Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological marker currents in Chern insulators

Abstract

Topological states of matter exhibit many novel properties due to the presence of robust topological invariants such as the Chern index. These global characteristics pertain to the system as a whole and are not locally defined. However, local topological markers can distinguish between topological phases, and they can vary in space. In equilibrium, we show that the topological marker can be used to extract the critical behaviour of topological phase transitions. Out of equilibrium, we show that the topological marker spreads via a flow of currents emanating from the sample boundaries, and with a bounded maximum propagation speed. We discuss the possibilities for measuring the topological marker and its flow in experiment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lattice geometry and phase diagram.
Fig. 2: Scaling of the Chern marker.
Fig. 3: Non-equilibrium dynamics.
Fig. 4: Topological marker currents.

Similar content being viewed by others

Data availability

The data presented in Figs. 1b, 2, 3 and 4 can be reproduced from the equations in the main text.

References

  1. Thouless, D. J. Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, Seattle, 1998).

  2. Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007).

    Article  ADS  Google Scholar 

  3. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  4. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  5. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  6. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  8. Lu, L., Joannopoulos, J. D. & Soljacić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  9. Fitzpatrick, M., Sundaresan, N. M., Li, A. C. Y., Koch, J. & Houck, A. A. Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X 7, 011016 (2017).

    Google Scholar 

  10. Le Hur, K. et al. Many-body quantum electrodynamics networks: non-equilibrium condensed matter physics with light. C. R. Phys. 17, 808–835 (2016).

    Article  ADS  Google Scholar 

  11. Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2017).

    Article  ADS  Google Scholar 

  12. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    Article  ADS  Google Scholar 

  13. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    Article  ADS  Google Scholar 

  14. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  15. Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    Article  ADS  Google Scholar 

  16. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2014).

    Article  Google Scholar 

  17. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2015).

    Article  Google Scholar 

  18. Schweizer, C., Lohse, M., Citro, R. & Bloch, I. Spin pumping and measurement of spin currents in optical superlattices. Phys. Rev. Lett. 117, 170405 (2016).

    Article  ADS  Google Scholar 

  19. Goldman, N. et al. Creating topological interfaces and detecting chiral edge modes in a two-dimensional optical lattice. Phys. Rev. A 94, 043611 (2016).

    Article  ADS  Google Scholar 

  20. Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    Article  Google Scholar 

  21. Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 13918 (2017).

    Article  ADS  Google Scholar 

  22. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  23. Foster, M. S., Dzero, M., Gurarie, V. & Yuzbashyan, E. A. Quantum quench in a p  +  ip superfluid: winding numbers and topological states far from equilibrium. Phys. Rev. B 88, 104511 (2013).

    Article  ADS  Google Scholar 

  24. Foster, M. S., Gurarie, V., Dzero, M. & Yuzbashyan, E. A. Quench-induced Floquet topological p-wave superfluids. Phys. Rev. Lett. 113, 076403 (2014).

    Article  ADS  Google Scholar 

  25. Caio, M. D., Cooper, N. R. & Bhaseen, M. J. Quantum quenches in Chern insulators. Phys. Rev. Lett. 115, 236403 (2015).

    Article  ADS  Google Scholar 

  26. Caio, M. D., Cooper, N. R. & Bhaseen, M. J. Hall response and edge current dynamics in Chern insulators out of equilibrium. Phys. Rev. B 94, 155104 (2016).

    Article  ADS  Google Scholar 

  27. D’Alessio, L. & Rigol, M. Dynamical preparation of Floquet Chern insulators. Nat. Commun. 6, 8336 (2015).

    Article  ADS  Google Scholar 

  28. Wang, P. & Kehrein, S. Phase transitions in the diagonal ensemble of two-band Chern insulators. New J. Phys. 18, 053003 (2016).

    Article  ADS  Google Scholar 

  29. Wang, P., Schmitt, M. & Kehrein, S. Universal nonanalytic behavior of the Hall conductance in a Chern insulator at the topologically driven nonequilibrium phase transition. Phys. Rev. B 93, 085134 (2015).

    Article  ADS  Google Scholar 

  30. Dehghani, H. & Mitra, A. Occupation probabilities and current densities of bulk and edge states of a Floquet topological insulator. Phys. Rev. B 93, 205437 (2016).

    Article  ADS  Google Scholar 

  31. Yates, D. J., Lemonik, Y. & Mitra, A. Entanglement properties of Floquet–Chern insulators. Phys. Rev. B 94, 205422 (2016).

    Article  ADS  Google Scholar 

  32. McGinley, M. & Cooper, N. R. Topology of one-dimensional quantum systems out of equilibrium. Phys. Rev. Lett. 121, 090401 (2018).

    Article  ADS  Google Scholar 

  33. Bianco, R. & Resta, R. Mapping topological order in coordinate space. Phys. Rev. B 84, 241106 (2011).

    Article  ADS  Google Scholar 

  34. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  Google Scholar 

  35. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  36. Kohn, W. Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76, 3168–3171 (1996).

    Article  ADS  Google Scholar 

  37. Resta, R. Kohn’s theory of the insulating state: a quantum-chemistry viewpoint. J. Chem. Phys. 124, 104104 (2006).

    Article  ADS  Google Scholar 

  38. Resta, R. The insulating state of matter: a geometrical theory. Eur. Phys. J. B 79, 121–137 (2011).

    Article  ADS  Google Scholar 

  39. Tran, D.-T., Dauphin, A., Goldman, N. & Gaspard, P. Topological Hofstadter insulators in a two-dimensional quasicrystal. Phys. Rev. B 91, 085125 (2015).

    Article  ADS  Google Scholar 

  40. Privitera, L. & Santoro, G. E. Quantum annealing and nonequilibrium dynamics of Floquet Chern insulators. Phys. Rev. B 93, 241406 (2016).

    Article  ADS  Google Scholar 

  41. Tran, D. T., Dauphin, A., Grushin, A. G., Zoller, P. & Goldman, N. Probing topology by ‘heating’: quantized circular dichroism in ultracold atoms. Sci. Adv. 3, e1701207 (2017).

    Article  ADS  Google Scholar 

  42. Marrazzo, A. & Resta, R. Locality of the anomalous Hall conductivity. Phys. Rev. B 95, 121114 (2017).

    Article  ADS  Google Scholar 

  43. Amaricci, A. et al. Edge state reconstruction from strong correlations in quantum spin Hall insulators. Phys. Rev. B 95, 205120 (2017).

    Article  ADS  Google Scholar 

  44. Ludwig, A. W. W., Fisher, M. P. A., Shankar, R. & Grinstein, G. Integer quantum Hall transition: an alternative approach and exact results. Phys. Rev. B 50, 7526–7552 (1994).

    Article  ADS  Google Scholar 

  45. Chen, W., Legner, M., Rüegg, A. & Sigrist, M. Correlation length, universality classes, and scaling laws associated with topological phase transitions. Phys. Rev. B 95, 075116 (2017).

    Article  ADS  Google Scholar 

  46. Kourtis, S., Neupert, T., Mudry, C., Sigrist, M. & Chen, W. Weyl-type topological phase transitions in fractional quantum Hall like systems. Phys. Rev. B 96, 205117 (2017).

    Article  ADS  Google Scholar 

  47. Schine, N., Chalupnik, M., Can, T., Gromov, A. & Simon, J. Measuring electromagnetic and gravitational responses of photonic Landau levels. Preprint at https://arxiv.org/abs/1802.04418 (2018).

  48. Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. M. & Irvine, W. T. M. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018).

    Article  Google Scholar 

  49. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  ADS  Google Scholar 

  50. Ardila, L. A. P., Heyl, M. & Eckardt, A. Measuring the single-particle density matrix for fermions and hardcore bosons in an optical lattice. Prerprint at https://arxiv.org/abs/1806.08171 (2018).

  51. Bianco, R. & Resta, R. Orbital magnetization as a local property. Phys. Rev. Lett. 110, 087202 (2013).

    Article  ADS  Google Scholar 

  52. Nathan, F., Rudner, M. S., Lindner, N. H., Berg, E. & Refael, G. Quantized magnetization density in periodically driven systems. Phys. Rev. Lett. 119, 186801 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for helpful conversations with H. Price, L. Privitera, V. Sacksteder and M. Fruchart. This research was supported by the Netherlands Organisation for Scientific Research (NWO/OCW), an ERC Synergy Grant, EPSRC grants EP/K030094/1 and EP/P009565/1, the Simons Foundation and Royal Society grant no. UF120157. M.D.C. and M.J.B. thank the Thomas Young Centre and the Centre for Non-Equilibrium Science (CNES) at King’s College London.

Author information

Authors and Affiliations

Authors

Contributions

M.D.C. performed the numerical simulations. All authors contributed to the analysis and writing of the manuscript.

Corresponding author

Correspondence to M. D. Caio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caio, M.D., Möller, G., Cooper, N.R. et al. Topological marker currents in Chern insulators. Nat. Phys. 15, 257–261 (2019). https://doi.org/10.1038/s41567-018-0390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0390-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing