Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of equilibrated liquid regions within the glass

Abstract

The conventional understanding of the glass transition is that the transition from glass to liquid appears as a dynamic process in which atoms or molecules relax cooperatively into the equilibrium phase. Here we show that—in contrast to this picture—isolated regions of liquid form within the glassy matrix and the nature of the glass transition at a given temperature depends on the ratio between the relaxation time of the glass, τglass, and the alpha relaxation time of the equilibrated liquid, τα. At temperatures at which τglass/τα is large, we observe that high-mobility regions transit directly into the equilibrated liquid and subsequently grow by dynamic facilitation before—or while—cooperative glass relaxation sets into play. On the contrary, at temperatures associated with smaller τglass/τα, the glass transition proceeds by cooperative relaxation dynamics throughout the material. This behaviour is independent of the experimental procedure or protocol used to produce the glass.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal protocol and samples under study.
Fig. 2: Glass transition in samples deposited at 0.99Tg.
Fig. 3: Glass transition in aged glasses.
Fig. 4: Glass transition in ultrastable glasses.

Similar content being viewed by others

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article  ADS  Google Scholar 

  2. Charbonneau, P. & Tarjus, G. Decorrelation of the static and dynamic length scales in hard-sphere glass formers. Phys. Rev. E 87, 042305 (2013).

    Article  ADS  Google Scholar 

  3. Coslovich, D. & Pastore, G. Understanding fragility in supercooled Lennard–Jones mixtures. I. Locally preferred structures. J. Chem. Phys. 127, 124504 (2007).

    Article  ADS  Google Scholar 

  4. Ma, D., Stoica, A. D. & Wang, X. L. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30–34 (2009).

    Article  ADS  Google Scholar 

  5. Ojovan, M. I. & Tournier, R. F. On structural rearrangements near the glass transition temperature in amorphous silica. Mater. (Basel) 14, 5235 (2021).

    Article  ADS  Google Scholar 

  6. Ojovan, M. I. & Louzguine-Luzgin, D. V. Revealing structural changes at glass transition via radial distribution functions. J. Phys. Chem. B 124, 3186–3194 (2020).

    Article  Google Scholar 

  7. Albert, S. et al. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352, 1308–1311 (2016).

    Article  ADS  Google Scholar 

  8. Janssen, L. M. C. Mode-coupling theory of the glass transition: a primer. Front. Phys. 6, 1–18 (2018).

    Article  Google Scholar 

  9. Biroli, G. & Garrahan, J. P. Perspective: the glass transition. J. Chem. Phys. 138, 12A301 (2013).

    Article  Google Scholar 

  10. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  ADS  Google Scholar 

  11. Hecksher, T. & Dyre, J. C. A review of experiments testing the shoving model. J. Non-Cryst. Solids 407, 14–22 (2015).

    Article  ADS  Google Scholar 

  12. Stanzione, J. F., Strawhecker, K. E. & Wool, R. P. Observing the twinkling fractal nature of the glass transition. J. Non-Cryst. Solids 357, 311–319 (2011).

    Article  ADS  Google Scholar 

  13. Mauro, J. C., Yue, Y., Ellison, A. J., Gupta, P. K. & Allan, D. C. Viscosity of glass-forming liquids. Proc. Natl Acad. Sci. USA 106, 19780–19784 (2009).

    Article  ADS  Google Scholar 

  14. Lubchenko, V. Theory of the structural glass transition: a pedagogical review. Adv. Phys. 64, 283–443 (2015).

    Article  ADS  Google Scholar 

  15. Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007).

    Article  ADS  Google Scholar 

  16. Tarjus, G., Kivelson, S. A., Nussinov, Z. & Viot, P. The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J. Phys. Condens. Matter 17, 1143–1182 (2005).

    Article  ADS  Google Scholar 

  17. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2003).

    Article  ADS  Google Scholar 

  18. Wisitsorasak, A. & Wolynes, P. G. Dynamical heterogeneity of the glassy state. J. Phys. Chem. B 118, 7835–7847 (2014).

    Article  Google Scholar 

  19. Wolynes, P. G. Spatiotemporal structures in aging and rejuvenating glasses. Proc. Natl Acad. Sci. USA 106, 1353–1358 (2009).

    Article  Google Scholar 

  20. Vila-Costa, A. et al. Nucleation and growth of the supercooled liquid phase control glass transition in bulk ultrastable glasses. Phys. Rev. Lett. 124, 076002 (2020).

    Article  ADS  Google Scholar 

  21. Lüttich, M. et al. Anti-aging in ultrastable metallic glasses. Phys. Rev. Lett. 120, 135504 (2018).

    Article  ADS  Google Scholar 

  22. Zhao, J., Simon, S. L. & McKenna, G. B. Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nat. Commun. 4, 1783 (2013).

    Article  ADS  Google Scholar 

  23. Badrinarayanan, P., Zheng, W., Li, Q. & Simon, S. L. The glass transition temperature versus the fictive temperature. J. Non-Cryst. Solids 353, 2603–2612 (2007).

    Article  ADS  Google Scholar 

  24. Moynihan, C. T., Lee, S.-K., Tatsumisago, M. & Minami, T. Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments. Thermochim. Acta 280–281, 153–162 (1996).

    Article  Google Scholar 

  25. Keys, A. S., Garrahan, J. P. & Chandler, D. Calorimetric glass transition explained by hierarchical dynamic facilitation. Proc. Natl Acad. Sci. USA 110, 4482–4487 (2013).

    Article  ADS  Google Scholar 

  26. Chandler, D. & Garrahan, J. P. Dynamics on the way to forming glass: bubbles in space–time. Annu. Rev. Phys. Chem. 61, 191–217 (2010).

    Article  Google Scholar 

  27. Douglass, I. & Harrowell, P. Can a stable glass be superheated? Modelling the kinetic stability of coated glassy films. J. Chem. Phys. 138, 12A516 (2013).

    Article  Google Scholar 

  28. Gutiérrez, R. & Garrahan, J. P. Front propagation versus bulk relaxation in the annealing dynamics of a kinetically constrained model of ultrastable glasses. J. Stat. Mech. Theory. Exp. 2016, 074005 (2016).

    Article  Google Scholar 

  29. Lulli, M., Lee, C. S., Deng, H. Y., Yip, C. T. & Lam, C. H. Spatial heterogeneities in structural temperature cause Kovacs’ expansion gap paradox in aging of glasses. Phys. Rev. Lett. 124, 095501 (2020).

    Article  ADS  Google Scholar 

  30. Jack, R. L. & Berthier, L. The melting of stable glasses is governed by nucleation-and-growth dynamics. J. Chem. Phys. 144, 244506 (2016).

    Article  ADS  Google Scholar 

  31. Fullerton, C. J. & Berthier, L. Density controls the kinetic stability of ultrastable glasses. EPL 119, 36003 (2017).

    Article  ADS  Google Scholar 

  32. Guiselin, B., Scalliet, C. & Berthier, L. Microscopic origin of excess wings in relaxation spectra of supercooled liquids. Nat. Phys. 18, 468–472 (2022).

    Article  Google Scholar 

  33. Rodriguez-Tinoco, C., Gonzalez-Silveira, M., Ramos, M. A. & Rodriguez-Viejo, J. Ultrastable glasses: new perspectives for an old problem. Riv. Nuovo Cim. 45, 325–406 (2022).

    Article  ADS  Google Scholar 

  34. Rodríguez-Tinoco, C. et al. Surface–bulk interplay in vapor-deposited glasses: crossover length and the origin of front transformation. Phys. Rev. Lett. 123, 155501 (2019).

    Article  ADS  Google Scholar 

  35. Kearns, K. L. et al. Hiking down the energy landscape: progress toward the Kauzmann temperature via vapor deposition. J. Phys. Chem. B 112, 4934–4942 (2008).

    Article  Google Scholar 

  36. Ràfols-Ribé, J., Gonzalez-Silveira, M., Rodríguez-Tinoco, C. & Rodríguez-Viejo, J. The role of thermodynamic stability in the characteristics of the devitrification front of vapour-deposited glasses of toluene. Phys. Chem. Chem. Phys. 19, 11089–11097 (2017).

    Article  Google Scholar 

  37. Kearns, K. L., Ediger, M. D., Huth, H. & Schick, C. One micrometer length scale controls kinetic stability of low-energy glasses. J. Phys. Chem. Lett. 1, 388–392 (2010).

    Article  Google Scholar 

  38. Sepúlveda, A., Swallen, S. F. & Ediger, M. D. Manipulating the properties of stable organic glasses using kinetic facilitation. J. Chem. Phys. 138, 12A517 (2013).

    Article  Google Scholar 

  39. Ràfols-Ribé, J. et al. Kinetic arrest of front transformation to gain access to the bulk glass transition in ultrathin films of vapour-deposited glasses. Phys. Chem. Chem. Phys. 20, 29989–29995 (2018).

    Article  Google Scholar 

  40. Hellman, F. Surface‐induced ordering: a model for vapor‐deposition growth of amorphous materials. Appl. Phys. Lett. 64, 1947 (1998).

    Article  ADS  Google Scholar 

  41. Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    Article  ADS  Google Scholar 

  42. León-Gutierrez, E. et al. In situ nanocalorimetry of thin glassy organic films. J. Chem. Phys. 129, 181101 (2008).

    Article  ADS  Google Scholar 

  43. Leon-Gutierrez, E., Sepúlveda, A., Garcia, G., Clavaguera-Mora, M. T. & Rodríguez-Viejo, J. Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Phys. Chem. Chem. Phys. 12, 14693–14698 (2010).

    Article  Google Scholar 

  44. Leon-Gutierrez, E., Sepúlveda, A., Garcia, G., Clavaguera-Mora, M. T. & Rodríguez-Viejo, J. Correction: stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Phys. Chem. Chem. Phys. 18, 8244–8245 (2016).

    Article  Google Scholar 

  45. Beasley, M. S., Bishop, C., Kasting, B. J. & Ediger, M. D. Vapor-deposited ethylbenzene glasses approach ‘ideal glass’ density. J. Phys. Chem. Lett. 10, 4069–4075 (2019).

    Article  Google Scholar 

  46. Rodríguez-Tinoco, C., Ràfols-Ribé, J., González-Silveira, M. & Rodríguez-Viejo, J. Relaxation dynamics of glasses along a wide stability and temperature range. Sci. Rep. 6, 1–8 (2016).

    Article  Google Scholar 

  47. Sepúlveda, A., Tylinski, M., Guiseppi-Elie, A., Richert, R. & Ediger, M. D. Role of fragility in the formation of highly stable organic glasses. Phys. Rev. Lett. 113, 1–5 (2014).

    Article  Google Scholar 

  48. Cubeta, U. S. & Sadtchenko, V. Glass softening kinetics in the limit of high heating rates. J. Chem. Phys. 150, 094508 (2019).

    Article  ADS  Google Scholar 

  49. Louzguine-Luzgin, D. V. Vitrification and devitrification processes in metallic glasses. J. Alloys Compd. 586, S2–S8 (2014).

    Article  Google Scholar 

  50. Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. D. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proc. Natl Acad. Sci. USA 112, 4227–4232 (2015).

    Article  ADS  Google Scholar 

  51. Rodríguez-Tinoco, C., Rams-Baron, M., Rodríguez-Viejo, J. & Paluch, M. Emergence of a substrate-temperature-dependent dielectric process in a prototypical vapor deposited hole-transport glass. Sci. Rep. 8, 1–10 (2018).

    Article  Google Scholar 

  52. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article  ADS  Google Scholar 

  53. Walters, D. M., Richert, R. & Ediger, M. D. Thermal stability of vapor-deposited stable glasses of an organic semiconductor. J. Chem. Phys. 142, 134504 (2015).

    Article  ADS  Google Scholar 

  54. Rodríguez-Tinoco, C., Ràfols-Ribé, J., González-Silveira, M. & Rodríguez-Viejo, J. Relaxation dynamics of glasses along a wide stability and temperature range. Sci. Rep. 6, 35607 (2016).

    Article  ADS  Google Scholar 

  55. Olson, E. A., Efremov, M. Y., Zhang, M., Zhang, Z. & Allen, L. H. The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J. Microelectromech. Syst. 12, 355–364 (2003).

    Article  Google Scholar 

  56. Efremov, M. Y. et al. Thin-film differential scanning nanocalorimetry: heat capacity analysis. Thermochim. Acta 412, 13–23 (2004).

    Article  Google Scholar 

  57. Lopeandía, A. F. et al. Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev. Sci. Instrum. 76, 065104 (2005).

    Article  ADS  Google Scholar 

  58. Rodríguez-Viejo, J. & Lopeandía, A. F. in Fast Scanning Calorimetry (eds Schick, C. & Mathot, V.) 105–149 (Springer, 2016).

  59. Johari, G. P. Comment on ‘Glass transition in pure and doped amorphous solid water: an ultrafast microcalorimetry study’. J. Chem. Phys. 127, 157101 (2007).

    Article  ADS  Google Scholar 

  60. Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).

    Article  ADS  Google Scholar 

  61. Wojnarowska, Z. et al. Broadband dielectric relaxation study at ambient and elevated pressure of molecular dynamics of pharmaceutical: indomethacin. J. Phys. Chem. B 113, 12536–12545 (2009).

    Article  Google Scholar 

  62. Busch, R., Bakke, E. & Johnson, W. L. Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725–4732 (1998).

    Article  ADS  Google Scholar 

  63. Angell, C. A. Entropy and fragility in supercooling liquids. J. Res. Natl Inst. Stand. Technol. 102, 171–185 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

J.R.-V. and M.G.-S. acknowledge grant MAT2016-79759-R funded by MCIN/AEI/ 10.13039/501100011033 and ‘ERDF A way of making Europe’, and grant PID2020-117409RB-I00 funded by MCIN/AEI/10.13039/501100011033. C.R.-T. is a Serra Hunter Fellow. The ICN2 was funded by the CERCA programme/Generalitat de Catalunya. The ICN2 was supported by the Severo Ochoa Centres of Excellence Programme, funded by the Spanish Research Agency (AEI, grant no. SEV-2017-0706). All authors acknowledge Ll. Abad and IMB-CNM-CSIC for the fabrication of the nanocalorimeters.

Author information

Authors and Affiliations

Authors

Contributions

A.V.-C., M.G.-S. and J.R.-V. conceived and designed the experiments. A.V.-C. and M.R.-L. performed the experiments. All the authors contributed to the analysis of the data and discussed the results. M.G.-S., A.V.-C., C.R.-T. and J.R.-V. wrote the paper. M.G.-S. and J.R.-V. supervised the project.

Corresponding authors

Correspondence to Marta Gonzalez-Silveira or Javier Rodriguez-Viejo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Discussion.

Source data

Source Data Fig. 2

Specific heat data and relaxation/transformation time.

Source Data Fig. 3

Specific heat data and relaxation/transformation time.

Source Data Fig. 4

Specific heat data and relaxation/transformation time.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vila-Costa, A., Gonzalez-Silveira, M., Rodríguez-Tinoco, C. et al. Emergence of equilibrated liquid regions within the glass. Nat. Phys. 19, 114–119 (2023). https://doi.org/10.1038/s41567-022-01791-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01791-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing