Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chemical engines: driving systems away from equilibrium through catalyst reaction cycles

Abstract

Biological systems exhibit a range of complex functions at the micro- and nanoscales under non-equilibrium conditions (for example, transportation and motility, temporal control, information processing and so on). Chemists also employ out-of-equilibrium systems, for example in kinetic selection during catalysis, self-replication, dissipative self-assembly and synthetic molecular machinery, and in the form of chemical oscillators. Key to non-equilibrium behaviour are the mechanisms through which systems are able to extract energy from the chemical reactants (‘fuel’) that drive such processes. In this Perspective we relate different examples of such powering mechanisms using a common conceptual framework. We discuss how reaction cycles can be coupled to other dynamic processes through positive (acceleration) or negative (inhibition) catalysis to provide the thermodynamic impetus for diverse non-equilibrium behaviour, in effect acting as a ‘chemical engine’. We explore the way in which the energy released from reaction cycles is harnessed through kinetic selection in a series of what have sometimes been considered somewhat disparate fields (systems chemistry, molecular machinery, dissipative assembly and chemical oscillators), highlight common mechanistic principles and the potential for the synchronization of chemical reaction cycles, and identify future challenges for the invention and application of non-equilibrium systems. Explicit recognition of the use of fuelling reactions to power structural change in catalysts may stimulate the investigation of known catalytic cycles as potential elements for chemical engines, a currently unexplored area of catalysis research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Driving systems with chemical engines.
Fig. 2: Chemical reaction cycles and kinetic selection.
Fig. 3: Dissipative systems fuelled by chemical reaction cycles.
Fig. 4: Molecular motors fuelled by chemical reaction cycles.
Fig. 5: Oscillating systems driven by chemical engines.

Similar content being viewed by others

References

  1. Amos, L. A. Molecular motors: not quite like clockwork. Cell Mol. Life Sci. 65, 509–515 (2008).

    Article  CAS  Google Scholar 

  2. Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008).

    Article  CAS  Google Scholar 

  3. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  4. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  Google Scholar 

  5. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article  CAS  Google Scholar 

  6. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139–148 (2007).

    Article  CAS  Google Scholar 

  7. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  8. Porter, S. L., Wadhams, G. H. & Armitage, J. P. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153–165 (2011).

    Article  CAS  Google Scholar 

  9. Bissette, A. J. & Fletcher, S. P. Mechanisms of autocatalysis. Angew. Chem. Int. Ed. 52, 12800–12826 (2013). This review provides guidelines on the mechanisms of autocatalysis, particularly focusing on template mechanisms, asymmetric autocatalysis and prebiotically relevant processes.

    Article  CAS  Google Scholar 

  10. Duim, H. & Otto, S. Towards open-ended evolution in self-replicating molecular systems. Beilstein J. Org. Chem. 13, 1189–1203 (2017).

    Article  CAS  Google Scholar 

  11. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  Google Scholar 

  12. Singh, N., Formon, G. J. M., De Piccoli, S. & Hermans, T. M. Devising synthetic reaction cycles for dissipative nonequilibrium self-assembly. Adv. Mater. 32, 1906834 (2020).

    Article  CAS  Google Scholar 

  13. Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem. 6, 552–578 (2020). This recent publication summarizes the design strategies for dissipative assembly, a subcategory of chemical engines, driven by chemical reaction cycles.

    Article  Google Scholar 

  14. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007). A major review that dispelled the ‘motion=machine’ view of artificial molecular machines, explained the difference between switches and motors, and introduced ratchet mechanisms from physics as design elements for synthetic molecular systems.

  15. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  Google Scholar 

  16. Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    Article  CAS  Google Scholar 

  17. Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017).

    Article  CAS  Google Scholar 

  18. van Roekel, H. W. H. et al. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem. Soc. Rev. 44, 7465–7483 (2015).

    Article  Google Scholar 

  19. Epstein, I. R. & Xu, B. Reaction–diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11, 312–319 (2016).

    Article  CAS  Google Scholar 

  20. Prigogine, I. Introduction to Thermodynamics of Irreversible Processes (Wiley, 1967).

  21. de Groot, S. R. & Mazur, P. Non-equilibrium Thermodynamics (Dover, 1984).

  22. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018). This perspective provides a detailed analysis of the energy consumption in chemical fuel-driven self-assembly and defines a ratcheting constant to describe kinetic asymmetry.

    Article  CAS  Google Scholar 

  23. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019). This seminal perspective elaborates the fundamental role of kinetic asymmetry in driving non-equilibrium systems through information ratchet mechanisms.

    Article  Google Scholar 

  24. Das, K., Gabrielli, L. & Prins, L. J. Chemically-fueled self-assembly in biology and chemistry. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202100274 (2021).

  25. Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 584–591 (2016).

    Article  Google Scholar 

  26. Lubbe, A. S., van Leeuwen, T., Wezenberg, S. J. & Feringa, B. L. Designing dynamic functional molecular systems. Tetrahedron 73, 4837–4848 (2017).

    Article  CAS  Google Scholar 

  27. Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. 46, 2543–2554 (2017).

    Article  CAS  Google Scholar 

  28. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  CAS  Google Scholar 

  29. Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    Article  CAS  Google Scholar 

  30. Magnasco, M. O. Molecular combustion motors. Phys. Rev. Lett. 72, 2656–2659 (1994).

    Article  CAS  Google Scholar 

  31. Jolley, C. C., Ode, K. L. & Ueda, H. R. A design principle for a posttranslational biochemical oscillator. Cell Rep. 2, 938–950 (2012).

    Article  CAS  Google Scholar 

  32. van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Article  Google Scholar 

  33. Howe, E. N. W. & Gale, P. A. Fatty acid fueled transmembrane chloride transport. J. Am. Chem. Soc. 141, 10654–10660 (2019).

    Article  CAS  Google Scholar 

  34. Steinberg-Yfrach, G. et al. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392, 479–482 (1998).

    Article  CAS  Google Scholar 

  35. Astumian, R. D. & Derényi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).

    Article  CAS  Google Scholar 

  36. Vögeli, B. & Erb, T. J. ‘Negative’ and ‘positive catalysis’: complementary principles that shape the catalytic landscape of enzymes. Curr. Opin. Chem. Biol. 47, 94–100 (2018).

    Article  Google Scholar 

  37. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  Google Scholar 

  38. Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).

    Article  Google Scholar 

  39. Alvarez-Perez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  CAS  Google Scholar 

  40. Carlone, A., Goldup, S. M., Lebrasseur, N., Leigh, D. A. & Wilson, A. A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 134, 8321–8323 (2012).

    Article  CAS  Google Scholar 

  41. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016). The first synthetic autonomous chemically fuelled molecular motor, with directional rotation of the components driven by kinetic asymmetry through an information ratchet mechanism.

    Article  CAS  Google Scholar 

  42. Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  Google Scholar 

  43. Fyfe, M. C. T. et al. Anion-assisted self-assembly. Angew. Chem. Int. Ed. 36, 2068–2070 (1997).

    Article  CAS  Google Scholar 

  44. Soai, K., Shibata, T., Morioka, H. & Choji, K. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378, 767–768 (1995).

    Article  CAS  Google Scholar 

  45. Blackmond, D. G. Asymmetric autocatalysis and its implications for the origin of homochirality. Proc. Natl Acad. Sci. USA 101, 5732–5736 (2004).

    Article  CAS  Google Scholar 

  46. Blackmond, D. G. Autocatalytic models for the origin of biological homochirality. Chem. Rev. 120, 4831–4847 (2020).

    Article  CAS  Google Scholar 

  47. Athavale, S. V., Simon, A., Houk, K. N. & Denmark, S. E. Demystifying the asymmetry-amplifying, autocatalytic behaviour of the Soai reaction through structural, mechanistic and computational studies. Nat. Chem. 12, 412–423 (2020).

    Article  CAS  Google Scholar 

  48. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010). This seminal work established the field of dissipative assembly, using a chemical fuel to transiently assemble a monomer into a gel.

    Article  CAS  Google Scholar 

  49. Biagini, C. et al. Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    Article  CAS  Google Scholar 

  50. Brown, B. R. The mechanism of thermal decarboxylation. Q. Rev. Chem. Soc. 5, 131–146 (1951).

    Article  CAS  Google Scholar 

  51. Berrocal, J. A., Biagini, C., Mandolini, L. & Di Stefano, S. Coupling of the decarboxylation of 2-cyano-2-phenylpropanoic acid to large-amplitude motions: a convenient fuel for an acid–base-operated molecular switch. Angew. Chem. Int. Ed. 55, 6997–7001 (2016).

    Article  CAS  Google Scholar 

  52. Campbell, N. A. et al. Biology: a Global Approach (Pearson Education, 2020).

  53. Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article  CAS  Google Scholar 

  54. von Delius, M., Geertsema, E. M., Leigh, D. A. & Tang, D.-T. D. Design, synthesis and operation of small molecules that walk along tracks. J. Am. Chem. Soc. 132, 16134–16145 (2010).

    Article  Google Scholar 

  55. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  Google Scholar 

  56. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007). The experimental realization of a non-adiabatic Maxwell ‘pressure demon’, the first example of a synthetic molecular information ratchet.

    Article  CAS  Google Scholar 

  57. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article  CAS  Google Scholar 

  58. Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 54139, 11949–11955 (2017).

    Article  Google Scholar 

  59. Bal, S., Das, K., Ahmed, S. & Das, D. Chemically fueled dissipative self-assembly that exploits cooperative catalysis. Angew. Chem. Int. Ed. 58, 244–247 (2019).

    Article  CAS  Google Scholar 

  60. Epstein, I. R. & Pojman, J. A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford Univ. Press, 1998).

  61. Kovacs, K., McIlwaine, R. E., Scott, S. K. & Taylor, A. F. An organic-based pH oscillator. J. Phys. Chem. A 111, 549–551 (2007).

    Article  CAS  Google Scholar 

  62. Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).

    Article  CAS  Google Scholar 

  63. Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018). A synthetic supramolecular oscillator, incorporating feedback mechanisms into a dissipative assembly system to achieve oscillations in the assembled state of perylene diimide units.

    Article  CAS  Google Scholar 

  64. Field, R. J., Körös, E. & Noyes, R. M. Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate–cerium–malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972).

    Article  CAS  Google Scholar 

  65. Epstein, I. R. & Showalter, K. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13132–13147 (1996).

    Article  CAS  Google Scholar 

  66. Leira-Iglesias, J., Sorrenti, A., Sato, A., Dunne, P. A. & Hermans, T. M. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem. Commun. 52, 9009–9012 (2016).

    Article  CAS  Google Scholar 

  67. Kaya, M., Tani, Y., Washio, T., Hisada, T. & Higuchi, H. Coordinated force generation of skeletal myosins in myofilaments through motor coupling. Nat. Commun. 8, 16036 (2017).

    Article  CAS  Google Scholar 

  68. Biagini, C. & Di Stefano, S. Abiotic chemical fuels for the operation of molecular machines. Angew. Chem. Int. Ed. 59, 8344–8354 (2020).

    Article  CAS  Google Scholar 

  69. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  CAS  Google Scholar 

  70. Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem. 7, 23–37 (2021).

    Article  Google Scholar 

  71. Esposito, M. Open questions on nonequilibrium thermodynamics of chemical reaction networks. Commun. Chem. 3, 107 (2020).

    Article  Google Scholar 

  72. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  Google Scholar 

  73. Rao, R. & Esposito, M. Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics. Phys. Rev. X 6, 041064 (2016).

    Google Scholar 

  74. Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).

    Article  Google Scholar 

  75. Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).

    Article  CAS  Google Scholar 

  76. Heard, A. W. & Goldup, S. M. Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).

    Article  CAS  Google Scholar 

  77. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  Google Scholar 

  78. Seeman, J. I. Effect of conformational change on reactivity in organic chemistry. Evaluations, application, and extensions of Curtin–Hammett/Winstein–Holness kinetics. Chem. Rev. 83, 83–134 (1983).

    Article  CAS  Google Scholar 

  79. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  Google Scholar 

  80. Kariyawasam, L. S., Hossain, M. M. & Hartley, C. S. The transient covalent bond in abiotic nonequilibrium systems. Angew. Chem. Int. Ed. 60, 12648–12658 (2020). This minireview summarizes the various transient covalent bonds exploited in dissipative assembly in the context of the corresponding reaction cycles and makes the connection to molecular machines.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC; EP/P027067/1), the European Research Council (ERC Advanced Grant 786630) and East China Normal University for funding. We thank E. Penocchio, B. M. W. Roberts and C. Tian for insightful discussions. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amano, S., Borsley, S., Leigh, D.A. et al. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021). https://doi.org/10.1038/s41565-021-00975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00975-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing