Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast universal control of an oscillator with weak dispersive coupling to a qubit

Abstract

Full manipulation of a quantum system requires controlled evolution generated by nonlinear interactions, which is coherent when the rate of nonlinearity is large compared with the rate of decoherence. As a result, engineered quantum systems typically rely on a bare nonlinearity much stronger than decoherence rates, and this hierarchy is usually assumed to be necessary. Here we challenge this assumption by demonstrating the universal control of a quantum system where the rate of bare nonlinear interaction is comparable to the fastest rate of decoherence. We introduce a noise-resilient protocol for the universal quantum control of a nearly harmonic oscillator that takes advantage of an in situ enhanced nonlinearity instead of harnessing a bare nonlinearity. Our experiment consists of a high-quality-factor microwave cavity with weak dispersive coupling to a superconducting qubit with much lower quality. By using strong drives to temporarily excite the oscillator, we realize an amplified three-wave-mixing interaction, achieving typical operation speeds over an order of magnitude faster than expected from the bare dispersive coupling. Our demonstrations include the preparation of a single-photon state with high fidelity, the generation of squeezed vacuum with large intracavity squeezing and measurement-free preparation of logical states for the binomial and Gottesman–Kitaev–Preskill quantum error-correcting codes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ECD control.
Fig. 2: Fock state preparation.
Fig. 3: Preparation of squeezed states and bosonic code words.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code used for gate and pulse optimization is available via GitHub at https://github.com/alec-eickbusch/ECD_control.

References

  1. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Haroche, S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).

    Article  ADS  Google Scholar 

  3. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).

    Article  Google Scholar 

  5. Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  6. Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    Article  ADS  Google Scholar 

  7. Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

    Article  ADS  Google Scholar 

  8. Koolstra, G., Yang, G. & Schuster, D. I. Coupling a single electron on superfluid helium to a superconducting resonator. Nat. Commun. 10, 5323 (2019).

    Article  ADS  Google Scholar 

  9. Cortiñas, R. et al. Laser trapping of circular rydberg atoms. Phys. Rev. Lett. 124, 123201 (2020).

    Article  ADS  Google Scholar 

  10. Chakram, S. et al. Seamless high-Q microwave cavities for multimode circuit quantum electrodynamics. Phys. Rev. Lett. 127, 107701 (2021).

    Article  ADS  Google Scholar 

  11. Leghtas, Z. et al. Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity. Phys. Rev. A 87, 042315 (2013).

    Article  ADS  Google Scholar 

  12. Krastanov, S. et al. Universal control of an oscillator with dispersive coupling to a qubit. Phys. Rev. A 92, 040303 (2015).

    Article  ADS  Google Scholar 

  13. Heeres, R. W. et al. Cavity state manipulation using photon-number selective phase gates. Phys. Rev. Lett. 115, 137002 (2015).

    Article  ADS  Google Scholar 

  14. Fösel, T., Krastanov, S., Marquardt, F. & Jiang, L. Efficient cavity control with SNAP gates. Preprint at https://arxiv.org/abs/2004.14256 (2020).

  15. Kudra, M. et al. Robust preparation of Wigner-negative states with optimized SNAP-displacement sequences. PRX Quantum 3, 030301 (2022).

    Article  ADS  Google Scholar 

  16. Wang, W. et al. Converting quasiclassical states into arbitrary Fock state superpositions in a superconducting circuit. Phys. Rev. Lett. 118, 223604 (2017).

    Article  ADS  Google Scholar 

  17. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    Article  ADS  Google Scholar 

  18. Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).

    Article  ADS  Google Scholar 

  19. Reinhold, P. Controlling Error-Correctable Bosonic Qubits. PhD thesis, Yale Univ. (2019).

  20. Ma, W.-L. et al. Quantum control of bosonic modes with superconducting circuits. Sci. Bull. 66, 1789–1805 (2021).

    Article  Google Scholar 

  21. Roy, A. & Devoret, M. Introduction to parametric amplification of quantum signals with Josephson circuits. C. R. Phys. 17, 740–755 (2016).

    Article  ADS  Google Scholar 

  22. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  23. Murch, K. W. et al. Cavity-assisted quantum bath engineering. Phys. Rev. Lett. 109, 183602 (2012).

    Article  ADS  Google Scholar 

  24. Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

    Google Scholar 

  25. Eddins, A. et al. Stroboscopic qubit measurement with squeezed illumination. Phys. Rev. Lett. 120, 040505 (2018).

    Article  ADS  Google Scholar 

  26. Rosenblum, S. et al. A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018).

    Article  ADS  Google Scholar 

  27. Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361, 266–270 (2018).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Touzard, S. et al. Gated conditional displacement readout of superconducting qubits. Phys. Rev. Lett. 122, 080502 (2019).

    Article  ADS  Google Scholar 

  29. Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article  Google Scholar 

  30. Elder, S. S. et al. High-fidelity measurement of qubits encoded in multilevel superconducting circuits. Phys. Rev. X 10, 011001 (2020).

    MathSciNet  Google Scholar 

  31. Vrajitoarea, A., Huang, Z., Groszkowski, P., Koch, J. & Houck, A. A. Quantum control of an oscillator using a stimulated Josephson nonlinearity. Nat. Phys. 16, 211–217 (2020).

    Article  Google Scholar 

  32. Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    Article  ADS  Google Scholar 

  33. Flühmann, C. & Home, J. P. Direct characteristic-function tomography of quantum states of the trapped-ion motional oscillator. Phys. Rev. Lett. 125, 043602 (2020).

    Article  ADS  Google Scholar 

  34. Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    Article  ADS  Google Scholar 

  35. Sivak, V. V. et al. Model-free quantum control with reinforcement learning. Phys. Rev. X 12, 011059 (2022).

    Google Scholar 

  36. Baum, Y. et al. Experimental deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer. PRX Quantum 2, 040324 (2021).

    Article  ADS  Google Scholar 

  37. Niepce, D., Burnett, J. J., Kudra, M., Cole, J. H. & Bylander, J. Stability of superconducting resonators: motional narrowing and the role of Landau-Zener driving of two-level defects. Sci. Adv. 7, eabh0462 (2021).

  38. Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).

    Article  ADS  Google Scholar 

  39. Dassonneville, R. et al. Dissipative stabilization of squeezing beyond 3 dB in a microwave mode. PRX Quantum 2, 020323 (2021).

    Article  ADS  Google Scholar 

  40. Hastrup, J., Park, K., Filip, R. & Andersen, U. L. Unconditional preparation of squeezed vacuum from Rabi interactions. Phys. Rev. Lett. 126, 153602 (2021).

    Article  ADS  Google Scholar 

  41. Duivenvoorden, K., Terhal, B. M. & Weigand, D. Single-mode displacement sensor. Phys. Rev. A 95, 012305 (2017).

    Article  ADS  Google Scholar 

  42. Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016).

    Google Scholar 

  43. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  44. Noh, K., Albert, V. V. & Jiang, L. Quantum capacity bounds of Gaussian thermal loss channels and achievable rates with Gottesman-Kitaev-Preskill codes. IEEE Trans. Inf. Theory 65, 2563–2582 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  45. Royer, B., Singh, S. & Girvin, S. M. Stabilization of finite-energy Gottesman-Kitaev-Preskill states. Phys. Rev. Lett. 125, 260509 (2020).

    Article  ADS  Google Scholar 

  46. Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

    Article  Google Scholar 

  47. Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    Article  Google Scholar 

  48. Gertler, J. M. et al. Protecting a bosonic qubit with autonomous quantum error correction. Nature 590, 243–248 (2021).

    Article  ADS  Google Scholar 

  49. Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. PRX Quantum 2, 030321 (2021).

    Article  ADS  Google Scholar 

  50. Hastrup, J., Park, K., Brask, J. B., Filip, R. & Andersen, U. L. Measurement-free preparation of grid states. npj Quantum Inf. 7, 17 (2021).

    Article  ADS  Google Scholar 

  51. de Neeve, B., Nguyen, T.-L., Behrle, T. & Home, J. P. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys. 18, 296–300 (2022).

    Article  Google Scholar 

  52. Grimsmo, A. L. & Puri, S. Quantum error correction with the Gottesman-Kitaev-Preskill code. PRX Quantum 2, 020101 (2021).

    Article  ADS  Google Scholar 

  53. Vuillot, C., Asasi, H., Wang, Y., Pryadko, L. P. & Terhal, B. M. Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344 (2019).

    Article  ADS  Google Scholar 

  54. Noh, K., Chamberland, C. & Brandão, F. G. Low-overhead fault-tolerant quantum error correction with the surface-GKP code. PRX Quantum 3, 010315 (2022).

    Article  ADS  Google Scholar 

  55. Lingenfelter, A., Roberts, D. & Clerk, A. A. Unconditional Fock state generation using arbitrarily weak photonic nonlinearities. Sci. Adv. 7, eabj1916 (2021).

    Article  ADS  Google Scholar 

  56. Haljan, P. C., Brickman, K.-A., Deslauriers, L., Lee, P. J. & Monroe, C. Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005).

    Article  ADS  Google Scholar 

  57. Albert, V. V. et al. Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346 (2018).

    Article  ADS  Google Scholar 

  58. Romanenko, A. et al. Three-dimensional superconducting resonators at T < 20 mK with photon lifetimes up to τ = 2 s. Phys. Rev. Appl. 13, 034032 (2020).

    Article  ADS  Google Scholar 

  59. Ball, H. et al. Software tools for quantum control: improving quantum computer performance through noise and error suppression. Quantum Sci. Technol. 6, 044011 (2021).

  60. Lloyd, S. & Braunstein, S. L. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  62. D’Alessandro, D. Introduction to Quantum Control and Dynamics (CRC Press, 2007).

  63. Park, K., Marek, P. & Filip, R. Qubit-mediated deterministic nonlinear gates for quantum oscillators. Sci. Rep. 7, 11536 (2017).

    Article  ADS  Google Scholar 

  64. Park, K., Marek, P. & Filip, R. Deterministic nonlinear phase gates induced by a single qubit. New J. Phys. 20, 053022 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Frattini, R. Cortiñas, C. Flühmann and X. Xiao for helpful discussions. We are grateful to J. Curtis and B. Kalfus for technical assistance and I. Tsioutsios and L. Frunzio for device fabrication assistance. We thank M. Hays, B. Brock, J. Teoh, C. Wang, A. Maiti, P. Campagne-Ibarcq, S. Touzard and S. Rosenblum for helpful feedback. This research was sponsored by the Army Research Office (ARO) under grant nos. W911NF-18-1-0212, W911NF-16-1-0349 and W911NF-18-1-0020 and by the Air Force Office of Scientific Research under grant no. FA9550-19-1-0399. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office (ARO) or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Contributions

A.E., S.S.E., M.H.D. and R.J.S. developed the large displacement control method. A.E., S.R.J., V.S. and A.Z.D. implemented the numerical ECD parameter optimization. A.E., V.S. and A.Z.D. conducted the measurements. A.E., B.R., V.S. and S.M.G. developed the theory. J.V. and A.E. performed the numerical analysis of the strongly driven nonlinear oscillator. A.E. and M.H.D. wrote the manuscript with feedback from all the authors.

Corresponding authors

Correspondence to Alec Eickbusch or Michel H. Devoret.

Ethics declarations

Competing interests

R.J.S. and M.H.D. are founders and R.J.S. is a shareholder of Quantum Circuits. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Christian Andersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Sections 1–10 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eickbusch, A., Sivak, V., Ding, A.Z. et al. Fast universal control of an oscillator with weak dispersive coupling to a qubit. Nat. Phys. 18, 1464–1469 (2022). https://doi.org/10.1038/s41567-022-01776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01776-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing