Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Saphenous vein grafts in contemporary coronary artery bypass graft surgery

Abstract

Myocardial ischaemia resulting from obstructive coronary artery disease is a major cause of morbidity and mortality in the developed world. Coronary artery bypass graft (CABG) surgery is the gold-standard treatment in many patients with complex multivessel coronary artery disease or left main disease. Despite substantial improvements in the outcome of patients undergoing CABG surgery in the past decade, graft patency remains the ‘Achilles’ heel’ of this procedure. Whereas the use of the left internal mammary artery as a conduit is associated with the highest 10-year patency rate (>90%), saphenous vein grafts — the most commonly used conduit in CABG surgery — fail in 40−50% of treated patients by 10 years after surgery. Vein graft disease (VGD) and failure result from complex pathophysiological processes that can lead to complete occlusion of the graft, affecting long-term clinical outcomes. Optimal harvesting techniques, intraoperative preservation strategies and intraoperative patency control have important roles in the prevention of VGD. In addition, several studies published in the past decade have reported similar mid-term patency rates between vein grafts and arterial grafts when veins are used as a composite graft based on the internal mammary artery. In this Review, we present the latest evidence on the utilization of saphenous vein grafts for CABG surgery and provide an overview of the current practices for the prevention of VGD and vein graft failure.

Key points

  • Saphenous vein grafts (SVGs) are the most frequently used conduits for coronary artery bypass graft (CABG) surgery but are associated with 10-year vein graft failure (VGF) rates of 40−50%.

  • Endothelial damage attributable to mechanical harm and ischaemia–reperfusion injury contribute to the development of vein graft damage (VGD) and VGF, which are mediated by thrombosis, intimal hyperplasia and atherosclerosis in the early, intermediate and late phases, respectively.

  • Prevention of VGD and VGF requires a meticulous harvesting strategy (either open, no-touch or endoscopic) to reduce surgical trauma and avoid excessive handling and distension.

  • Optimized intraoperative preservation of SVGs to maintain normal endothelial function and integrity of the SVG during harvest can reduce the occurrence of VGD and VGF.

  • Traditional intraoperative preservation solutions, such as saline or autologous whole blood, cannot sufficiently preserve the endothelium and might even be harmful to SVGs.

  • Intraoperative graft flow assessment is important in identifying grafts that have initial low flow and can provide an opportunity to correct the issue intraoperatively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones in the evolution of CABG surgery.
Fig. 2: Different configurations of SVGs with a LIMA graft.

Similar content being viewed by others

References

  1. Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    PubMed Central  PubMed  Google Scholar 

  2. Riley, R. F., Don, C. W., Powell, W., Maynard, C. & Dean, L. S. Trends in coronary revascularization in the United States from 2001 to 2009: recent declines in percutaneous coronary intervention volumes. Circ. Cardiovasc. Qual. Outcomes 4, 193–197 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fihn, S. D. et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 64, 1929–1949 (2014).

    Article  PubMed  Google Scholar 

  4. Neumann, F. J. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).

  5. Arsalan, M. & Mack, M. J. Coronary artery bypass grafting is currently underutilized. Circulation 133, 1036–1045 (2016).

    Article  PubMed  Google Scholar 

  6. Carrel, A. VIII. On the experimental surgery of the thoracic aorta and heart. Ann. Surg. 52, 83–95 (1910).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sones, F. M. Jr. & Shirey, E. K. Cine coronary arteriography. Mod. Concepts Cardiovasc. Dis. 31, 735–738 (1962).

    PubMed  Google Scholar 

  8. Vineberg, A. M. Development of an anastomosis between the coronary vessels and a transplanted internal mammary artery. Can. Med. Assoc. J. 55, 117–119 (1946).

    PubMed Central  PubMed  Google Scholar 

  9. Murray, G., Porcheron, R., Hilario, J. & Roschlau, W. Anastomosis of systemic artery to the coronary. Can. Med. Assoc. J. 71, 594–597 (1954).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Goetz, R. H., Rohman, M., Haller, J. D., Dee, R. & Rosenak, S. S. Internal mammary-coronary artery anastomosis. A nonsuture method employing tantalum rings. J. Thorac. Cardiovasc. Surg. 41, 378–386 (1961).

    Article  CAS  PubMed  Google Scholar 

  11. Murray, G., Hilario, J., Porcheron, R. & Roschlau, W. Surgery of coronary heart disease. Angiology 4, 526–531 (1953).

    Article  CAS  PubMed  Google Scholar 

  12. Sabiston, D. C., Jr. The William F. Rienhoff, Jr. lecture. The coronary circulation. Johns Hopkins Med. J. 134, 314–329 (1974).

    PubMed  Google Scholar 

  13. Olearchyk, A. S. Vasili I. Kolesov. A pioneer of coronary revascularization by internal mammary-coronary artery grafting. J. Thorac. Cardiovasc. Surg. 96, 13–18 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Kolesov, V. I. & Potashov, L. V. [Surgery of coronary arteries]. Eksp. Khir. Anesteziol. 10, 3–8 (1965).

    CAS  PubMed  Google Scholar 

  15. Kolessov, V. I. Mammary artery-coronary artery anastomosis as method of treatment for angina pectoris. J. Thorac. Cardiovasc. Surg. 54, 535–544 (1967).

    Article  CAS  PubMed  Google Scholar 

  16. Favaloro, R. G. Saphenous vein autograft replacement of severe segmental coronary artery occlusion: operative technique. Ann. Thorac. Surg. 5, 334–339 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. Favaloro, R. G., Effler, D. B., Groves, L. K., Fergusson, D. J. & Lozada, J. S. Double internal mammary artery-myocardial implantation. Clinical evaluation of results in 150 patients. Circulation 37, 549–555 (1968).

    Article  CAS  PubMed  Google Scholar 

  18. Favaloro, R. G. Critical analysis of coronary artery bypass graft surgery: a 30-year journey. J. Am. Coll. Cardiol. 31, 1b–63b (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Buffolo, E., Andrade, J. C., Succi, J., Leao, L. E. & Gallucci, C. Direct myocardial revascularization without cardiopulmonary bypass. Thorac. Cardiovasc. Surg. 33, 26–29 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Benetti, F. J. Direct coronary surgery with saphenous vein bypass without either cardiopulmonary bypass or cardiac arrest. J. Cardiovasc. Surg. 26, 217–222 (1985).

    CAS  Google Scholar 

  21. Borst, C. et al. Coronary artery bypass grafting without cardiopulmonary bypass and without interruption of native coronary flow using a novel anastomosis site restraining device (“Octopus”). J. Am. Coll. Cardiol. 27, 1356–1364 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Benetti, F. J., Naselli, G., Wood, M. & Geffner, L. Direct myocardial revascularization without extracorporeal circulation. Experience in 700 patients. Chest 100, 312–316 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Holzhey, D. M. et al. Seven-year follow-up after minimally invasive direct coronary artery bypass: experience with more than 1300 patients. Ann. Thorac. Surg. 83, 108–114 (2007).

    Article  PubMed  Google Scholar 

  24. Calafiore, A. M. et al. Left anterior descending coronary artery grafting via left anterior small thoracotomy without cardiopulmonary bypass. Ann. Thorac. Surg. 61, 1658–1663; discussion 1664-1655 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Srivastava, S., Barrera, R. & Quismundo, S. One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion. Ann. Thorac. Surg. 94, 1463–1468 (2012).

    Article  PubMed  Google Scholar 

  26. Authors/Task Force members. et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 35, 2541–2619 (2014).

    Article  CAS  Google Scholar 

  27. Hillis, L. D. et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124, e652–e735 (2011).

    PubMed  Google Scholar 

  28. Aldea, G. S. et al. The Society of Thoracic Surgeons Clinical practice guidelines on arterial conduits for coronary artery bypass grafting. Ann. Thorac. Surg. 101, 801–809 (2016).

    Article  PubMed  Google Scholar 

  29. Gaudino, M. et al. Radial artery as a coronary artery bypass conduit: 20-year results. J. Am. Coll. Cardiol. 68, 603–610 (2016).

    Article  PubMed  Google Scholar 

  30. Muneretto, C. et al. Total arterial myocardial revascularization with composite grafts improves results of coronary surgery in elderly: a prospective randomized comparison with conventional coronary artery bypass surgery. Circulation 108, II29–II33 (2003).

    Article  PubMed  Google Scholar 

  31. Ruttmann, E. et al. Second internal thoracic artery versus radial artery in coronary artery bypass grafting: a long-term, propensity score-matched follow-up study. Circulation 124, 1321–1329 (2011).

    Article  PubMed  Google Scholar 

  32. Head, S. J. et al. Coronary artery bypass grafting: part 2 – optimizing outcomes and future prospects. Eur. Heart J. 34, 2873–2886 (2013).

    Article  PubMed  Google Scholar 

  33. Taggart, D. P. ART – randomised comparison of bilateral versus single internal thoracic coronary artery bypass graft surgery: effects on mortality at ten years follow-up in the Arterial Revascularisation Trial (ART) (FP no. 2320). Presented at the ESC Congress 2018, (2018).

  34. Taggart, D. P. et al. Randomized trial of bilateral versus single internal-thoracic-artery grafts. N. Engl. J. Med. 375, 2540–2549 (2016).

    Article  PubMed  Google Scholar 

  35. Benedetto, U. et al. Pedicled and skeletonized single and bilateral internal thoracic artery grafts and the incidence of sternal wound complications: insights from the arterial revascularization trial. J. Thorac. Cardiovasc. Surg. 152, 270–276 (2016).

    Article  PubMed  Google Scholar 

  36. D’Agostino, R. S. et al. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2018 update on outcomes and quality. Ann. Thorac. Surg. 105, 15–23 (2018).

    Article  PubMed  Google Scholar 

  37. Falk, V. Coronary bypass grafting with bilateral internal thoracic arteries. Heart 99, 821 (2013).

    Article  PubMed  Google Scholar 

  38. Schwann, T. A. et al. Operative outcomes of multiple-arterial versus single-arterial coronary bypass grafting. Ann. Thorac. Surg. 105, 1109–1119 (2018).

    Article  PubMed  Google Scholar 

  39. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03217006. (2019).

  40. Hess, C. N. et al. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation 130, 1445–1451 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  41. Fitzgibbon, G. M. et al. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J. Am. Coll. Cardiol. 28, 616–626 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Goldman, S. et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs cooperative study. J. Am. Coll. Cardiol. 44, 2149–2156 (2004).

    Article  PubMed  Google Scholar 

  43. Motwani, J. G. & Topol, E. J. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 97, 916–931 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Parang, P. & Arora, R. Coronary vein graft disease: pathogenesis and prevention. Can. J. Cardiol. 25, e57–e62 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  45. Gaudino, M. F. L., Spadaccio, C. & Taggart, D. P. State-of-the-art coronary artery bypass grafting: patient selection, graft selection, and optimizing outcomes. Interv. Cardiol. Clin. 8, 173–198 (2019).

    PubMed  Google Scholar 

  46. Deo, S. V. et al. Bilateral internal thoracic artery harvest and deep sternal wound infection in diabetic patients. Ann. Thorac. Surg. 95, 862–869 (2013).

    Article  PubMed  Google Scholar 

  47. de Vries, M. R., Simons, K. H., Jukema, J. W., Braun, J. & Quax, P. H. Vein graft failure: from pathophysiology to clinical outcomes. Nat. Rev. Cardiol. 13, 451–470 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Harskamp, R. E., Lopes, R. D., Baisden, C. E., de Winter, R. J. & Alexander, J. H. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann. Surg. 257, 824–833 (2013).

    Article  PubMed  Google Scholar 

  49. Cheung-Flynn, J. et al. Limiting injury during saphenous vein graft preparation for coronary arterial bypass prevents metabolic decompensation. Sci. Rep. 7, 14179 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Osgood, M. J. et al. Surgical vein graft preparation promotes cellular dysfunction, oxidative stress, and intimal hyperplasia in human saphenous vein. J. Vasc. Surg. 60, 202–211 (2014).

    Article  PubMed  Google Scholar 

  51. Jeremy, J. Y., Rowe, D., Emsley, A. M. & Newby, A. C. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc. Res. 43, 580–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Owens, C. D. Adaptive changes in autogenous vein grafts for arterial reconstruction: clinical implications. J. Vasc. Surg. 51, 736–746 (2010).

    Article  PubMed  Google Scholar 

  53. Muto, A., Model, L., Ziegler, K., Eghbalieh, S. D. D. & Dardik, A. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies. Circ. J. 74, 1501–1512 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sugimoto, M., Yamanouchi, D. & Komori, K. Therapeutic approach against intimal hyperplasia of vein grafts through endothelial nitric oxide synthase/nitric oxide (eNOS/NO) and the Rho/Rho-kinase pathway. Surg. Today 39, 459–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Weaver, H., Shukla, N., Ellinsworth, D. & Jeremy, J. Y. Oxidative stress and vein graft failure: a focus on NADH oxidase, nitric oxide and eicosanoids. Curr. Opin. Pharmacol. 12, 160–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Moreno, K. et al. Circulating inflammatory cells are associated with vein graft stenosis. J. Vasc. Surg. 54, 1124–1130 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wezel, A. et al. Complement factor C5a induces atherosclerotic plaque disruptions. J. Cell. Mol. Med. 18, 2020–2030 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Yazdani, S. K. et al. Pathology of drug-eluting versus bare metal stents in saphenous vein bypass graft lesions. JACC. Cardiovasc. interv. 5, 666–674 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Yahagi, K. et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat. Rev. Cardiol. 13, 79 (2015).

    Google Scholar 

  60. Brown, E. N. et al. Thinking inside the graft: applications of optical coherence tomography in coronary artery bypass grafting. J. Biomed. Opt. 12, 051704 (2007).

    Article  PubMed  Google Scholar 

  61. Burris, N. S. et al. Optical coherence tomography imaging as a quality assurance tool for evaluating endoscopic harvest of the radial artery. Ann. Thorac. Surg. 85, 1271–1277 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kiani, S. et al. Endoscopic venous harvesting by inexperienced operators compromises venous graft remodeling. Ann. Thorac. Surg. 93, 11–18 (2012).

    Article  PubMed  Google Scholar 

  63. Perrault, L. P. et al. Techniques, complications, and pitfalls of endoscopic saphenectomy for coronary artery bypass grafting surgery. J. Card. Surg. 20, 393–402 (2005).

    Article  PubMed  Google Scholar 

  64. Allen, K. et al. Endoscopic vascular harvest in coronary artery bypass grafting surgery: a consensus statement of the International Society of Minimally Invasive Cardiothoracic Surgery (ISMICS) 2005. Innovations 1, 51–60 (2005).

    Article  PubMed  Google Scholar 

  65. Williams, J. B. et al. Association between endoscopic vs open vein-graft harvesting and mortality, wound complications, and cardiovascular events in patients undergoing CABG surgery. JAMA 308, 475–484 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lumsden, A. B., Eaves, F. F., Ofenloch, J. C. & Jordan, W. D. Subcutaneous, video-assisted saphenous vein harvest: report of the first 30 cases. Cardiovasc. Surg. 4, 771–776 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Dacey, L. J. Endoscopic vein-graft harvest is safe for CABG surgery. JAMA 308, 512–513 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Cadwallader, R. A. et al. Great saphenous vein harvesting: a systematic review and meta-analysis of open versus endoscopic techniques. Vasc. Endovasc. Surg. 43, 561–566 (2009).

    Article  Google Scholar 

  69. Lopes, R. D. et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. New Engl. J. Med. 361, 235–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Zenati, M. A. et al. Impact of endoscopic versus open saphenous vein harvest technique on late coronary artery bypass grafting patient outcomes in the ROOBY (Randomized On/Off Bypass) Trial. J. Thorac. Cardiovasc. Surg. 141, 338–344 (2011).

    Article  PubMed  Google Scholar 

  71. Dacey, L. J. et al. Long-term outcomes of endoscopic vein harvesting after coronary artery bypass grafting. Circulation 123, 147–153 (2011).

    Article  PubMed  Google Scholar 

  72. Deppe, A. C. et al. Endoscopic vein harvesting for coronary artery bypass grafting: a systematic review with meta-analysis of 27,789 patients. J. Surg. Res. 180, 114–124 (2013).

    Article  PubMed  Google Scholar 

  73. Grant, S. W. et al. What is the impact of endoscopic vein harvesting on clinical outcomes following coronary artery bypass graft surgery? Heart 98, 60–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Sastry, P. et al. The influence of endoscopic vein harvesting on outcomes after coronary bypass grafting: a meta-analysis of 267 525 patients. Eur. J. Cardiothorac. Surg. 44, 980–989 (2013).

    Article  PubMed  Google Scholar 

  75. Zenati, M. A. et al. Randomized trial of endoscopic or open vein-graft harvesting for coronary-artery bypass. N. Engl. J. Med. 380, 132–141 (2019).

    Article  PubMed  Google Scholar 

  76. Johansson, B. L. et al. Slower progression of atherosclerosis in vein grafts harvested with ‘no touch’ technique compared with conventional harvesting technique in coronary artery bypass grafting: an angiographic and intravascular ultrasound study. Eur. J. Cardiothorac. Surg. 38, 414–419 (2010).

    Article  PubMed  Google Scholar 

  77. Samano, N. et al. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: a randomized trial. J. Thorac. Cardiovasc. Surg. 150, 880–888 (2015).

    Article  PubMed  Google Scholar 

  78. Angelini, G. D., Passani, S. L., Breckenridge, I. M. & Newby, A. C. Nature and pressure dependence of damage induced by distension of human saphenous vein coronary artery bypass grafts. Cardiovasc. Res. 21, 902–907 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Kennedy, J. H., Lever, M. J., Addis, B. J. & Paneth, M. Changes in vein interstitium following distension for aortocoronary bypass. J. Cardiovasc. Surg. 30, 992–995 (1989).

    CAS  Google Scholar 

  80. Chung, A. W. et al. Pressure distention compared with pharmacologic relaxation in vein grafting upregulates matrix metalloproteinase-2 and -9. J. Vasc. Surg. 42, 747–756 (2005).

    Article  PubMed  Google Scholar 

  81. Souza, D. A new no-touch preparation technique: technical notes. Scand. J. Thorac. Cardiovasc. Surg. 30, 41–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Deb, S. et al. SUPERIOR SVG: no touch saphenous harvesting to improve patency following coronary bypass grafting (a multi-centre randomized control trial, NCT01047449). J. Cardiothorac. Surg. 14, 85 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Perrault, L. P. et al. Early quantitative coronary angiography of saphenous vein grafts for coronary artery bypass grafting harvested by means of open versus endoscopic saphenectomy: a prospective randomized trial. J. Thorac. Cardiovasc. Surg. 127, 1402–1407 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Yun, K. L. et al. Randomized trial of endoscopic versus open vein harvest for coronary artery bypass grafting: six-month patency rates. J. Thorac. Cardiovasc. Surg. 129, 496–503 (2005).

    Article  PubMed  Google Scholar 

  85. Favaloro, R. G. Saphenous vein graft in the surgical treatment of coronary artery disease. Operative technique. J. Thorac. Cardiovasc. Surg. 58, 178–185 (1969).

    Article  CAS  PubMed  Google Scholar 

  86. Garrett, H., Dennis, E. W. & DeBakey, M. E. Aortocoronary bypass with saphenous vein graft: seven-year follow-up. JAMA 223, 792–794 (1973).

    Article  CAS  PubMed  Google Scholar 

  87. Mueller, R. L., Rosengart, T. K. & Isom, O. W. The history of surgery for ischemic heart disease. Ann. Thorac. Surg. 63, 869–878 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Gundry, S. R., Jones, M., Ishihara, T. & Ferrans, V. J. Optimal preparation techniques for human saphenous vein grafts. Surgery 88, 785–794 (1980).

    CAS  PubMed  Google Scholar 

  89. Lawrie, G. M., Weilbacher, D. E. & Henry, P. D. Endothelium-dependent relaxation in human saphenous vein grafts. Effects of preparation and clinicopathologic correlations. J. Thorac. Cardiovasc. Surg. 100, 612–620 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Lamm, P., Juchem, G., Milz, S. & Reichart, B. Continuous graft perfusion: optimizing the quality of saphenous vein grafts. Heart Surg. Forum 5, S355–S361 (2002).

    PubMed  Google Scholar 

  91. Zerkowski, H. R. et al. Endothelial damage of the venous graft in CABG. Influence of solutions used for storage and rinsing on endothelial function. Eur. J. Cardiothorac. Surg. 7, 376–382 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Wilbring, M. et al. Heparinized blood better preserves cellular energy charge and vascular functions of intraoperatively stored saphenous vein grafts in comparison to isotonic sodium-chloride-solution. Clin. Hemorheol. Microcirc. 55, 445–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Catinella, F. P. et al. The factors influencing early patency of coronary artery bypass vein grafts: correlation of angiographic and ultrastructural findings. J. Thorac. Cardiovasc. Surg. 83, 686–700 (1982).

    Article  CAS  PubMed  Google Scholar 

  94. Santoli, E. et al. University of Wisconsin solution and human saphenous vein graft preservation: preliminary anatomic report. Eur. J. Cardiothorac. Surg. 7, 548–552 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Chester, A. H., O’Neil, G. S., Tadjakarimi, S., Borland, J. A. & Yacoub, M. H. Effect of peri-operative storage solution on the vascular reactivity of the human saphenous vein. Eur. J. Cardiothorac. Surg. 7, 399–404 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Winkler, B. et al. Graft preservation solutions in cardiovascular surgery. Interact. Cardiovasc. Thorac. Surg. 23, 300–309 (2016).

    Article  PubMed  Google Scholar 

  97. Baumann, F. G., Catinella, F. P., Cunningham, J. N. Jr. & Spencer, F. C. Vein contraction and smooth muscle cell extensions as causes of endothelial damage during graft preparation. Ann. Surg. 194, 199–211 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Rizoli, S. PlasmaLyte. J. Trauma 70, S17–S18 (2011).

    CAS  PubMed  Google Scholar 

  99. Cavallari, N. et al. Functional and morphological evaluation of canine veins following preservation in different storage media. J. Surg. Res. 68, 106–115 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Hickethier, T., Dammrich, J., Silber, R. E., Finster, S. & Elert, O. Ultrastructural investigations for reducing endothelial cell damage of vein grafts during CABG-operation and practical consequences. J. Cardiovasc. Surg. 40, 71–76 (1999).

    CAS  Google Scholar 

  101. Roubos, N., Rosenfeldt, F. L., Richards, S. M., Conyers, R. A. & Davis, B. B. Improved preservation of saphenous vein grafts by the use of glyceryl trinitrate-verapamil solution during harvesting. Circulation 92, II31–II36 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Wilbring, M. et al. Even short-time storage in physiological saline solution impairs endothelial vascular function of saphenous vein grafts. Eur. J. Cardiothorac. Surg. 40, 811–815 (2011).

    PubMed  Google Scholar 

  103. Wille, T., de Groot, H. & Rauen, U. Improvement of the cold storage of blood vessels with a vascular preservation solution. Study in porcine aortic segments. J. Vasc. Surg. 47, 422–431 (2008).

    Article  PubMed  Google Scholar 

  104. Zatschler, B. et al. Improved vessel preservation after 4 days of cold storage: experimental study in rat arteries. J. Vasc. Surg. 50, 397–406 (2009).

    Article  PubMed  Google Scholar 

  105. Veres, G. et al. TiProtec preserves endothelial function in a rat model. J. Surg. Res. 200, 346–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Wilbring, M. et al. Preservation of endothelial vascular function of saphenous vein grafts after long-time storage with a recently developed potassium-chloride and N-acetylhistidine enriched storage solution. Thorac. Cardiovasc. Surg. 61, 656–662 (2013).

    PubMed  Google Scholar 

  107. Alexander, J. H. et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 294, 2446–2454 (2005).

    Article  PubMed  Google Scholar 

  108. Harskamp, R. E. et al. Vein graft preservation solutions, patency, and outcomes after coronary artery bypass graft surgery: follow-up from the PREVENT IV randomized clinical trial. JAMA Surg. 149, 798–805 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  109. Thatte, H. S. et al. Multi-photon microscopic evaluation of saphenous vein endothelium and its preservation with a new solution, GALA. Ann. Thorac. Surg. 75, 1145–1152 (2003).

    Article  PubMed  Google Scholar 

  110. Haime, M. et al. Relationship between intra-operative vein graft treatment with DuraGraft® or saline and clinical outcomes after coronary artery bypass grafting. Expert Rev. Cardiovasc. Ther. 16, 963–970 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Ben Ali, W. et al. DuraGraft vascular conduit preservation solution in patients undergoing coronary artery bypass grafting: rationale and design of a within-patient randomised multicentre trial. Open Heart 5, e000780 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02272582 (2018).

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02774824 (2018).

  114. Emmert, M. et al. TCT-284 DuraGraft, a one-time intraoperative treatment against vein graft failure: a randomized multicenter trial using longitudinal MDCT angiography analysis in patients undergoing CABG. J. Am. Coll. Cardiol. 70, B116–B117 (2017).

    Article  Google Scholar 

  115. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02922088 (2018).

  116. Calafiore, A. M. et al. Bilateral internal thoracic artery grafting: long-term clinical and angiographic results of in situ versus Y grafts. J. Thorac. Cardiovasc. Surg. 120, 990–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Hwang, H. Y., Cho, K. R. & Kim, K.-B. Equivalency of right internal thoracic artery and right gastroepiploic artery composite grafts: five-year outcomes. Ann. Thorac. Surg. 96, 2061–2068 (2013).

    Article  PubMed  Google Scholar 

  118. Gaudino, M. et al. Composite Y internal thoracic artery-saphenous vein grafts: short-term angiographic results and vasoreactive profile. J. Thorac. Cardiovasc. Surg. 127, 1139–1144 (2004).

    Article  PubMed  Google Scholar 

  119. Glineur, D. et al. Comparison of fractional flow reserve of composite Y-grafts with saphenous vein or right internal thoracic arteries. J. Thorac. Cardiovasc. Surg. 140, 639–645 (2010).

    Article  PubMed  Google Scholar 

  120. Hwang, H. Y., Lee, K. H., Han, J. W. & Kim, K. B. Equivalency of saphenous vein and arterial composite grafts: 5-year angiography and midterm clinical follow-up. Ann. Thorac. Surg. 102, 580–588 (2016).

    Article  PubMed  Google Scholar 

  121. Kim, M.-S. et al. Saphenous vein versus right internal thoracic artery as a Y-composite graft: five-year angiographic and clinical results of a randomized trial. J. Thorac. Cardiovasc. Surg. 156, 1424–1433.e1421 (2018).

    Article  PubMed  Google Scholar 

  122. Kim, Y. H., Oh, H. C., Choi, J. W., Hwang, H. Y. & Kim, K. B. No-touch saphenous vein harvesting may improve further the patency of saphenous vein composite grafts: early outcomes and 1-year angiographic results. Ann. Thorac. Surg. 103, 1489–1497 (2017).

    Article  PubMed  Google Scholar 

  123. Kieser, T. M., Rose, S., Kowalewski, R. & Belenkie, I. Transit-time flow predicts outcomes in coronary artery bypass graft patients: a series of 1000 consecutive arterial grafts. Eur. J. Cardiothorac. Surg. 38, 155–162 (2010).

    Article  PubMed  Google Scholar 

  124. Kieser, T. M. Graft quality verification in coronary artery bypass graft surgery: how, when and why? Curr. Opin. Cardiol. 32, 722–736 (2017).

    Article  PubMed  Google Scholar 

  125. Wolf, R. K. & Falk, V. Intraoperative assessment of coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg. 126, 634–637 (2003).

    Article  PubMed  Google Scholar 

  126. Gaudino, M. et al. Mechanisms, consequences, and prevention of coronary graft failure. Circulation 136, 1749–1764 (2017).

    Article  PubMed  Google Scholar 

  127. Souza, D. S. et al. Improved patency in vein grafts harvested with surrounding tissue: results of a randomized study using three harvesting techniques. Ann. Thorac. Surg. 73, 1189–1195 (2002).

    Article  PubMed  Google Scholar 

  128. Kulik, A. et al. Secondary prevention after coronary artery bypass graft surgery: a scientific statement from the American Heart Association. Circulation 131, 927–964 (2015).

    Article  PubMed  Google Scholar 

  129. Deo, S. V. et al. Dual anti-platelet therapy after coronary artery bypass grafting: is there any benefit? A systematic review and meta-analysis. J. Cardiac Surg. 28, 109–116 (2013).

    Article  Google Scholar 

  130. Zhao, Q. et al. Effect of ticagrelor plus aspirin, ticagrelor alone, or aspirin alone on saphenous vein graft patency 1 year after coronary artery bypass grafting: a randomized clinical trial. JAMA 319, 1677–1686 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Parsonnet, V., Lari, A. A. & Shah, I. H. New stent for support of veins in arterial grafts. Arch. Surg. 87, 696–702 (1963).

    Article  CAS  PubMed  Google Scholar 

  132. Genoni, M., Odavic, D., Loblein, H. & Dzemali, O. Use of the eSVS mesh: external vein support does not negatively impact early graft patency. Innovations 8, 211–214 (2013).

    Article  PubMed  Google Scholar 

  133. Inderbitzin, D. T. et al. One-year patency control and risk analysis of eSVS(®)-mesh-supported coronary saphenous vein grafts. J. Cardiothorac. Surg. 10, 108 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  134. Rescigno, G. et al. Saphenous vein graft wrapping by nitinol mesh: a word of caution. Thorac. Cardiovasc. Surg. 63, 292–297 (2015).

    PubMed  Google Scholar 

  135. Taggart, D. P. et al. A randomized trial of external stenting for saphenous vein grafts in coronary artery bypass grafting. Ann. Thorac. Surg. 99, 2039–2045 (2015).

    Article  PubMed  Google Scholar 

  136. Taggart, D. P. et al. Long-term performance of an external stent for saphenous vein grafts: the VEST IV trial. J. Cardiothorac. Surg. 13, 117 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02511834 (2019).

  138. Yi, G., Shine, B., Rehman, S. M., Altman, D. G. & Taggart, D. P. Effect of bilateral internal mammary artery grafts on long-term survival: a meta-analysis approach. Circulation 130, 539–545 (2014).

    Article  PubMed  Google Scholar 

  139. Locker, C. et al. Multiple arterial grafts improve late survival of patients undergoing coronary artery bypass graft surgery: analysis of 8622 patients with multivessel disease. Circulation 126, 1023–1030 (2012).

    Article  PubMed  Google Scholar 

  140. Benedetto, U. et al. Searching for the second best graft for coronary artery bypass surgery: a network meta-analysis of randomized controlled trials. Eur. J. Cardiothorac. Surg. 47, 59-65; discussion 65 (2015).

    Article  PubMed  Google Scholar 

  141. Stone, G. W. et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N. Engl. J. Med. 375, 2223–2235 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Mäkikallio, T. et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet 388, 2743–2752 (2016).

    Article  PubMed  Google Scholar 

  143. Park, S. J. et al. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N. Engl. J. Med. 372, 1204–1212 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Ahn, J. M. et al. Randomized trial of stents versus bypass surgery for left main coronary artery disease: 5-year outcomes of the PRECOMBAT study. J. Am. Coll. Cardiol. 65, 2198–2206 (2015).

    Article  PubMed  Google Scholar 

  145. Mohr, F. W. et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 381, 629–638 (2013).

    Article  PubMed  Google Scholar 

  146. Farkouh, M. E. et al. Strategies for multivessel revascularization in patients with diabetes. N. Engl. J. Med. 367, 2375–2384 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Velazquez, E. J. et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 364, 1607–1616 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Velazquez, E. J. et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N. Engl. J. Med. 374, 1511–1520 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Taggart, D. P. et al. Bilateral versus single internal-thoracic-artery grafts at 10 years. N. Engl. J. Med. 380, 437–446 (2019).

    Article  PubMed  Google Scholar 

  150. Hayward, P. A. et al. Comparable patencies of the radial artery and right internal thoracic artery or saphenous vein beyond 5 years: results from the Radial Artery Patency and Clinical Outcomes trial. J. Thorac. Cardiovasc. Surg. 139, 60-65; discussion 65-67 (2010).

    Article  PubMed  Google Scholar 

  151. Desai, N. D., Cohen, E. A., Naylor, C. D., Fremes, S. E. & Radial Artery Patency Study Investigators. A randomized comparison of radial-artery and saphenous-vein coronary bypass grafts. N. Engl. J. Med. 351, 2302–2309 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Deb, S. et al. Radial artery and saphenous vein patency more than 5 years after coronary artery bypass surgery: results from RAPS (radial artery patency study). J. Am. Coll. Cardiol. 60, 28–35 (2012).

    Article  PubMed  Google Scholar 

  153. Lamy, A. et al. Five-year outcomes after off-pump or on-pump coronary-artery bypass grafting. N. Engl. J. Med. 375, 2359–2368 (2016).

    Article  PubMed  Google Scholar 

  154. Diegeler, A. et al. Five-year outcome after off-pump or on-pump coronary artery bypass grafting in elderly patients. Circulation 139, 1865–1871 (2019).

    Article  PubMed  Google Scholar 

  155. Krishnamoorthy, B. et al. Study comparing vein integrity and clinical outcomes in open vein harvesting and 2 types of endoscopic vein harvesting for coronary artery bypass grafting: the VICO Randomized Clinical Trial (Vein Integrity and Clinical Outcomes). Circulation 136, 1688–1702 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.C. and M.Y.E. researched the data for the article and wrote the manuscript. All the authors made substantial contributions to discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Maximilian Y. Emmert.

Ethics declarations

Competing interests

E.C., A.B. and Y.-H.C. are investigators in the European VASC registry and members of the registry scientific advisory board. C.M.G. has received consultancy fees from Somahlution. L.P.P. is a member of the VASC registry scientific advisory board and has received consultancy fees from Somahlution. M.Y.E. is the principal investigator of the VASC registry and the chair of the registry scientific advisory board, and has received consulting fees from Maquet and Somahlution. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks T. Kieser, S. Raja and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Vineberg procedure

Direct implantation of the left internal mammary artery on the anterior myocardial wall for treatment of angina.

Payr’s ring

A device of two interlocking rings facilitating non-sutured anastomosis of vessels.

Cardiopulmonary bypass

(CPB). An extracorporeal circuit in which venous blood is drained, oxygenated and pumped back to the circulatory system to provide circulatory and respiratory function.

Off-pump CABG surgery

Performing coronary artery bypass graft surgery without the aid of cardiopulmonary bypass on a non-arrested, beating heart.

Octopus stabilizer

Local tissue stabilizer to facilitate off-pump coronary artery bypass graft procedures.

Totally endoscopic coronary bypass surgery

Procedure performed through four to five fingertip-sized portholes as a closed-chest procedure with the aid of robotic telemanipulation systems.

Vein graft failure

(VGF). Complete occlusion of a saphenous vein graft as a result of complex pathophysiological processes.

Autologous whole blood

(AWB). Blood with all components obtained from the patient during surgery.

Scanning electron microscopy

(SEM). Focused beam of high-energy electrons generating signals at the surface of a solid specimen.

PlasmaLyte

A family of balanced crystalloid solutions with multiple different formulations closely mimicking human plasma in pH, osmolality and electrolyte content.

Bretschneider’s cardioplegic solution

Also known as HTK or Custodiol solution. A cardioplegic solution with the main ingredients of histidine, tryptophan and ketoglutarate.

Ringer’s crystalloid solution

A crystalloid solution containing Na+, K+, Ca2+ and Cl with a pH of 6.5.

University of Wisconsin solution

(UWS). A preservation solution that mimics the ionic composition of intracellular fluids and contains antioxidants and high-molecular-weight molecules; the gold-standard solution for preservation of abdominal organs.

TiProtec

A dedicated storage solution enriched in potassium chloride and N-acetylhistidine.

GALA solution

A dedicated preservation, storage and flushing solution for vascular conduits; works as an endothelium-damage inhibitor and contains reduced glutathione, l-ascorbic acid and l-arginine.

Multidetector computed tomography (MDCT) angiography

Angiography based on CT technology with a 2D array of detector elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliskan, E., de Souza, D.R., Böning, A. et al. Saphenous vein grafts in contemporary coronary artery bypass graft surgery. Nat Rev Cardiol 17, 155–169 (2020). https://doi.org/10.1038/s41569-019-0249-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0249-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing