Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating p53-based therapies for cancer into the clinic

Abstract

Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The two facets of p53 activity in cancer.
Fig. 2: Targeting mutant p53.
Fig. 3: Reactivation of wild-type p53.
Fig. 4: Wild-type and mutant p53 modulation of the immune response to tumours.
Fig. 5: p53 activated by MDM2 inhibition triggers a viral mimicry response and sensitizes tumours to immune checkpoint blockade therapy.
Fig. 6: p53-based immunotherapy approaches.

Similar content being viewed by others

References

  1. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Klein, A. M., de Queiroz, R. M., Venkatesh, D. & Prives, C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev. 35, 575–601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402–412 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Moyer, S. M. et al. p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proc. Natl Acad. Sci. USA 117, 23663–23673 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Gudkov, A. V. & Komarova, E. A. The role of p53 in determining sensitivity to radiotherapy. Nat. Rev. Cancer 3, 117–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Stewart-Ornstein, J. et al. p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat. Commun. 12, 898 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Purvis, J. E. et al. p53 dynamics control cell fate. Science 336, 1440–1444 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Bougeard, G. et al. Revisiting Li–Fraumeni syndrome from TP53 mutation carriers. J. Clin. Oncol. 33, 2345–2352 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  ADS  PubMed  Google Scholar 

  13. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martínez-Jiménez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9, 701–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Komarova, E. A. et al. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J. 16, 1391–1400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertheau, P. et al. Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360, 852–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Ablain, J., Poirot, B., Esnault, C., Lehmann-Che, J. & de Thé, H. p53 as an effector or inhibitor of therapy response. Cold Spring Harb. Perspect. Med. 6, a026260 (2015).

    Article  PubMed  Google Scholar 

  20. Krishnaraj, J., Yamamoto, T. & Ohki, R. p53-dependent cytoprotective mechanisms behind resistance to chemo-radiotherapeutic agents used in cancer treatment. Cancers 15, 3399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cordon-Cardo, C. et al. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res. 54, 794–799 (1994).

    CAS  PubMed  Google Scholar 

  22. Gembarska, A. et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat. Med. 18, 1239–1247 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Selivanova, G. Wild type p53 reactivation: from lab bench to clinic. FEBS Lett. 588, 2628–2638 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Junttila, M. R. et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567–571 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feldser, D. M. et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572–575 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christophorou, M. A. et al. Temporal dissection of p53 function in vitro and in vivo. Nat. Genet. 37, 718–726 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 1370–1384.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bouaoun, L. et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum. Mutat. 37, 865–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Pinto, E. M. & Zambetti, G. P. What 20 years of research has taught us about the TP53 p.R337H mutation. Cancer 126, 4678–4686 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Song, H. et al. Diverse rescue potencies of p53 mutations to ATO are predetermined by intrinsic mutational properties. Sci. Transl. Med. 15, eabn9155 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Cooks, T. et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23, 634–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarig, R. et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J. Exp. Med. 207, 2127–2140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pilley, S., Rodriguez, T. A. & Vousden, K. H. Mutant p53 in cell–cell interactions. Genes Dev. 35, 433–448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mantovani, F., Collavin, L. & Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26, 199–212 (2019).

    Article  PubMed  Google Scholar 

  40. Bossi, G. et al. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25, 304–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Alexandrova, E. M. et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523, 352–356 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dibra, D. et al. Triple-negative breast tumors are dependent on mutant p53 for growth and survival. Proc. Natl Acad. Sci. USA 120, e2308807120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Terzian, T. et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22, 1337–1344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klimovich, B. et al. Partial p53 reactivation is sufficient to induce cancer regression. J. Exp. Clin. Cancer Res. 41, 80 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wieczorek, A. M., Waterman, J. L., Waterman, M. J. & Halazonetis, T. D. Structure-based rescue of common tumor-derived p53 mutants. Nat. Med. 2, 1143–1146 (1996). To our knowledge, this study is the first to demonstrate the reversibility of tumour-derived mutant p53 by a second-site mutation.

    Article  CAS  PubMed  Google Scholar 

  46. Nikolova, P. V., Wong, K. B., DeDecker, B., Henckel, J. & Fersht, A. R. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J. 19, 370–378 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Como, C. J. & Prives, C. Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay. Oncogene 16, 2527–2539 (1998).

    Article  PubMed  Google Scholar 

  48. Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med. 3, 632–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Gomes, A. S., Ramos, H., Inga, A., Sousa, E. & Saraiva, L. Structural and drug targeting insights on mutant p53. Cancers 13, 3344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bykov, V. J. N. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8, 282–288 (2002). To our knowledge, this paper presents the first example of mutant p53 restoration by a low-molecular-weight compound, which later made its way into clinical trials, albeit with limited success.

    Article  CAS  PubMed  Google Scholar 

  51. Lambert, J. M. R. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Q., Bykov, V. J. N., Wiman, K. G. & Zawacka-Pankau, J. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 9, 439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ceder, S. et al. A thiol-bound drug reservoir enhances APR-246-induced mutant p53 tumor cell death. EMBO Mol. Med. 13, e10852 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Degtjarik, O. et al. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat. Commun. 12, 7057 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakajima, E. C. et al. FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC. Clin. Cancer Res. 28, 1482–1486 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng, X. et al. APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase. Cell Death Dis. 4, e881 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, D. S. et al. Inhibiting the system xC-/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat. Commun. 8, 14844 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maslah, N. et al. Synergistic effects of PRIMA-1Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica 105, 1539–1551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03072043 (2022).

  60. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03588078 (2020).

  61. Sallman, D. A. et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J. Clin. Oncol. 39, 1584–1594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cluzeau, T. et al. Eprenetapopt plus azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia: a phase II study by the groupe francophone des myélodysplasies (GFM). J. Clin. Oncol. 39, 1575–1583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03745716 (2022).

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04214860 (2022).

  65. Garcia-Manero, G. et al. Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: a phase 1, dose-finding and expansion study. Lancet Haematol. 10, e272–e283 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03931291 (2022).

  67. Mishra, A. et al. Eprenetapopt plus azacitidine after allogeneic hematopoietic stem-cell transplantation for TP53-mutant acute myeloid leukemia and myelodysplastic syndromes. J. Clin. Oncol. 40, 3985–3993 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, X. et al. Mutant p53 gain of function mediates cancer immune escape that is counteracted by APR-246. Br. J. Cancer 127, 2060–2071 (2022). This paper reports the discovery of the first compound acting selectively on the Y220C mutant of p53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ghosh, A. et al. Increased p53 expression induced by APR-246 reprograms tumor-associated macrophages to augment immune checkpoint blockade. J. Clin. Invest. 132, e148141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04383938 (2022).

  71. Park, H. et al. Phase Ib study of eprenetapopt (APR-246) in combination with pembrolizumab in patients with advanced or metastatic solid tumors. ESMO Open 7, 100573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl Acad. Sci. USA 105, 10360–10365 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, X. et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034–6044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raghavan, V., Agrahari, M. & Gowda, D. K. Virtual screening of p53 mutants reveals Y220S as an additional rescue drug target for PhiKan083 with higher binding characteristics. Comput. Biol. Chem. 80, 398–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Guiley, K. Z. & Shokat, K. M. A small molecule reacts with the p53 somatic mutant Y220C to rescue wild-type thermal stability. Cancer Discov. 13, 56–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, S. et al. AI-powered discovery of a novel p53-Y220C reactivator. Front. Oncol. 13, 1229696 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04585750 (2023).

  78. Dumble, M. et al. Abstract LB006: PC14586: the first orally bioavailable small molecule reactivator of Y220C mutant p53 in clinical development. Cancer Res. 81, LB006 (2021).

    Article  Google Scholar 

  79. Dumbrava, E. E. et al. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. J. Clin. Oncol. 40, 3003 (2022).

    Article  Google Scholar 

  80. Puzio-Kuter, A. M. et al. Abstract 1295: small molecule reactivators of Y220C mutant p53 modulate tumor infiltrating leukocytes and synergize with immune checkpoint inhibitors. Cancer Res. 82, 1295 (2022).

    Article  Google Scholar 

  81. de Thé, H., Pandolfi, P. P. & Chen, Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell 32, 552–560 (2017).

    Article  PubMed  Google Scholar 

  82. Chen, S. et al. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell 39, 225–239.e8 (2021). This paper reports that ATO, an approved drug for APL, can reactivate p53 mutants and induce tumour suppression in a p53-dependent manner.

    Article  PubMed  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03855371 (2022).

  84. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04489706 (2020).

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04695223 (2021).

  86. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04869475 (2021).

  87. Yan, W., Jung, Y.-S., Zhang, Y. & Chen, X. Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase. PLoS ONE 9, e103497 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03381781 (2018).

  89. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03377725 (2023).

  90. Tang, Y. et al. Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Rep. 39, 110622 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04906031 (2021).

  92. Meng, X. et al. Strategies for molecularly enhanced chemotherapy to achieve synthetic lethality in endometrial tumors with mutant p53. Obstet. Gynecol. Int. 2013, 828165 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Li, D., Marchenko, N. D. & Moll, U. M. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6–Hsp90 chaperone axis. Cell Death Differ. 18, 1904–1913 (2011). This paper describes mutant p53 degradation induced by HDAC and HSP inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01339871 (2017).

  95. Ubby, I. et al. Cancer therapeutic targeting using mutant-p53-specific siRNAs. Oncogene 38, 3415–3427 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, J. et al. The ubiquitin ligase TRIM21 regulates mutant p53 accumulation and gain of function in cancer. J. Clin. Invest. 133, e164354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Isobe, Y. et al. Manumycin polyketides act as molecular glues between UBR7 and p53. Nat. Chem. Biol. 16, 1189–1198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parrales, A. et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat. Cell Biol. 18, 1233–1243 (2016). This paper describes the use of statins for mutant p53 degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tutuska, K., Parrilla-Monge, L., Di Cesare, E., Nemajerova, A. & Moll, U. M. Statin as anti-cancer therapy in autochthonous T-lymphomas expressing stabilized gain-of-function mutant p53 proteins. Cell Death Dis. 11, 274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04767984 (2023).

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03560882 (2022).

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03358017 (2023).

  104. Reaper, P. M. et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01357161 (2023).

  106. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01164995 (2023).

  107. Oza, A. M. et al. A biomarker-enriched, randomized phase II trial of adavosertib (AZD1775) plus paclitaxel and carboplatin for women with platinum-sensitive TP53-mutant ovarian cancer. Clin. Cancer Res. 26, 4767–4776 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Embaby, A. et al. WEE1 inhibitor adavosertib in combination with carboplatin in advanced TP53 mutated ovarian cancer: a biomarker-enriched phase II study. Gynecol. Oncol. 174, 239–246 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Seligmann, J. F. et al. Inhibition of WEE1 is effective in TP53- and RAS-mutant metastatic colorectal cancer: a randomized trial (FOCUS4-C) comparing adavosertib (AZD1775) with active monitoring. J. Clin. Oncol. 39, 3705–3715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, X. & Simon, R. Identification of potential synthetic lethal genes to p53 using a computational biology approach. BMC Med. Genomics 6, 30 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gurpinar, E. & Vousden, K. H. Hitting cancers’ weak spots: vulnerabilities imposed by p53 mutation. Trends Cell Biol. 25, 486–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Palomar-Siles, M. et al. Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-fluorouridine. Cell Death Dis. 13, 997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, S. et al. Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53. Cancer Res. 75, 3842–3852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Soragni, A. et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell 29, 90–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Palanikumar, L. et al. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat. Commun. 12, 3962 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lu, J., Chen, L., Song, Z., Das, M. & Chen, J. Hypothermia effectively treats tumors with temperature-sensitive p53 mutations. Cancer Res. 81, 3905–3915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wasylishen, A. R. & Lozano, G. Attenuating the p53 pathway in human cancers: many means to the same end. Cold Spring Harb. Perspect. Med. 6, a026211 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Leach, F. S. et al. p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 53, 2231–2234 (1993).

    CAS  PubMed  Google Scholar 

  119. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  120. Yang, Y. et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7, 547–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Herman, A. G. et al. Discovery of Mdm2–MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov. 1, 312–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). This paper describes the discovery of the first MDM2i nutlin.

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Konopleva, M. et al. MDM2 inhibition: an important step forward in cancer therapy. Leukemia 34, 2858–2874 (2020).

    Article  PubMed  Google Scholar 

  124. Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80–83 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Quintás-Cardama, A. et al. p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia 31, 1296–1305 (2017).

    Article  PubMed  Google Scholar 

  126. Sanz, G., Singh, M., Peuget, S. & Selivanova, G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J. Mol. Cell Biol. 11, 586–599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hassin, O. & Oren, M. Drugging p53 in cancer: one protein, many targets. Nat. Rev. Drug Discov. 22, 127–144 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00559533 (2016).

  129. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00623870 (2016).

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02545283 (2022).

  131. Mullard, A. p53 programmes plough on. Nat. Rev. Drug Discov. 19, 497–500 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Ringshausen, I., O’Shea, C. C., Finch, A. J., Swigart, L. B. & Evan, G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Carvajal, D. et al. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res. 65, 1918–1924 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. van Leeuwen, I. M. M. et al. Mechanism-specific signatures for small-molecule p53 activators. Cell Cycle 10, 1590–1598 (2011).

    Article  PubMed  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03449381 (2023).

  136. LoRusso, P. et al. The MDM2-p53 antagonist brigimadlin (BI 907828) in patients with advanced or metastatic solid tumors: results of a phase Ia, first-in-human, dose-escalation study. Cancer Discov. 13, 1802–1813 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05376800 (2023).

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05613036 (2023).

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03964233 (2023).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05372367 (2023).

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05512377 (2023).

  142. Koyama, T. et al. Clinical activity and exploratory resistance mechanism of milademetan, an MDM2 inhibitor, in intimal sarcoma with MDM2 amplification: an open-label phase 1b/2 study. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-23-0419 (2023).

  143. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05012397 (2023).

  144. Saleh, M. N. et al. Phase 1 trial of ALRN-6924, a dual inhibitor of MDMX and MDM2, in patients with solid tumors and lymphomas bearing wild-type TP53. Clin. Cancer Res. 27, 5236–5247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04022876 (2022).

  146. Guerlavais, V. et al. Discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-helical peptide in clinical development. J. Med. Chem. https://doi.org/10.1158/2159-8290.CD-23-041910.1021/acs.jmedchem.3c00623 (2023).

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05622058 (2023).

  148. Haronikova, L. et al. Resistance mechanisms to inhibitors of p53–MDM2 interactions in cancer therapy: can we overcome them? Cell Mol. Biol. Lett. 26, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chapeau, E. A. et al. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf−/− mouse model. Proc. Natl Acad. Sci. USA 114, 3151–3156 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. Aziz, M. H., Shen, H. & Maki, C. G. Acquisition of p53 mutations in response to the non-genotoxic p53 activator nutlin-3. Oncogene 30, 4678–4686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jung, J. et al. TP53 mutations emerge with HDM2 inhibitor SAR405838 treatment in de-differentiated liposarcoma. Nat. Commun. 7, 12609 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  152. Marcellino, B. K. et al. Transient expansion of TP53 mutated clones in polycythemia vera patients treated with idasanutlin. Blood Adv. 4, 5735–5744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Saiki, A. Y. et al. MDM2 antagonists synergize broadly and robustly with compounds targeting fundamental oncogenic signaling pathways. Oncotarget 5, 2030–2043 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Grinkevich, V. V. et al. Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell 15, 441–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05155709 (2023).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05180695 (2023).

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05218499 (2023).

  158. Zhou, X. et al. Pharmacologic activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting antitumor immunity. Cancer Discov. 11, 3090–3105 (2021). This paper reports the induction of an IFN response upon activation of p53 by MDM2 inhibitors, which transforms the TME from cold to hot, making tumours susceptible to immune checkpoint inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03611868 (2023).

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04785196 (2023).

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02890069 (2023).

  162. Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic — a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Hines, J., Lartigue, S., Dong, H., Qian, Y. & Crews, C. M. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79, 251–262 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Chen, S. et al. Design of stapled peptide-based PROTACs for MDM2/MDMX atypical degradation and tumor suppression. Theranostics 12, 6665–6681 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Adams, C. M. et al. Targeted MDM2 degradation reveals a new vulnerability for p53-inactivated triple-negative breast cancer. Cancer Discov. 13, 1210–1229 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Klein, A. M. et al. MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proc. Natl Acad. Sci. USA 118, e2102420118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Eischen, C. M. Role of Mdm2 and Mdmx in DNA repair. J. Mol. Cell Biol. 9, 69–73 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05775406 (2023).

  169. Agupitan, A. D. et al. p53: a guardian of immunity becomes its saboteur through mutation. Int. J. Mol. Sci. 21, E3452 (2020).

    Article  Google Scholar 

  170. Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  171. Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    Article  CAS  PubMed  Google Scholar 

  172. Aloni-Grinstein, R., Charni-Natan, M., Solomon, H. & Rotter, V. p53 and the viral connection: back into the future. Cancers 10, 178 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Muñoz-Fontela, C. et al. p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J. Immunol. 187, 6428–6436 (2011).

    Article  PubMed  Google Scholar 

  174. Yan, W. et al. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection. BMC Med. Genomics 8, 52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Mu n̄oz-Fontela, C. et al. Resistance to viral infection of super p53 mice. Oncogene 24, 3059–3062 (2005).

    Article  PubMed  Google Scholar 

  176. Terrier, O. et al. Influenza NS1 interacts with p53 and alters its binding to p53-responsive genes, in a promoter-dependent manner. FEBS Lett. 587, 2965–2971 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Santos, C. R., Vega, F. M., Blanco, S., Barcia, R. & Lazo, P. A. The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Virology 328, 254–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Greenway, A. L. et al. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J. Virol. 76, 2692–2702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Siegl, C. & Rudel, T. Modulation of p53 during bacterial infections. Nat. Rev. Microbiol. 13, 741–748 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Aschtgen, M.-S. et al. Enterobacteria impair host p53 tumor suppressor activity through mRNA destabilization. Oncogene 41, 2173–2186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Madenspacher, J. H. et al. p53 Integrates host defense and cell fate during bacterial pneumonia. J. Exp. Med. 210, 891–904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kaushansky, A. et al. Suppression of host p53 is critical for Plasmodium liver-stage infection. Cell Rep. 3, 630–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tran, T. M. et al. A molecular signature in blood reveals a role for p53 in regulating malaria-induced inflammation. Immunity 51, 750–765.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chang, C.-Y. et al. Tumor suppressor p53 regulates intestinal type 2 immunity. Nat. Commun. 12, 3371 (2021). This paper describes the important role of p53 as a suppressor of inflammation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Miciak, J. & Bunz, F. Long story short: p53 mediates innate immunity. Biochim. Biophys. Acta 1865, 220–227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Davis, D. W., Weidner, D. A., Holian, A. & McConkey, D. J. Nitric oxide-dependent activation of p53 suppresses bleomycin-induced apoptosis in the lung. J. Exp. Med. 192, 857–869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Komarova, E. A. et al. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23, 3265–3271 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Komarova, E. A. et al. p53 is a suppressor of inflammatory response in mice. FASEB J. 19, 1030–1032 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Liu, G., Park, Y.-J., Tsuruta, Y., Lorne, E. & Abraham, E. p53 attenuates lipopolysaccharide-induced NF-κB activation and acute lung injury. J. Immunol. 182, 5063–5071 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Yamanishi, Y. et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am. J. Pathol. 160, 123–130 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Okuda, Y., Okuda, M. & Bernard, C. C. A. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 135, 29–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Zheng, S.-J., Lamhamedi-Cherradi, S.-E., Wang, P., Xu, L. & Chen, Y. H. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54, 1423–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Gudkov, A. V. & Komarova, E. A. p53 and the carcinogenicity of chronic inflammation. Cold Spring Harb. Perspect. Med. 6, a026161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Elkon, R. et al. Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, RNA interference and computational promoter analysis. Genome Biol. 6, R43 (2005). This paper demonstrates that p53 can act non-cell autonomously to suppress tumorigenesis by promoting an antitumour microenvironment.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Takaoka, A. et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523 (2003). This paper reports the crucial role of p53 induction by IFN in tumour suppression and an antiviral response.

    Article  ADS  CAS  PubMed  Google Scholar 

  197. Muñoz-Fontela, C. et al. Transcriptional role of p53 in interferon-mediated antiviral immunity. J. Exp. Med. 205, 1929–1938 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hummer, B. T., Li, X. L. & Hassel, B. A. Role for p53 in gene induction by double-stranded RNA. J. Virol. 75, 7774–7777 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mori, T. et al. Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53. Oncogene 21, 2914–2918 (2002).

    Article  CAS  PubMed  Google Scholar 

  200. Taura, M. et al. p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol. Cell Biol. 28, 6557–6567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Shatz, M., Menendez, D. & Resnick, M. A. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res. 72, 3948–3957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ghosh, M., Saha, S., Li, J., Montrose, D. C. & Martinez, L. A. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol. Cell 83, 266–280.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wang, B., Niu, D., Lai, L. & Ren, E. C. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat. Commun. 4, 2359 (2013).

    Article  ADS  PubMed  Google Scholar 

  205. Zhu, K. et al. p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene 18, 7740–7747 (1999).

    Article  CAS  PubMed  Google Scholar 

  206. Gasparini, C., Tommasini, A. & Zauli, G. The MDM2 inhibitor nutlin-3 modulates dendritic cell-induced T cell proliferation. Hum. Immunol. 73, 342–345 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Zhou, J. et al. The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. Nat. Immunol. 22, 460–470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li, H. et al. Pharmacological activation of p53 triggers anticancer innate immune response through induction of ULBP2. Cell Cycle 10, 3346–3358 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Textor, S. et al. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 71, 5998–6009 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Li, L. et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 22, 1081–1093 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Cortez, M. A. et al. PDL1 regulation by p53 via miR-34. J. Natl Cancer Inst. 108, djv303 (2016).

    Article  PubMed  Google Scholar 

  212. Cha, Y. J., Kim, H. R., Lee, C. Y., Cho, B. C. & Shim, H. S. Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status. Lung Cancer 97, 73–80 (2016).

    Article  PubMed  Google Scholar 

  213. Cao, Z. et al. An unexpected role for p53 in regulating cancer cell-intrinsic PD-1 by acetylation. Sci. Adv. 7, eabf4148 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  214. Scian, M. J. et al. Tumor-derived p53 mutants induce NF-κB2 gene expression. Mol. Cell Biol. 25, 10097–10110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Weisz, L. et al. Mutant p53 enhances nuclear factor κB activation by tumor necrosis factor α in cancer cells. Cancer Res. 67, 2396–2401 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Yeudall, W. A. et al. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 33, 442–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Zhu, M. et al. Loss of p53 and mutational heterogeneity drives immune resistance in an autochthonous mouse lung cancer model with high tumor mutational burden. Cancer Cell 41, 1731–1748.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  218. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  222. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Harris, C. R. et al. p53 responsive elements in human retrotransposons. Oncogene 28, 3857–3865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tiwari, B. et al. p53 directly represses human LINE1 transposons. Genes Dev. 34, 1439–1451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Levine, A. J., Ting, D. T. & Greenbaum, B. D. p53 and the defenses against genome instability caused by transposons and repetitive elements. BioEssays 38, 508–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Leonova, K. I. et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl Acad. Sci. USA 110, E89–E98 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. Thorsson, V. et al. The immune landscape of cancer. Immunity 51, 411–412 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Rodić, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Gorbunova, V. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43–53 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  231. Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  232. Dong, Z.-Y. et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 23, 3012–3024 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Vadakekolathu, J. et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 4, 5011–5024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rajurkar, M. et al. Reverse transcriptase inhibition disrupts repeat element life cycle in colorectal cancer. Cancer Discov. 12, 1462–1481 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  235. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03144804 (2023).

  236. Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Siolas, D., Vucic, E., Kurz, E., Hajdu, C. & Bar-Sagi, D. Gain-of-function p53R172H mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy. Cell Rep. 36, 109578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Martin, T. D. et al. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 373, 1327–1335 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  239. Albers, A. E. et al. Phenotype of p53 wild-type epitope-specific T cells in the circulation of patients with head and neck cancer. Sci. Rep. 8, 10716 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  240. Zhou, S., Fan, C., Zeng, Z., Young, K. H. & Li, Y. Clinical and immunological effects of p53-targeting vaccines. Front. Cell Dev. Biol. 9, 762796 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03113487 (2023).

  242. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02432963 (2023).

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02157051 (2023).

  244. Sheridan, C. Why gene therapies must go virus-free. Nat. Biotechnol. 41, 737–739 (2023).

    Article  CAS  PubMed  Google Scholar 

  245. Jiang, X.-T. & Liu, Q. mRNA vaccination in breast cancer: current progress and future direction. J. Cancer Res. Clin. Oncol. https://doi.org/10.1007/s00432-023-04805-z (2023).

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03897881 (2023).

  247. No authors listed. mRNA vaccine slows melanoma recurrence. Cancer Discov. 13, 1278 (2023).

  248. Kong, N. et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 11, eaaw1565 (2019). This paper describes the potential of synthetic TP53 mRNA for anticancer treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Hsiue, E. H.-C. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021). This paper reports the discovery of a bispecific antibody specific for the p53(R175H) mutation, which activates T cells to kill p53(R175H)-expressing cancer cells in vitro and in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Hwang, L.-A. et al. Monoclonal antibodies against specific p53 hotspot mutants as potential tools for precision medicine. Cell Rep. 22, 299–312 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Malekzadeh, P. et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Invest. 129, 1109–1114 (2019).

    Article  PubMed  Google Scholar 

  252. Zhang, W.-W. et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 29, 160–179 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  253. Zeimet, A. G. & Marth, C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 4, 415–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  254. Sobol, R. E. et al. Analysis of adenoviral p53 gene therapy clinical trials in recurrent head and neck squamous cell carcinoma. Front. Oncol. 11, 645745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02340117 (2022).

  256. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03554707 (2022).

  257. Xiao, Y. et al. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat. Commun. 13, 758 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  258. Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E. & Dow, L. E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 22, 259–279 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Sayed, S. et al. Efficient correction of oncogenic KRAS and TP53 mutations through CRISPR base editing. Cancer Res. 82, 3002–3015 (2022). This paper describes the first correction of a p53 mutation using CRISPR base editing, which leads to cancer cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Letai, A. Functional precision medicine: putting drugs on patient cancer cells and seeing what happens. Cancer Discov. 12, 290–292 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Kumar, R. et al. Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat. Commun. 9, 3931 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  263. Dudgeon, C. et al. Tumor susceptibility and apoptosis defect in a mouse strain expressing a human p53 transgene. Cancer Res. 66, 2928–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  264. Siena, S. et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 22, 779–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Comiskey, D. F., Montes, M., Khurshid, S., Singh, R. K. & Chandler, D. S. SRSF2 regulation of MDM2 reveals splicing as a therapeutic vulnerability of the p53 pathway. Mol. Cancer Res. 18, 194–203 (2020).

    Article  CAS  PubMed  Google Scholar 

  266. Yan, S. et al. A nano-predator of pathological MDMX construct by clearable supramolecular gold(I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics 11, 6833–6846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Yi, J. et al. Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy. Nat. Commun. 14, 1941 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  268. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04419389 (2023).

  269. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03671564 (2023).

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04979442 (2023).

  271. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05932667 (2023).

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01877382 (2020).

  273. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03552029 (2022).

  274. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02319369 (2021).

  275. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03634228 (2023).

  276. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03041688 (2023).

  277. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03031730 (2023).

  278. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03107780 (2023).

  279. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04190550 (2023).

  280. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02016729 (2019).

  281. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01723020 (2021).

  282. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03217266 (2023).

  283. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02110355 (2021).

  284. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02343172 (2020).

  285. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04496999 (2022).

  286. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03940352 (2023).

  287. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05599932 (2023).

  288. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02601378 (2022).

  289. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02143635 (2021).

  290. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03714958 (2023).

  291. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04116541 (2023).

  292. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05447663 (2023).

  293. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04097821 (2023).

  294. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02935907 (2022).

  295. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04496349 (2023).

  296. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05701306 (2023).

  297. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03781986 (2023).

  298. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04358393 (2023).

  299. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04275518 (2023).

  300. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03975387 (2023).

  301. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04029688 (2023).

  302. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04589845 (2023).

  303. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02633059 (2023).

  304. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03158389 (2023).

  305. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03555149 (2023).

  306. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03654716 (2023).

  307. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03725436 (2023).

  308. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03406715 (2023).

  309. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04884282 (2023).

  310. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02316457 (2023).

  311. de Andrade, K. C. et al. The TP53 database: transition from the International Agency for Research on Cancer to the US National Cancer Institute. Cell Death Differ. 29, 1071–1073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Izquierdo, E. et al. Extracellular vesicles and PD-L1 suppress macrophages, inducing therapy resistance in TP53-deficient B-cell malignancies. Blood 139, 3617–3629 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by Swedish Cancer Society grants to G.S. and S.P., grants from the Swedish Research Council to G.S. and from the Swiss Bridge Foundation to S.P., as well as support from the Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. S.P. and G.S. contributed substantially to discussion of the content. All authors wrote the article. S.P. and G.S. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Galina Selivanova.

Ethics declarations

Competing interests

G.S. is a co-founder of Aprea Therapeutics AB. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Genomics of Drug Sensitivity in Cancer database: https://www.cancerrxgene.org/

PANDA (p53 and arsenic) project: http://www.rescuep53.net

PMV Pharma: https://www.pmvpharma.com/pipeline/#PC14586

The TP53 database: https://tp53.isb-cgc.org

Glossary

Antimony

A metalloid chemical element with the symbol Sb and atomic number 51. Antimony compounds have been known since ancient times and were powdered for use as medicine and cosmetics, often known by the Arabic name kohl.

BCL-2 homology 3 (BH3) mimetics

Compounds that bind to pro-survival BCL-2 proteins and neutralize them, similar to pro-apoptotic BH3-only proteins.

Chemoprotective agents

Types of drug that help to protect healthy tissue from some of the side effects caused by certain anticancer drugs.

Covalent modifiers

Types of drug that bind by forming a chemical bond with its target. This covalent binding can improve the selectivity of the drug for a target with complementary reactivity and result in increased binding affinities due to the strength of the covalent bond formed.

Creatinine

A chemical waste product of creatine, removed from the body by the kidneys.

CRISPR adenine base-editing system

A system that combines the sequence-identification capabilities of the CRISPR–Cas9 system with base editing by deaminase enzymes, which convert A•T base pairs to G•C pairs (adenine editor) or C•G base pairs to T•A pairs (cytosine editor) without the intentional generation of a DNA double-strand break.

Diabody

Bispecific antibody fragments that have two antigen-binding Fv domains.

Endogenous retroviruses

(ERVs). Endogenous viral elements in the genome that closely resemble and can be derived from retroviruses.

Febrile neutropenia

Febrile neutropenia is the presence of fever in a neutropenic patient. It is the most common life-threatening complication of cancer therapy and is considered an oncological emergency.

Hypomorphic

A reduction in gene or protein activity as a result of mutation.

Insertional mutagenesis

The creation of mutations in DNA by the addition of one or more base pairs. Such insertional mutations can occur naturally, mediated by viruses or transposons, or can be artificially created.

Intra-S checkpoint

A cascade of signalling events that puts the S phase on hold until the DNA damage is repaired.

Mevalonate pathway

Accounts for the conversion of acetyl-CoA into isopentenyl 5-diphosphate, the versatile precursor of polyisoprenoid metabolites and natural products.

Missense mutations

Point mutations in which a single-nucleotide change result in a codon that encodes a different amino acid. It is a type of nonsynonymous substitution.

Nonsense-mediated mRNA decay

Degradation of mRNAs with translation termination codons in abnormal contexts.

Nonsense mutations

Point mutations that result in a premature stop codon, or a nonsense codon in the transcribed mRNA, leading to a truncated and nonfunctional protein product.

Repetitive transposable elements

(RTEs). Highly repetitive DNA sequences in the human genome that are the relics of previous retrotransposition events.

Replication stress

The state of a cell whose genome is exposed to various stresses during DNA replication and can result in a stalled replication fork.

Secondary-site suppressor mutations

Secondary mutations in a site different from the original mutation that alleviate or revert the phenotypic effects of an already existing mutation.

Senescence-associated secretory phenotype

(SASP). A phenotype associated with senescent cells in which those cells secrete high levels of inflammatory cytokines, immune modulators, growth factors and proteases.

Solvent accessibility

A key feature of proteins for determining their folding and stability, computed from protein structures with different algorithms.

Stapled peptide

A stapled peptide is a short peptide, typically in an α-helical conformation, that is constrained by a synthetic brace. The staple is formed by a covalent linkage between two amino acid side chains.

SV40 large T-antigen

A hexamer protein that is a dominant-acting oncoprotein derived from the polyomavirus SV40, which binds to and inhibits p53 and RB to allow virus replication.

Temperature-sensitive mutants

Types of mutant with an altered or loss of function at higher or physiological temperatures but have normal function of the protein (or gene) at low temperatures.

Thrombocytopenia

A condition that occurs when the platelet count in blood is too low.

Transactivation

The induction of an increased rate of gene expression.

Tumour inflammation signature

(TIS). An 18-gene signature that measures a pre-existing but suppressed adaptive immune response. It comprises immune genes that have been shown to enrich for response to immune checkpoint inhibition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peuget, S., Zhou, X. & Selivanova, G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 24, 192–215 (2024). https://doi.org/10.1038/s41568-023-00658-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00658-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer