Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the boson peak in a two-dimensional material

Abstract

The boson peak is an excess in the phonon vibrational density of states relative to the Debye model. It has been observed in a wide range of amorphous materials, from inorganic glasses to polymers. Two-dimensional random matrix models and molecular dynamics simulations predict that the boson peak should also be present in amorphous two-dimensional materials, a notion that is of practical importance because it leads to an excess of heat capacity and influences transport properties. However, up until now, experimental observations in actual materials have not been possible due to the limited surface sensitivity of the methods usually applied to measure the boson peak. Here we present the experimental evidence of a boson peak in two-dimensional silica, through phonon spectra measured by means of inelastic helium-atom scattering. We identify the boson peak as a wavenumber-independent spectral maximum at a frequency similar to what has been observed in and predicted for bulk vitreous silica. Furthermore, we present a heterogeneous-elastic theory calculation in two dimensions, which shows how the vibrational coupling of the transversal and flexural shear vertical phonon modes produces the boson peak in two-dimensional materials at a frequency similar to that of the bulk, in agreement with our measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Several examples of HAS TOF spectra, converted to energy transfer ΔE, for 2D silica supported on Ru(0001).
Fig. 2: Spectral function normalized to a linear increase in ω as a function of ΔE.
Fig. 3: Average negative ΔE part of the spectral function.
Fig. 4: Phonon dispersion curves showing energy transfer ΔE as a function of parallel momentum transfer ΔK.
Fig. 5: Σ″(ω)/ω versus ω/ωξ.

Similar content being viewed by others

Data availability

The experimental dataset is available via DataverseNO at https://doi.org/10.18710/CMKTQX (ref. 78).

References

  1. Debye, P. Zur Theorie der spezifischen Wärme. Ann. Phys. 344, 789–839 (1912).

    MATH  Google Scholar 

  2. Malinovsky, V. K. & Sokolov, A. P. The nature of boson peak in Raman scattering in glasses. Solid State Commun. 57, 757–761 (1986).

    ADS  Google Scholar 

  3. Buchenau, U. et al. Low-frequency modes in vitreous silica. Phys. Rev. B 34, 5665–5673 (1986).

    ADS  Google Scholar 

  4. Chumakov, A. I. et al. Collective nature of the boson peak and universal transboson dynamics of glasses. Phys. Rev. Lett. 92, 245508 (2004).

    ADS  Google Scholar 

  5. Elliott, S. R. A unified model for the low-energy vibrational behaviour of amorphous solids. Europhys. Lett. 19, 201 (1992).

    ADS  Google Scholar 

  6. Buchenau, U. Amorphous materials: low-frequency vibrations. in Encyclopedia of Materials: Science and Technology 212–215 (Elsevier, 2001).

  7. Pohl, R. O. Amorphous materials: heat capacity. in Encyclopedia of Materials: Science and Technology 194–197 (Elsevier, 2001).

  8. Zeller, R. C. & Pohl, R. O. Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029–2041 (1971).

    ADS  Google Scholar 

  9. Schirmacher, W. Thermal conductivity of glassy materials and the ‘boson peak’. Europhys. Lett. 73, 892–898 (2006).

    ADS  Google Scholar 

  10. Beltukov, Y. M., Parshin, D. A., Giordano, V. M. & Tanguy, A. Propagative and diffusive regimes of acoustic damping in bulk amorphous material. Phys. Rev. E 98, 023005 (2018).

    ADS  Google Scholar 

  11. Jäckle, J. in Amorphous Solids: Low-Temperature Properties (ed Phillips, W. A.) 135 (Springer, 1981).

  12. Duval, E., Boukenter, A. & Achibat, T. Vibrational dynamics and the structure of glasses. J. Phys.: Condens. Matter 2, 10227 (1990).

    ADS  Google Scholar 

  13. Kabeya, M. et al. Boson peak dynamics of glassy glucose studied by integrated terahertz-band spectroscopy. Phys. Rev. B 94, 224204 (2016).

    ADS  Google Scholar 

  14. Baldi, G., Giordano, V. M. & Monaco, G. Elastic anomalies at terahertz frequencies and excess density of vibrational states in silica glass. Phys. Rev. B 83, 174203 (2011).

    ADS  Google Scholar 

  15. Schroeder, J., Lee, M., Saha, S. K. & Persans, P. D. Raman scattering in glasses at high temperature: the boson peak and structural relaxation kinetics in glasses. J. Non-Cryst. Solids 222, 342–347 (1997).

    ADS  Google Scholar 

  16. Hutt, K. W., Phillips, W. A. & Butcher, R. J. Far-infrared properties of dilute hydroxyl groups in an amorphous silica matrix. J. Phys.: Condens. Matter 1, 4767–4772 (1989).

    ADS  Google Scholar 

  17. Ohsaka, T. & Ihara, T. Far-infrared study of low-frequency vibrational states in As2S3 glass. Phys. Rev. B 50, 9569–9572 (1994).

    ADS  Google Scholar 

  18. Benassi, P. et al. Evidence of high frequency propagating modes in vitreous silica. Phys. Rev. Lett. 77, 3835–3838 (1996).

    ADS  Google Scholar 

  19. Buchenau, U., Nücker, N. & Dianoux, A. J. Neutron scattering study of the low-frequency vibrations in vitreous silica. Phys. Rev. Lett. 53, 2316 (1984).

    ADS  Google Scholar 

  20. Wischnewski, A., Buchenau, U., Dianoux, A. J., Kamitakahara, W. A. & Zarestky, J. L. Neutron scattering analysis of low-frequency modes in silica. Philos. Mag. B 77, 579–589 (1998).

    ADS  Google Scholar 

  21. Buchenau, U. Neutron scattering investigations of the boson peak. Condens. Matter Phys. 22, 43601 (2019).

    ADS  Google Scholar 

  22. Mori, T. et al. Detection of boson peak and fractal dynamics of disordered systems using terahertz spectroscopy. Phys. Rev. E 102, 022502 (2020).

    ADS  Google Scholar 

  23. Tomoshige, N., Mizuno, H., Mori, T., Kim, K. & Matubayasi, N. Boson peak, elasticity, and glass transition temperature in polymer glasses: effects of the rigidity of chain bending. Sci. Rep. 9, 19514 (2019).

    ADS  Google Scholar 

  24. White, G. K., Collocott, S. J. & Cook, J. S. Thermal expansion and heat capacity of vitreous B2O3. Phys. Rev. B 29, 4778–4781 (1984).

    ADS  Google Scholar 

  25. Fultz, B., Ahn, C. C., Alp, E. E., Stuhrhahn, W. & Toellner, T. S. Phonons in nanocrystalline 57Fe. Phys. Rev. Lett. 79, 937 (1997).

    ADS  Google Scholar 

  26. Kara, A. & Rahman, R. S. Vibrational properties of metallic nanocrystals. Phys. Rev. Lett. 81, 1453 (1998).

    ADS  Google Scholar 

  27. Perlich, J. et al. Grazing incidence wide angle X-ray scattering at the wiggler beamline BW4 of HASYLAB. Rev. Sci. Instrum. 81, 105105 (2010).

    ADS  Google Scholar 

  28. Müller-Buschbaum, P. Grazing incidence small-angle neutron scattering: challenges and possibilities. Polym. J. 45, 34–42 (2012).

    Google Scholar 

  29. Steurer, W. et al. Observation of the boson peak at the surface of vitreous silica. Phys. Rev. Lett. 99, 035503 (2007).

    ADS  Google Scholar 

  30. Steurer, W. et al. Surface dynamics measurements of silica glass. Phys. Rev. B 78, 045427 (2008).

    ADS  Google Scholar 

  31. Steurer, W. et al. Anomalous phonon behavior: blueshift of the surface boson peak in silica glass with increasing temperature. Phys. Rev. Lett. 100, 135504 (2008).

    ADS  Google Scholar 

  32. Steurer, W. et al. Vibrational excitations of glass observed using helium atom scattering. J. Phys.: Condens. Matter 20, 224003 (2008).

    ADS  Google Scholar 

  33. Alderwick, A. R., Jardine, A. P., Allison, W. & Ellis, J. An evaluation of the kinematic approximation in helium atom scattering using wavepacket calculations. Surf. Sci. 678, 65–71 (2018).

    ADS  Google Scholar 

  34. Holst, B. et al. Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials. Phys. Chem. Chem. Phys. 23, 7653–7672 (2021).

    Google Scholar 

  35. Chen, K. et al. Low-frequency vibrations of soft colloidal glasses. Phys. Rev. Lett. 105, 025501 (2010).

    ADS  Google Scholar 

  36. Zhang, L. et al. Experimental studies of vibrational modes in a two-dimensional amorphous solid. Nat. Commun. 8, 67 (2017).

    ADS  Google Scholar 

  37. Wang, Y., Hong, L., Wang, Y., Schirmacher, W. & Zhang, J. Disentangling boson peaks and Van Hove singularities in a model glass. Phys. Rev. B 98, 174207 (2018).

    ADS  Google Scholar 

  38. Cortie, D. L. et al. Boson peak in ultrathin alumina layers investigated with neutron spectroscopy. Phys. Rev. Res. 2, 023320 (2020).

    Google Scholar 

  39. Karpov, V. G., Klinger, M. I. & Ignat’ev, F. N. Theory of the low-temperature anomalies in the thermal properties of amorphous structure. Zh. Eksp. Teor. Fiz. 84, 775 (1983).

    Google Scholar 

  40. Buchenau, U., Galperin, Y. M., Gurevich, V. L. & Schober, H. R. Anharmonic potentials and vibrational localization in glasses. Phys. Rev. B 43, 5039–5045 (1991).

    ADS  Google Scholar 

  41. Buchenau, U. et al. Interaction of soft modes and sound waves in glasses. Phys. Rev. B 46, 2798–2808 (1992).

    ADS  Google Scholar 

  42. Parshin, D. A. Soft potential model and universal properties of glasses. Phys. Scr. T49A, 180–185 (1993).

    ADS  Google Scholar 

  43. Guillot, B. & Guissani, Y. Boson peak and high frequency modes in amorphous silica. Phys. Rev. Lett. 78, 2401–2404 (1997).

    ADS  Google Scholar 

  44. Horbach, J., Kob, W. & Binder, K. High frequency sound and the boson peak in amorphous silica. Eur. Phys. J. B 19, 531–543 (2001).

    ADS  Google Scholar 

  45. Wang, C., Tamai, Y. & Kuzuu, N. A molecular dynamics study on vibration spectra of a-SiO2 surface. J. Non-Cryst. Solids 321, 204–209 (2003).

    ADS  Google Scholar 

  46. Maurer, C. & Schirmacher, W. Local oscillators vs. elastic disorder: a comparison of two models for the boson peak. J. Low-Temp. Phys. 137, 453–470 (2004).

    Google Scholar 

  47. Marruzzo, A., Schirmacher, W., Fratalocchi, A. & Ruocco, G. Heterogeneous shear elasticity of glasses: the origin of the boson peak. Sci. Rep. 3, 1407 (2013).

    ADS  Google Scholar 

  48. Tanguy, A., Wittmer, J.-P. & Barrat, J.-L. Continuum limit of amorphous elastic bodies: a finite-size study of low-frequency harmonic vibrations. Phys. Rev. B 66, 174205 (2002).

    ADS  Google Scholar 

  49. Maloney, C. & Lemaître, A. Universal breakdown of elasticity at the onset of material failure. Phys. Rev. Lett. 93, 195501 (2004).

    ADS  Google Scholar 

  50. Léonforte, F., Tanguy, A., Wittmer, J. P. & Barrat, J.-L. Continuum limit of amorphous elastic bodies II: linear response to a point source force. Phys. Rev. B 70, 014203 (2004).

    ADS  Google Scholar 

  51. Léonforte, F., Boissière, R., Tanguy, A., Wittmer, J. P. & Barrat, J.-L. Continuum limit of amorphous elastic bodies III: three-dimensional systems. Phys. Rev. B 72, 224206 (2005).

    ADS  Google Scholar 

  52. Léonforte, F., Tanguy, A., Wittmer, J. P. & Barrat, J.-L. Inhomogeneous elastic response of silica glass. Phys. Rev. Lett. 97, 055501 (2006).

    ADS  Google Scholar 

  53. Pan, Z. et al. Disorder classification of the vibrational spectra of modern glasses. Phys. Rev. B 104, 134106 (2021).

    ADS  Google Scholar 

  54. Shintani, H. & Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 7, 870–877 (2008).

    ADS  Google Scholar 

  55. Beltukov, Y. M., Fusco, C., Parshin, D. A. & Tanguy, A. Theory of sparse random matrices and vibrational spectra of amorphous solids. Phys. Rev. E 93, 023006 (2016).

    ADS  Google Scholar 

  56. Hu, Y.-C. & Tanaka, H. Origin of the boson peak in amorphous solids. Nat. Phys. 18, 669–677 (2022).

    Google Scholar 

  57. Schirmacher, W., Diezemann, G. & Ganter, C. Harmonic vibrational excitations in disordered solids and the ‘boson peak’. Phys. Rev. Lett. 81, 136 (1998).

    ADS  Google Scholar 

  58. Beltukov, Y. M. & Parshin, D. A. Theory of sparse random matrices and vibrational spectra of amorphous solids. Phys. Solid State 53, 151–162 (2011).

    Google Scholar 

  59. Conyuh, D. A., Beltukov, Y. M. & Parshin, D. A. Boson peak in two-dimensional random matrix models. J. Phys. Conf. Ser. 929, 012031 (2017).

    Google Scholar 

  60. Conyuh, D. A. & Beltukov, Y. M. Random matrix theory and the boson peak in two-dimensional systems. Phys. Solid State 62, 689–695 (2020).

    ADS  Google Scholar 

  61. Raikov, I. O., Conyuh, D. A., Ipatov, A. N. & Parshin, D. A. Boson peak in amorphous graphene in the stable random matrix model. Phys. Solid State 62, 2143–2153 (2020).

    ADS  Google Scholar 

  62. Büchner, C. et al. A large-area transferable wide band gap 2D silicon dioxide layer. ACS Nano 10, 7982–7989 (2016).

    Google Scholar 

  63. Büchner, C. & Heyde, M. Two-dimensional silica opens new perspectives. Prog. Surf. Sci. 92, 341–374 (2017).

    ADS  Google Scholar 

  64. Huang, P. Y. et al. Direct imaging of a two-dimensional silica glass on graphene. Nano Lett. 12, 1081–1086 (2012).

    ADS  Google Scholar 

  65. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    ADS  Google Scholar 

  66. Büchner, C. et al. Bending rigidity of 2D silica. Phys. Rev. Lett. 120, 226101 (2018).

    ADS  Google Scholar 

  67. Hofmann, F. & Toennies, J. P. High-resolution helium atom time-of-flight spectroscopy of low-frequency vibrations of adsorbates. Chem. Rev. 96, 1307–1326 (1996).

    Google Scholar 

  68. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Harcourt College Publishers, 1976).

  69. Apfolter, A. Wiederaufbau und Test einer He-Streuapparatur und erste Streuexperimente an amorpher sowie kristalliner SiO2 Oberfläche. Master’s thesis, Graz University of Technology (2005).

  70. Eder, S. D., Samelin, B., Bracco, G., Ansperger, K. & Holst, B. A free jet (supersonic), molecular beam source with automatized, 50 nm precision nozzle-skimmer positioning. Rev. Sci. Instrum. 84, 093303 (2013).

    ADS  Google Scholar 

  71. Koleske, D. D. & Sibener, S. J. Generation of pseudorandom sequences for use in cross-correlation modulation. Rev. Sci. Instrum. 63, 3852–3855 (1992).

    ADS  Google Scholar 

  72. Huang, Y., Wu, J. & Hwang, K. C. Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006).

    ADS  Google Scholar 

  73. Yang, B. et al. Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra. Phys. Chem. Chem. Phys. 14, 11344–11351 (2012).

    Google Scholar 

  74. Schirmacher, W., Scopigno, T. & Ruocco, G. Theory of vibrational anomalies in glasses. J. Non-Cryst. Solids 407, 133–140 (2015).

    ADS  Google Scholar 

  75. Amorim, B. & Guinea, F. Flexural mode of graphene on a substrate. Phys. Rev. B 88, 115418 (2013).

    ADS  Google Scholar 

  76. Goodman, F. O. & Wachman, H. Y. Quantum theory of gas-surface scattering. in Dynamics of Gas-Surface Scattering 143–180 (Elsevier, 1976).

  77. Beeby, J. L. The scattering of helium atoms from surfaces. J. Phys. C: Solid State Phys. 4, 359–362 (1971).

    ADS  Google Scholar 

  78. Holst, B., Eder, S. D. & Tømterud, M. Helium atom scattering on amorphous bilayer silica; https://doi.org/10.18710/CMKTQX

Download references

Acknowledgements

We want to specially thank H.-J. Freund and M. Heyde for making the 2D silica sample available for these experiments. We also thank W. Steurer for useful discussions and acknowledge the valuable contributions and stimulating discussions with G. Pacchioni. L.W. acknowledges funding from the Carl Zeiss Foundation through its breakthrough program. B.H. acknowledges funding from the Research Council of Norway (project nos. 213453 and 234159), both within the FRIPRO program. M.T. acknowledges funding from the Research Council of Norway (project no. 337339) (travel support).

Author information

Authors and Affiliations

Authors

Contributions

C.B. prepared the sample, S.D.E. performed the experiments and M.T. performed the data analysis. L.W. and W.S. provided the theoretical model. I.S. and J.R.M. supported the analysis. B.H. designed the experiments. M.T., J.R.M. and B.H. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Martin Tømterud or Bodil Holst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Anne Tanguy, Talat Rahman and Hideyuki Mizuno for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tømterud, M., Eder, S.D., Büchner, C. et al. Observation of the boson peak in a two-dimensional material. Nat. Phys. 19, 1910–1915 (2023). https://doi.org/10.1038/s41567-023-02177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02177-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing