Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments

Abstract

The physical properties of metals change when their dimensions are reduced to the nano-scale and new phenomena such as the localized surface-plasmon resonance (LSPR) appear. This collective electronic excitation can be tuned over a large spectral range by adapting the material, size and shape. The existing literature is as rich as it is controversial—for example, size-dependent spectral shifts of the LSPR in small metal nanoparticles, induced by quantum effects, are reported to the red, to the blue or entirely absent. Here we report how complementary experiments on size-selected small silver nanoparticles embedded in silica can yield inconsistent results on the same system: whereas optical absorption shows no size effect in the range between only a few atoms and ~10 nm, a clear spectral shift is observed in single-particle electron spectroscopy. Our quantitative interpretation, based on a mixed classical/quantum model, resolves the apparent contradictions, not only within our experimental data, but also in the literature. Our comprehensive model describes how the local environment is the crucial parameter controlling the manifestation or absence of quantum size effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical spectroscopy.
Fig. 2: Electron spectroscopy.
Fig. 3: Electron-beam-induced interface reduction.
Fig. 4: Electron-dose-dependent LSPR shift.
Fig. 5: Theoretical and experimental size dependencies.
Fig. 6: Plasmon peak shift.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ekardt, W. (ed.) Metal clusters (Wiley, Hoboken, 1999).

  2. Heiz, U. & Landman, U. E. (eds.) Nanocatalysis (Springer, Heidelberg, Berlin, 2007).

  3. Odom, T. W. & Schatz, G. C. Introduction to plasmonics. Chem. Rev. 111, 3667–3668 (2011).

    Article  Google Scholar 

  4. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  5. Kreibig, U. & Vollmer, M. Optical properties of Metal Clusters (Springer, Berlin, 1995).

  6. Billaud, P. et al. Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp. Rev. Sci. Instrum. 81, 043101 (2010).

    Article  ADS  Google Scholar 

  7. Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Photon. 5, 95–98 (2011).

    Article  ADS  Google Scholar 

  8. Ringe, E., Sharma, B., Henry, A.-I., Marks, L. D. & Van Duyne, R. P. Single nanoparticle plasmonics. Phys. Chem. Chem. Phys. 15, 4110–4129 (2013).

    Article  Google Scholar 

  9. Kociak, M. & Stéphan, O. Mapping plasmons at the nanometer scale in an electron microscope. Chem. Soc. Rev. 43, 3865–3883 (2014).

    Article  Google Scholar 

  10. Colliex, C., Kociak, M. & Stéphan, O. Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1–A24 (2016).

    Article  Google Scholar 

  11. Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. & Botton, G. A. Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano. Lett. 11, 1499–1504 (2011).

    Article  ADS  Google Scholar 

  12. Ögüt, B., Talebi, N., Vogelgesang, R., Sigle, W. & van Aken, P. A. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano. Lett. 12, 5239–5244 (2012).

    Article  ADS  Google Scholar 

  13. Bosman, M. et al. Surface plasmon damping quantified with an electron nanoprobe. Sci. Rep. 3, 1312 (2013).

    Article  Google Scholar 

  14. Hörl, A. et al. Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat. Commun. 8, 37 (2017).

    Article  ADS  Google Scholar 

  15. Losquin, A. et al. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano. Lett. 15, 1229–1237 (2015).

    Article  ADS  Google Scholar 

  16. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–428 (2012).

    Article  ADS  Google Scholar 

  17. Raza, S. et al. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2, 131–138 (2013).

    Article  ADS  Google Scholar 

  18. Haberland, H. Looking from both sides. Nature 494, E1–E2 (2013).

    Article  ADS  Google Scholar 

  19. Tiggesbäumker, J., Köller, L., Meiwes-Broer, K.-H. & Liebsch, A. Blue shift of the Mie plasma frequency in Ag clusters and particles. Phys. Rev. A 48, R1749–R1752 (1993).

    Article  ADS  Google Scholar 

  20. Hilger, A., Cüppers, N., Tenfelde, M. & Kreibig, U. Surface and interface effects in the optical properties of silver nanoparticles. Eur. Phys. J. D 10, 115–118 (2000).

    Article  ADS  Google Scholar 

  21. Hillenkamp, M., Di Domenicantonio, G., Eugster, O. & Félix, C. Instability of Ag nanoparticles in SiO2 at ambient conditions. Nanotechnology. 18, 015702 (2007).

    Article  ADS  Google Scholar 

  22. Cottancin, E, Broyer, M, Lermé, J. & Pellarin, M. in Handbook of Nanophysics: Nanoelectronics and Nanophotonics (ed. Sattler, K. A.) Ch. 24 (CRC Press, Boca Raton, 2011).

  23. Mortensen, N. A., Raza, S., Wubs, M., Søndergaard, T. & Bozhevolnyi, S. I. A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun. 5, 3809 (2014).

    Article  ADS  Google Scholar 

  24. Christensen, T. et al. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano 8, 1745–1758 (2014).

    Article  Google Scholar 

  25. Raza, S. et al. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nat. Commun. 6, 8788 (2015).

    Article  Google Scholar 

  26. Liebsch, A. Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals. Phys. Rev. B 48, 11317–11328 (1993).

    Article  ADS  Google Scholar 

  27. Bréchignac, C., Cahuzac, P., Leygnier, J. & Sarfati, A. Optical response of large lithium clusters: Evolution toward the bulk. Phys. Rev. Lett. 70, 2036–2039 (1993).

    Article  ADS  Google Scholar 

  28. Toscano, G. et al. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015).

    Article  Google Scholar 

  29. Monreal, R. C., Antosiewicz, T. J. & Apell, S. P. Competition between surface screening and size quantization for surface plasmons in nanoparticles. New J. Phys. 15, 083044 (2013).

    Article  Google Scholar 

  30. Lermé, J. et al. Quenching of the size effects in free and matrix-embedded silver clusters. Phys. Rev. Lett. 80, 5105–5108 (1998).

    Article  ADS  Google Scholar 

  31. Kasperovich, V. & Kresin, V. V. Ultraviolet photoabsorption spectra of silver and gold nanoclusters. Phil. Mag. 78, 385–396 (1998).

    Article  Google Scholar 

  32. Genzel, L., Martin, T. P. & Kreibig, U. Dielectric function and plasma resonances of small metal particles. Z. Phys. B 21, 339–346 (1975).

    Article  ADS  Google Scholar 

  33. Charlé, K.-P., König, L., Nepijko, S., Rabin, I. & Schulze, W. The surface plasmon resonance of free and embedded Ag-clusters in the size range 1.5 nm < D < 30 nm. Cryst. Res. Technol. 33, 1085–1096 (1998).

    Article  Google Scholar 

  34. Nilius, N., Ernst, N. & Freund, H.-J. Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope. Phys. Rev. Lett. 84, 3994–3997 (2000).

    Article  ADS  Google Scholar 

  35. Lünskens, T. et al. Plasmons in supported size-selected silver nanoclusters. Phys. Chem. Chem. Phys. 17, 17541–17544 (2015).

    Article  Google Scholar 

  36. Peng, S., McMahon, J. M., Schatz, G. C., Gray, S. K. & Sun, Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl Acad. Sci. USA 107, 14530–14534 (2010).

    Article  ADS  Google Scholar 

  37. Raza, S., Yan, W., Stenger, N., Wubs, M. & Mortensen, N. A. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects. Opt. Express 21, 27344–27355 (2013).

    Article  ADS  Google Scholar 

  38. Koh, A. L. et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3, 3015–3022 (2009).

    Article  Google Scholar 

  39. Fedrigo, S., Harbich, W. & Buttet, J. Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys. Rev. B 47, 10706–10715 (1993).

    Article  ADS  Google Scholar 

  40. Lecoultre, S. et al. Ultraviolet-visible absorption of small silver clusters in neon: Agn (n = 1–9). J. Chem. Phys. 134, 184504 (2011).

    Article  ADS  Google Scholar 

  41. Kreibig, U. Small silver particles in photosensitive glass: Their nucleation and growth. Appl. Phys. 10, 255–264 (1976).

    Article  ADS  Google Scholar 

  42. Cottancin, E. et al. Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory. Theor. Chem. Acc. 116, 514–523 (2006).

    Article  Google Scholar 

  43. Sachan, R. et al. Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv. Mater. 25, 2045–2050 (2013).

    Article  Google Scholar 

  44. Römer, I., Wang, Z. W., Merrifield, R. C., Palmer, R. E. & Lead, J. High resolution STEM-EELS study of silver nanoparticles exposed to light and humic substances. Environ. Sci. Technol. 50, 2183–2190 (2016).

    Article  ADS  Google Scholar 

  45. Lermé, J. et al. Quantum extension of Mie’s theory in the dipolar approximation. Phys. Rev. B 60, 16151–16156 (1999).

    Article  ADS  Google Scholar 

  46. Lermé, J. Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation. Eur. Phys. J. D 10, 265–277 (2000).

    Article  ADS  Google Scholar 

  47. Brack, M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677–732 (1993).

    Article  ADS  Google Scholar 

  48. de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993).

    Article  ADS  Google Scholar 

  49. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  50. Pérez, A. et al. Nanostructured materials from clusters: synthesis and properties. Mater. Trans. 42, 1460–1470 (2001).

    Article  Google Scholar 

  51. Hillenkamp, M., Di Domenicantonio, G. & Félix, C. Monodispersed metal clusters in solid matrices: A new experimental setup. Rev. Sci. Instrum. 77, 025104 (2006).

    Article  ADS  Google Scholar 

  52. Haberland, H. et al. Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol. A 12, 2925–2930 (1994).

    Article  ADS  Google Scholar 

  53. Bromann, K. et al. Controlled deposition of size-selected silver nanoclusters. Science 274, 956–958 (1996).

    Article  ADS  Google Scholar 

  54. HyperSpy 1.0 (Zenodo, 2016); https://doi.org/10.5281/zenodo.57882

Download references

Acknowledgements

We acknowledge financial support from the French National Research Agency (Agence Nationale de Recherche, ANR) in the frame of the project ‘FIT SPRINGS’, ANR-14-CE08-0009. This work has received support from the National Agency for Research under the programme of future investment TEMPOSCHROMATEM with the Reference Number ANR-10-EQPX-50. This work was performed using the Lyon Cluster Research Platform PLYRA. M.H. acknowledges support from the Brazilian Science Without Borders ‘Special Visiting Scientist’ programme (88881.030488/2013-01), and from the São Paulo Research Foundation (FAPESP, 16/12807-4). We gratefully acknowledge technical support from O. Boisron, C. Albin and C. Clavier and fruitful discussions with D. Ugarte.

Author information

Authors and Affiliations

Authors

Contributions

H.-C.W., M.K. and M.H. designed the project; N.T., E.C., M.P. and M.H. fabricated the samples and performed optical spectroscopy; A.C. and M.K. performed STEM-EELS experiments, treated the data and developed the corresponding theoretical description; J.L. developed the theoretical model of the optical response and its equivalence to EELS and performed the calculations; M.H. coordinated the data interpretation and wrote the manuscript; all authors participated in the discussion.

Corresponding author

Correspondence to Matthias Hillenkamp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

3 chapters, 19 figures, 64 references, 64 equations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, A., Troc, N., Cottancin, E. et al. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nat. Phys. 15, 275–280 (2019). https://doi.org/10.1038/s41567-018-0345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0345-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing