Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trade-offs and design principles in the spatial organization of catalytic particles

Abstract

Catalytic particles are spatially organized in a number of biological systems across different length scales, from enzyme complexes to metabolically coupled cells. Despite operating on different scales, these systems all feature localized reactions involving partially hindered diffusive transport, which is determined by the collective arrangement of the catalysts. Yet it remains largely unexplored how different arrangements affect the interplay between the reaction and transport dynamics, which ultimately determines the flux through the reaction pathway. Here we show that two fundamental trade-offs arise, the first between efficient inter-catalyst transport and the depletion of substrate, and the second between steric confinement of intermediate products and the accessibility of catalysts to substrate. We use a model reaction pathway to characterize the general design principles for the arrangement of catalysts that emerge from the interplay of these trade-offs. We find that the question of optimal catalyst arrangements generalizes the well-known Thomson problem of electrostatics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the model.
Fig. 2: Properties of the pathway flux \({j}_{{{{\mathcal{P}}}}}\) for randomly positioned catalysts (two-dimensional system with absorbing boundary for intermediates, parameters chosen symmetrically with \({N}_{{{{\mathcal{A}}}}}={N}_{{{{\mathcal{B}}}}}=N\) and \({\alpha }_{{{{\mathcal{A}}}}}={\alpha }_{{{{\mathcal{B}}}}}=\alpha\)).
Fig. 3: Comparison of different localization strategies.
Fig. 4: Trade-off between substrate shielding and confinement of intermediates.
Fig. 5: Optimal geometries of complexes with a single \({{{\mathcal{A}}}}\) catalyst (blue) surrounded by different numbers \({N}_{{{{\mathcal{B}}}}}\) of \({{{\mathcal{B}}}}\) catalysts (orange), in 2D and 3D.
Fig. 6: Analysis of the string and sheet localization strategies studied experimentally in ref. 50.

Similar content being viewed by others

Data availability

The numerical data generated for this study are available from the corresponding author upon reasonable request.

Code availability

The codes used to generate the numerical data that supports the findings of this study are available on GitHub at: https://github.com/gerland-group/flux_of_cat_arrangements

References

  1. Agapakis, C. M., Boyle, P. M. & Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol. 8, 527–535 (2012).

    Article  Google Scholar 

  2. Reed, L. J. Multienzyme complexes. Acc. Chem. Res. 7, 40–46 (1974).

    Article  Google Scholar 

  3. Kerfeld, C. A., Heinhorst, S. & Cannon, G. C. Bacterial microcompartments. Ann. Rev. Microbiol. 64, 391–408 (2010).

    Article  Google Scholar 

  4. Schmitt, D. L. & An, S. Spatial organization of metabolic enzyme complexes in cells. Biochemistry 56, 3184–3196 (2017).

    Article  Google Scholar 

  5. Fontes, C. M. & Gilbert, H. J. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Ann. Rev. Biochem. 79, 655–681 (2010).

    Article  Google Scholar 

  6. An, S., Kumar, R., Sheets, E. D. & Benkovic, S. J. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103–106 (2008).

    Article  ADS  Google Scholar 

  7. Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat. Rev. Microbiol. 6, 681–691 (2008).

    Article  Google Scholar 

  8. Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016).

    Article  Google Scholar 

  9. Lee, H., DeLoache, W. C. & Dueber, J. E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).

    Article  Google Scholar 

  10. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotech. 11, 409–420 (2016).

    Article  ADS  Google Scholar 

  11. Lin, J.-L., Palomec, L. & Wheeldon, I. Design and analysis of enhanced catalysis in scaffolded multienzyme cascade reactions. ACS Catal. 4, 505–511 (2014).

    Article  Google Scholar 

  12. Xie, C. et al. Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons. Nano Lett. 17, 3798–3802 (2017).

    Article  ADS  Google Scholar 

  13. Müller, J. & Niemeyer, C. M. DNA-directed assembly of artificial multienzyme complexes. Biochem. Biophys. Res. Commun. 377, 62–67 (2008).

    Article  Google Scholar 

  14. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotech. 4, 249 (2009).

    Article  ADS  Google Scholar 

  15. Fu, J., Liu, M., Liu, Y., Woodbury, N. W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012).

    Article  Google Scholar 

  16. Zhang, Y., Tsitkov, S. & Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade. Nat. Commun. 7, 13982 (2016).

    Article  ADS  Google Scholar 

  17. Wanders, R. J., Waterham, H. R. & Ferdinandusse, S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 3, 83 (2015).

    Google Scholar 

  18. Linka, M. & Weber, A. P. Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci. 10, 461–465 (2005).

    Article  Google Scholar 

  19. French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733–737 (2016).

    Article  ADS  Google Scholar 

  20. Ma, E. H. & Jones, R. G. TORCing up purine biosynthesis. Science 351, 670–671 (2016).

    Article  ADS  Google Scholar 

  21. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  ADS  Google Scholar 

  22. Müller, J. & Overmann, J. Close interspecies interactions between prokaryotes from sulfureous environments. Front. Microbiol. 2, 146 (2011).

    Article  Google Scholar 

  23. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).

    Article  Google Scholar 

  24. Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification? Trends Microbiol. 14, 213–219 (2006).

    Article  Google Scholar 

  25. Buchner, A., Tostevin, F. & Gerland, U. Clustering and optimal arrangement of enzymes in reaction–diffusion systems. Phys. Rev. Lett. 110, 208104 (2013).

    Article  ADS  Google Scholar 

  26. Buchner, A., Tostevin, F., Hinzpeter, F. & Gerland, U. Optimization of collective enzyme activity via spatial localization. J. Chem. Phys. 139, 135101 (2013).

    Article  ADS  Google Scholar 

  27. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotech. 32, 1011–1018 (2014).

    Article  Google Scholar 

  28. Minton, A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001).

    Article  Google Scholar 

  29. Berry, H. Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys. J. 83, 1891–1901 (2002).

    Article  ADS  Google Scholar 

  30. Schnell, S. & Turner, T. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog. Biophys. Mol. Biol. 85, 235–260 (2004).

    Article  Google Scholar 

  31. Hu, Z., Jiang, J. & Rajagopalan, R. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective. Biophys. J. 93, 1464–1473 (2007).

    Article  ADS  Google Scholar 

  32. Dix, J. A. & Verkman, A. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 37, 247–263 (2008).

    Article  Google Scholar 

  33. Albe, K. R., Butler, M. H. & Wright, B. E. Cellular concentrations of enzymes and their substrates. J. Theor. Biol. 143, 163–195 (1990).

    Article  ADS  Google Scholar 

  34. Samson, R. & Deutch, J. Exact solution for the diffusion controlled rate into a pair of reacting sinks. J. Chem. Phys. 67, 847 (1999).

    Article  ADS  Google Scholar 

  35. Tsao, H.-K. Competitive diffusion into two reactive spheres of different reactivity and size. Phys. Rev. E 66, 011108 (2002).

    Article  ADS  Google Scholar 

  36. Eun, C., Kekenes-Huskey, P. M. & McCammon, J. A. Influence of neighboring reactive particles on diffusion-limited reactions. J. Chem. Phys. 139, 044117 (2013).

    Article  ADS  Google Scholar 

  37. Hirakawa, H., Haga, T. & Nagamune, T. Artificial protein complexes for biocatalysis. Top. Catal. 55, 1124–1137 (2012).

    Article  Google Scholar 

  38. Shi, J. et al. Bioinspired construction of multi-enzyme catalytic systems. Chem. Soc. Rev. 47, 4295–4313 (2018).

    Article  Google Scholar 

  39. Liu, M. et al. A three-enzyme pathway with an optimised geometric arrangement to facilitate substrate transfer. ChemBioChem 17, 1097–1101 (2016).

    Article  Google Scholar 

  40. Thomson, J. J. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos. Mag. 7, 237–265 (1904).

    Article  MATH  Google Scholar 

  41. Schwartz, R. E. The five-electron case of Thomson’s problem. Exp. Math. 22, 157–186 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  42. Yudin, V. The minimum of potential energy of a system of point charges. Discrete Math. App. 3, 75–82 (1993).

    MATH  Google Scholar 

  43. Andreev, N. N. An extremal property of the icosahedron. East J. Approx. 2, 459–462 (1996).

    MathSciNet  MATH  Google Scholar 

  44. Smale, S. Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  45. Caspar, D. L. & Klug, A. in Cold Spring Harbor Symposia on Quantitative Biology, vol. 27, 1–24 (Cold Spring Harbor Laboratory Press, 1962).

  46. Mackenzie, D. Proving the perfection of the honeycomb. Science 285, 1338–1339 (1999).

    Article  Google Scholar 

  47. Maritan, A., Micheletti, C., Trovato, A. & Banavar, J. R. Optimal shapes of compact strings. Nature 406, 287–290 (2000).

    Article  ADS  Google Scholar 

  48. Zandi, R., Reguera, D., Bruinsma, R. F., Gelbart, W. M. & Rudnick, J. Origin of icosahedral symmetry in viruses. Proc. Natl Acad. Sci. USA 101, 15556–15560 (2004).

    Article  ADS  Google Scholar 

  49. Nisoli, C., Gabor, N. M., Lammert, P. E., Maynard, J. & Crespi, V. H. Annealing a magnetic cactus into phyllotaxis. Phys. Rev. E 81, 046107 (2010).

    Article  ADS  Google Scholar 

  50. Sachdeva, G., Garg, A., Godding, D., Way, J. C. & Silver, P. A. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42, 9493–9503 (2014).

    Article  Google Scholar 

  51. Grotzky, A., Nauser, T., Erdogan, H., Schlüter, A. D. & Walde, P. A fluorescently labeled dendronized polymer–enzyme conjugate carrying multiple copies of two different types of active enzymes. J. Am. Chem. Soc. 134, 11392–11395 (2012).

    Article  Google Scholar 

  52. Zhang, Y. et al. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J. Am. Chem. Soc. 128, 13030–13031 (2006).

    Article  Google Scholar 

  53. Nakamura, S., Hayashi, S. & Koga, K. Effect of periodate oxidation on the structure and properties of glucose oxidase. Biochim. Biophys. Acta Enzymol. 445, 294–308 (1976).

    Article  Google Scholar 

  54. Ban, Y. & Rizzolo, L. J. A culture model of development reveals multiple properties of RPE tight junctions. Mol. Vis. 3, 1 (1997).

    Google Scholar 

  55. Pappenheimer, J., Renkin, E. & Borrero, L. Filtration, diffusion and molecular sieving through peripheral capillary membranes: a contribution to the pore theory of capillary permeability. Am. J. Physiol. 167, 13–46 (1951).

    Article  Google Scholar 

  56. Fogolari, F. et al. Studying interactions by molecular dynamics simulations at high concentration. BioMed Res. Int. 2012, 303190 (2012).

    Google Scholar 

  57. Agmon, N. & Szabo, A. Theory of reversible diffusion-influenced reactions. J. Chem. Phys. 92, 5270 (1990).

    Article  ADS  Google Scholar 

  58. Vijaykumar, A., Bolhuis, P. G. & ten Wolde, P. R. The intrinsic rate constants in diffusion-influenced reactions. Faraday Discuss. 195, 421–441 (2016).

    Article  ADS  Google Scholar 

  59. Vijaykumar, A., ten Wolde, P. R. & Bolhuis, P. G. The magnitude of the intrinsic rate constant: how deep can association reactions be in the diffusion limited regime? J. Chem. Phys. 147, 184108 (2017).

    Article  ADS  Google Scholar 

  60. Martens-Habbena, W., Berube, P. M., Urakawa, H., José, R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Frey, D. Nelson and A. Walczak for useful discussions, and B. Altaner and G. Giunta for comments on the initial manuscript. This work was supported by the German Research Foundation (DFG) through SFB 1032 (project ID 201269156, to U.G.) and the Excellence Cluster ORIGINS under Germany’s Excellence Strategy (EXC-2094-390783311, to U.G.). F.H. was supported by a DFG fellowship through the Graduate School of Quantitative Biosciences Munich.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the research. F.H. performed the research. F.H., F.T. and U.G. analysed the results and wrote the paper.

Corresponding author

Correspondence to Ulrich Gerland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Pieter Rein ten Wolde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text with Supplementary Figs. 1–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinzpeter, F., Tostevin, F., Buchner, A. et al. Trade-offs and design principles in the spatial organization of catalytic particles. Nat. Phys. 18, 203–211 (2022). https://doi.org/10.1038/s41567-021-01444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01444-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing