Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin of the boson peak in amorphous solids

Abstract

It is widely known that the low-temperature physical properties, such as the heat capacity and thermal conductivity, of a disordered amorphous solid are markedly different from those of its ordered crystalline counterpart. However, the origin of this discrepancy is not known. One of the universal features of disordered solids is the excess vibrational density of states, known as the ‘boson peak’. Here we study the microscopic origin of the boson peak through numerical investigations of the dynamic structure factor of two-dimensional model glasses over a wide frequency–wavenumber range. We show that the boson peak originates from quasi-localized vibrations of string-like dynamical defects. Furthermore, we reveal that these dynamical defects provide a common structural origin for the three most fundamental dynamic modes of glassy systems: the boson peak, fast β relaxation and slow structural relaxation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The VDOS and boson peak of the 2DPL system.
Fig. 2: Properties of the transverse phononic and non-phononic modes of the 2DPL system.
Fig. 3: The dynamical structure factors of the 2DPL system.
Fig. 4: The dispersion relations and additional modes of the 2DPL system.
Fig. 5: The force network pattern of the 2DPL system compared with the particle-level reduced VDOS at ωBP.
Fig. 6: Structural origin and nature of the quasi-localized mode of the 2DPL system.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The simulation codes used in this study are available from the corresponding authors on reasonable request.

References

  1. Zeller, R. C. & Pohl, R. O. Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029–2041 (1971).

    Article  ADS  Google Scholar 

  2. Alexander, S. Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65–236 (1998).

    Article  ADS  Google Scholar 

  3. Phillips, W. A. (ed.) Amorphous Solids: Low-Temperature Properties (Springer-Verlag, 1981).

  4. Nakayama, T. Boson peak and terahertz frequency dynamics of vitreous silica. Rep. Prog. Phys. 65, 1195 (2002).

    Article  ADS  Google Scholar 

  5. Ioffe, A. F. & Regel, A. R. Non-crytalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 4, 237–291 (1960).

    Google Scholar 

  6. Elliott, S. R. A unified model for the low-energy vibrational behaviour of amorphous solids. Europhys. Lett. 19, 201–206 (1992).

    Article  ADS  Google Scholar 

  7. Schirmacher, W. Thermal conductivity of glassy materials and the ‘boson peak’. Europhys. Lett. 73, 892–898 (2006).

    Article  ADS  Google Scholar 

  8. Schirmacher, W., Ruocco, G. & Scopigno, T. Acoustic attenuation in glasses and its relation with the boson peak. Phys. Rev. Lett. 98, 025501 (2007).

    Article  ADS  Google Scholar 

  9. Leonforte, F., Tanguy, A., Wittmer, J. P. & Barrat, J. L. Inhomogeneous elastic response of silica glass. Phys. Rev. Lett. 97, 055501 (2006).

    Article  ADS  Google Scholar 

  10. Galperin, Y. M., Karpov, V. G. & Kozub, V. I. Localized states in glasses. Adv. Phys. 38, 669–737 (1989).

    Article  ADS  Google Scholar 

  11. Buchenau, U., Galperin, Y. M., Gurevich, V. L. & Schober, H. R. Anharmonic potentials and vibrational localization in glasses. Phys. Rev. B 43, 5039–5045 (1991).

    Article  ADS  Google Scholar 

  12. Klinger, M. I. & Kosevich, A. M. Soft-mode dynamics model of boson peak and high frequency sound in glasses: ‘inelastic’ Ioffe–Regel crossover and strong hybridization of excitations. Phys. Lett. A 295, 311–317 (2002).

    Article  ADS  Google Scholar 

  13. Gurevich, V. L., Parshin, D. A. & Schober, H. R. Anharmonicity, vibrational instability, and the boson peak in glasses. Phys. Rev. B 67, 094203 (2003).

    Article  ADS  Google Scholar 

  14. Parshin, D. A., Schober, H. R. & Gurevich, V. L. Vibrational instability, two-level systems, and the boson peak in glasses. Phys. Rev. B 76, 064206 (2007).

    Article  ADS  Google Scholar 

  15. Götze, W. & Mayr, M. R. Evolution of vibrational excitations in glassy systems. Phys. Rev. E 61, 587 (2000).

    Article  ADS  Google Scholar 

  16. Grigera, T. S., Martín-Mayor, V., Parisi, G. & Verrocchio, P. Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature 422, 289–292 (2003).

    Article  ADS  Google Scholar 

  17. Baggioli, M. & Zaccone, A. Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials. Phys. Rev. Lett. 122, 145501 (2019).

    Article  ADS  Google Scholar 

  18. Taraskin, S. N., Loh, Y. L., Natarajan, G. & Elliott, S. R. Origin of the boson peak in systems with lattice disorder. Phys. Rev. Lett. 86, 1255–1258 (2001).

    Article  ADS  Google Scholar 

  19. Chumakov, A. I. et al. Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. Phys. Rev. Lett. 106, 225501 (2011).

    Article  ADS  Google Scholar 

  20. Alexander, S. What is a solid? Phys. A 249, 266–275 (1998).

    Article  Google Scholar 

  21. Tong, H., Sengupta, S. & Tanaka, H. Emergent solidity of amorphous materials as a consequence of mechanical self-organisation. Nat. Commun. 11, 4863 (2020).

    Article  ADS  Google Scholar 

  22. Douglas, J. F. & Xu, W.-S. Equation of state and entropy theory approach to thermodynamic scaling in polymeric glass-forming liquids. Macromolecules 54, 3247–3269 (2021).

    Article  ADS  Google Scholar 

  23. Schober, H. R. & Oligschleger, C. Low-frequency vibrations in a model glass. Phys. Rev. B 53, 11469 (1996).

    Article  ADS  Google Scholar 

  24. Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338 (1998).

    Article  ADS  Google Scholar 

  25. Novikov, V. N. & Surovtsev, N. V. Spatial structure of boson peak vibrations in glasses. Phys. Rev. B 59, 38 (1999).

    Article  ADS  Google Scholar 

  26. Zhang, H. & Douglas, J. F. Glassy interfacial dynamics of Ni nanoparticles: part II. Discrete breathers as an explanation of two-level energy fluctuations. Soft Matter 9, 1266–1280 (2013).

    Article  ADS  Google Scholar 

  27. Starr, F. W., Douglas, J. F. & Sastry, S. The relationship of dynamical heterogeneity to the Adam–Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 138, 12A541 (2013).

    Article  Google Scholar 

  28. Pazmiño Betancourt, B. A., Douglas, J. F. & Starr, F. W. String model for the dynamics of glass-forming liquids. J. Chem. Phys. 140, 204509 (2014).

    Article  ADS  Google Scholar 

  29. Bianchi, E., Giordano, V. M. & Lund, F. Elastic anomalies in glasses: elastic string theory understanding of the cases of glycerol and silica. Phys. Rev. B 101, 174311 (2020).

    Article  ADS  Google Scholar 

  30. Zhang, H., Wang, X., Yu, H.-B. & Douglas, J. F. Fast dynamics in a model metallic glass-forming material. J. Chem. Phys. 154, 084505 (2021).

    Article  ADS  Google Scholar 

  31. Novikov, V. N. Vibration anharmonicity and fast relaxation in the region of the glass transition. Phys. Rev. B 58, 8367 (1998).

    Article  ADS  Google Scholar 

  32. Kapteijns, G., Bouchbinder, E. & Lerner, E. Universal nonphononic density of states in 2D, 3D, and 4D glasses. Phys. Rev. Lett. 121, 055501 (2018).

    Article  ADS  Google Scholar 

  33. Brüning, R., St-Onge, D. A., Patterson, S. & Kob, W. Glass transitions in one-, two-, three-, and four-dimensional binary Lennard–Jones systems. J. Phys. Condens. Matter 21, 035117 (2008).

    Article  Google Scholar 

  34. Shintani, H. & Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 7, 870–877 (2008).

    Article  ADS  Google Scholar 

  35. Malinovsky, V. K., Novikov, V. N. & Sokolov, A. P. Log-normal spectrum of low-energy vibrational excitations in glasses. Phys. Lett. A 153, 63–66 (1991).

    Article  ADS  Google Scholar 

  36. Beltukov, Y. M., Fusco, C., Tanguy, A. & Parshin, D. A. Transverse and longitudinal vibrations in amorphous silicon. J. Phys. Conf. Ser. 661, 012056 (2015).

    Article  Google Scholar 

  37. Schober, H. R. Vibrations and relaxations in a soft sphere glass: boson peak and structure factors. J. Phys. Condens. Matter 16, S2659–S2670 (2004).

    Article  ADS  Google Scholar 

  38. Mizuno, H., Shiba, H. & Ikeda, A. Continuum limit of the vibrational properties of amorphous solids. Proc. Natl Acad. Sci. U. S. A. 114, E9767–E9774 (2017).

    Article  ADS  Google Scholar 

  39. Beltukov, Y. M., Fusco, C., Parshin, D. A. & Tanguy, A. Boson peak and Ioffe–Regel criterion in amorphous siliconlike materials: the effect of bond directionality. Phys. Rev. E 93, 023006 (2016).

    Article  ADS  Google Scholar 

  40. Scopigno, T., Suck, J. B., Angelini, R., Albergamo, F. & Ruocco, G. High-frequency dynamics in metallic glasses. Phys. Rev. Lett. 96, 135501 (2006).

    Article  ADS  Google Scholar 

  41. Mizuno, H., Mossa, S. & Barrat, J.-L. Acoustic excitations and elastic heterogeneities in disordered solids. Proc. Natl Acad. Sci. U. S. A. 111, 11949–11954 (2014).

    Article  ADS  Google Scholar 

  42. Monaco, G. & Giordano, V. M. Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses. Proc. Natl Acad. Sci. U. S. A. 106, 3659–3663 (2009).

    Article  ADS  Google Scholar 

  43. Monaco, G. & Mossa, S. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale. Proc. Natl Acad. Sci. U. S. A. 106, 16907–16912 (2009).

    Article  ADS  Google Scholar 

  44. Duval, E., Deschamps, T. & Saviot, L. Poisson ratio and excess low-frequency vibrational states in glasses. J. Chem. Phys. 139, 064506 (2013).

    Article  ADS  Google Scholar 

  45. Pazmiño Betancourt, B. A., Starr, F. W. & Douglas, J. F. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt. J. Chem. Phys. 148, 104508 (2018).

    Article  ADS  Google Scholar 

  46. A. Riggleman, R., F. Douglas, J. & Pablo, J. J. D. Antiplasticization and the elastic properties of glass-forming polymer liquids. Soft Matter 6, 292–304 (2010).

    Article  ADS  Google Scholar 

  47. Lerner, E., Düring, G. & Bouchbinder, E. Statistics and properties of low-frequency vibrational modes in structural glasses. Phys. Rev. Lett. 117, 035501 (2016).

    Article  ADS  Google Scholar 

  48. Leonforte, F., Boissiére, R., Tanguy, A., Wittmer, J. P. & Barrat, J. L. Continuum limit of amorphous elastic bodies. III. Three-dimensional systems. Phys. Rev. B 72, 224206 (2005).

    Article  ADS  Google Scholar 

  49. Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).

    Google Scholar 

  50. Zhang, H. P., Fan, B. B., Wu, J. Q., Wang, W. H. & Li, M. Z. Universal relationship of boson peak with Debye level and Debye–Waller factor in disordered materials. Phsy. Rev. Mater. 4, 095603 (2020).

    ADS  Google Scholar 

  51. Yurchenko, S. O., Komarov, K. A., Kryuchkov, N. P., Zaytsev, K. I. & Brazhkin, V. V. Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities. J. Chem. Phys. 148, 134508 (2018).

    Article  ADS  Google Scholar 

  52. Kojima, S., Novikov, V. N. & Kodama, M. Fast relaxation, boson peak, and anharmonicity in Li2O–B2O3 glasses. J. Chem. Phys. 113, 6344–6350 (2000).

    Article  ADS  Google Scholar 

  53. Starr, F. W., Sastry, S., Douglas, J. F. & Glotzer, S. C. What do we learn from the local geometry of glass-forming liquids? Phys. Rev. Lett. 89, 125501 (2002).

    Article  ADS  Google Scholar 

  54. Yip, C.-T. et al. Direct evidence of void-induced structural relaxations in colloidal glass formers. Phys. Rev. Lett. 125, 258001 (2020).

    Article  ADS  Google Scholar 

  55. Horbach, J., Kob, W., Binder, K. & Angell, C. A. Finite size effects in simulations of glass dynamics. Phys. Rev. E 54, R5897 (1996).

    Article  ADS  Google Scholar 

  56. Shi, R. & Tanaka, H. Distinct signature of local tetrahedral ordering in the scattering function of covalent liquids and glasses. Sci. Adv. 5, eaav3194 (2019).

    Article  ADS  Google Scholar 

  57. Habasaki, J., Okada, I. & Hiwatari, Y. Origins of the two-step relaxation and the boson peak in an alkali silicate glass studied by molecular-dynamics simulation. Phys. Rev. E 52, 2681 (1995).

    Article  ADS  Google Scholar 

  58. Dyre, J. C. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953 (2006).

    Article  ADS  Google Scholar 

  59. Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).

    Article  ADS  Google Scholar 

  60. Larini, L., Ottochian, A., De Michele, C. & Leporini, D. Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers. Nat. Phys. 4, 42–45 (2008).

    Article  Google Scholar 

  61. Pazmiño Betancourt, B. A., Hanakata, P. Z., Starr, F. W. & Douglas, J. F. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc. Natl Acad. Sci. U. S. A. 112, 2966–2971 (2015).

    Article  ADS  Google Scholar 

  62. Horbach, J., Kob, W. & Binder, K. High frequency sound and the boson peak in amorphous silica. Eur. Phys. J. B 19, 531–543 (2001).

    Article  ADS  Google Scholar 

  63. Arai, M. et al. Novel existence of collective propagating mode and strongly localized mode in vitreous silica. Phys. B: Condens. Matter 263, 268–272 (1999).

    Article  ADS  Google Scholar 

  64. Buchenau, U. et al. Low-frequency modes in vitreous silica. Phys. Rev. B 34, 5665–5673 (1986).

    Article  ADS  Google Scholar 

  65. Greaves, G. N., Meneau, F., Majérus, O., Jones, D. G. & Taylor, J. Identifying vibrations that destabilize crystals and characterize the glassy state. Science 308, 1299–1302 (2005).

    Article  ADS  Google Scholar 

  66. Kalampounias, A. G., Yannopoulos, S. N. & Papatheodorou, G. N. Temperature-induced structural changes in glassy, supercooled, and molten silica from 77 to 2150 K. J. Chem. Phys. 124, 014504 (2006).

    Article  ADS  Google Scholar 

  67. Stipcich, M., Marcos, J., Mañosa, L., Planes, A. & Romero, R. Low-temperature entropy in Cu-based shape-memory alloys and the boson peak. Phys. Rev. B 68, 214302 (2003).

    Article  ADS  Google Scholar 

  68. Hermann, R. P. et al. Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett. 90, 135505 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Specially Promoted Research (JP20H05619) and Scientific Research (A) (JP18H03675) from the Japan Society of the Promotion of Science (JSPS). Y.C.H. is grateful for financial support from a JSPS fellowship (JP19F19021).

Author information

Authors and Affiliations

Authors

Contributions

H.T. designed and supervised the project. Y.C.H. performed research. Y.C.H. and H.T. analysed data and wrote the paper together.

Corresponding author

Correspondence to Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Lothar Wondraczek, Jack Douglas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dynamical and vibrational properties of the 2DPL model.

The detailed characterisation methods are provided in the Supplementary Information. a, Angell plot of the structural relaxation times τα, with a fit to the Vogel-Fulcher-Tammann (VFT) equation. b, Relationship of the Debye-Waller factor μDW with τα. The orange dashed line is a fit to \({\tau }_{\alpha }={\tau }_{{{{\rm{A}}}}}\exp [{({\mu }_{{{{\rm{A}}}}}^{2}/{\mu }^{{{{\rm{DW}}}}})}^{\alpha /2}-1]\), with α = 3.51. c, The velocity auto-correlation function (VACF) of the glassy state at T = 0.1. d, The VDOS calculated from the fast Fourier transformation of VACF (FFT_VACF) compared to that from Hessian diagonalization (Hessian).

Extended Data Fig. 2 The participation ratio of the vibrational modes of the 2DPL model.

a, The participation ratio of each vibrational mode in the full frequency range. Most of the vibrational modes are phononic at low frequencies with a PR ≈ 2/3, distributed discretely. PR decays to a plateau over a wide frequency range with increasing frequency. Phonons transform to diffusons gradually, and the quasi-localised modes emerge simultaneously. This suggests phonon scattering by quasi-localised modes. At high frequencies above ωDebye (the Mobility edge), all the modes become strongly localised, which may be referred to as ‘Anderson localization’. b, The participation ratio of the longitudinal vibrational modes. The longitudinal phononic modes last up to much higher frequencies than the transverse ones.

Extended Data Fig. 3 Peak intensities of the dynamical structure factors at the characteristic frequencies of the 2DPL model.

a, The intensity of the phononic components of the transverse and longitudinal modes as a function of q. Both the transverse and longitudinal intensity decay in a q−2 manner at low q. b, The intensity of the transverse quasi-localised modes, which increases with increasing q. This indicates that the quasi-localised modes become more dominant at higher q, proving that these modes have a localised nature different from phonons and diffusons.

Extended Data Fig. 4 The transverse dynamical structure factors at high q of the 2DPL model.

Equation (1) is used to describe ST(q, ω) at q = 2.962 and the other data below the high frequency peak (solid grey lines). A localised mode around the Debye frequency (ωHT) appears when q 3.0 which can be fitted well by a log-normal function (purple dashed lines). The strength of this highly localised mode is relatively weak compared to the quasi-localised and phononic modes.

Extended Data Fig. 5 Properties of stringlets mainly contributing to the boson peak of the 2DPL model.

a, The spatial distribution of the contribution of each particle to the reduced transverse vibrational density of state, \({D}_{i}^{{{{\rm{T}}}}}(\omega )/\omega\) around the boson peak frequency. This is the same plot as Fig. 6c in the main text, except that the atoms that mainly contribute to the boson peak vibrations are marked red. These atoms (stringlets) are quantified by \({D}_{i}^{{{{\rm{T}}}}}(\omega )/\omega > 0.013\), whose fraction is 5.3% for this glass sample. b, The string-size distribution in our model system. The statistics is made from over 50 independent simulations.

Extended Data Fig. 6 Atomic-scale features of string-like vibrational motion around ωBP of the 2DPL model.

These enlarged domains are chosen as typical examples from Fig. 6c in the main text. It is obvious that there are always additional vacancies (shown by blue circles) at the ends of a string (shown by red dashed lines). In each figure, the atom species are differentiated by the particle size.

Extended Data Fig. 7 Atomic-scale properties of a glassy inherent structure of the 2DPL model.

a, Local Voronoi area. b, Local chemical composition. c, Local potential energy. d, Local simple shear modulus. e, Local pure shear modulus. f, Spatial correlation of the non-affine displacement fields excited by quasi-static athermal deformation in the form of uniaxial tension (γxx) and simple shear (γxy) at very small strain. g, Transverse component of the lowest non-zero frequency vibrational mode, which shows quasi-localised modes (QLMs) with four-leaf pattern. h, Non-affine displacement field induced by uniaxial tension along the horizontal axis (strain: 4 × 10−5). The major QLM in the right top corner is not excited. i, Non-affine displacement field induced by simple shear along the horizontal axis (strain: 3 × 10−5). The major QLM is excited in this case. The vector amplitudes have been adjusted for better visualisation. These results are obtained for the glassy state shown in Fig. 6 in the main text.

Extended Data Fig. 8 Dynamical structure factors of the 2DKA model in the low-temperature glassy state.

a, The transverse dynamical structure factors at several low wavenumbers, with the fits (solid grey lines) to equation (1) in the main text. The blue dotted and purple dashed lines denote the log-normal and phonon contributions for q = 0.941, respectively. b, The transverse dynamical structure factors at higher wavenumbers, with the fits (solid grey lines) to equation (1) in the main text. The blue dotted and purple dashed lines denote the log-normal and phonon contributions for q = 1.566, respectively. c,d, The longitudinal dynamical structure factors at the studied wavenumbers corresponding to a and b.

Extended Data Fig. 9 Vibrational properties of the 2DKA Model.

a, VDOS of the low-temperature glass. b, The corresponding VDOS with a fit to the log-normal function (red dashed line), from which we estimate the boson peak frequency as ~ 1.3. c, Two dimensional contour of the transverse dynamical structure factors. The orange shade indicates the boson peak frequency range. d, Dispersion relation in a wide frequency-wavenumber range, with the existence of quasi-localised modes around the boson peak frequency. e, Enlarged dispersion relation for transverse phonons, from which we estimate the transverse Ioffe-Regel limit as 1.6, close to ωBP.

Extended Data Fig. 10 Properties of the 2DSL model in the low temperature glassy state.

a, Configuration of particles with directional bondings. Green particles form isolated pentagons. b, Transverse dynamical structure factors, with fits to equation (1) in the main text (solid grey lines). The blue dotted and purple dashed lines represent log-normal contribution and phonon contribution at q = 1.295, respectively. The red dashed line denotes the boson peak frequency. c, Spatial distribution of the atomic-level vibrability around the boson peak frequency.

Supplementary information

Supplementary information

Supplementary notes, Figs. 1–6 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YC., Tanaka, H. Origin of the boson peak in amorphous solids. Nat. Phys. 18, 669–677 (2022). https://doi.org/10.1038/s41567-022-01628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01628-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing