–873 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, Z. et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep. 7, 7491 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Greco, S. et al. Long noncoding RNA dysregulation in ischemic heart failure. J. Transl. Med. 14, 183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Boeckel, J. N. et al. Identification and regulation of the long non-coding RNA Heat2 in heart failure. J. Mol. Cell Cardiol. 126, 13–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Meessen, J. et al. LIPCAR is increased in chronic symptomatic HF patients. a sub-study of the GISSI-HF trial. Clin. Chem. 67, 1721–1731 (2021).

    Article  PubMed  Google Scholar 

  189. Yan, L. et al. Circulating LIPCAR is a potential biomarker of heart failure in patients post-acute myocardial infarction. Exp. Biol. Med. 246, 2589–2594 (2021).

    Article  CAS  Google Scholar 

  190. Santer, L. et al. Circulating long noncoding RNA LIPCAR predicts heart failure outcomes in patients without chronic kidney disease. Hypertension 73, 820–828 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Kumarswamy, R. et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res. 114, 1569–1575 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Dorn, G. W. II LIPCAR: a mitochondrial lnc in the noncoding RNA chain? Circ. Res. 114, 1548–1550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Liu, N. et al. LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Basic. Res. Cardiol. 116, 48 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang, X. et al. Circulating long non-coding RNA ENST00000507296 is a prognostic indicator in patients with dilated cardiomyopathy. Mol. Ther. Nucleic Acids 16, 82–90 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang, L., Wu, Y. J. & Zhang, S. L. Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J. Geriatr. Cardiol. 16, 818–821 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Xuan, L. et al. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J. Cell Mol. Med. 21, 1803–1814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang, H., Zhang, N., Jiang, W. & Lun, X. Clinical significance of the long non-coding RNA NEAT1/miR-129-5p axis in the diagnosis and prognosis for patients with chronic heart failure. Exp. Ther. Med. 21, 512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yan, L., Zhang, Y., Zhang, W., Deng, S. Q. & Ge, Z. R. lncRNA-NRF is a potential biomarker of heart failure after acute myocardial infarction. J. Cardiovasc. Transl. Res. 13, 1008–1015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Gutierrez-Ford, C. et al. Characterization of tescalcin, a novel EF-hand protein with a single Ca2+-binding site: metal-binding properties, localization in tissues and cells, and effect on calcineurin. Biochemistry 42, 14553–14565 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Rockman, H. A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 88, 8277–8281 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. De Villiers, C. & Riley, P. R. Mouse models of myocardial infarction: comparing permanent ligation and ischaemia-reperfusion. Dis. Model. Mech. 13, dmm046565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lara-Pezzi, E. Understanding cardiac physiological hypertrophy in a LncRNA way. J. Cardiovasc. Transl. Res. 15, 3–4 (2022).

    Article  PubMed  Google Scholar 

  203. Han, P. & Chang, C. P. Myheart hits the core of chromatin. Cell Cycle 14, 787–788 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.-Z.W. is funded by National Institutes of Health R01HL168900, R01HL165794, R01HL149401, R01HL141853 and R01HL133216, and Additional Ventures, Single Ventricle Research Award #1014383.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Da-Zhi Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Gianluigi Condorelli, Yvan Devaux and Thomas Thum for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mably, J.D., Wang, DZ. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol 21, 326–345 (2024). https://doi.org/10.1038/s41569-023-00952-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00952-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing