Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors

Abstract

Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe2, we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dual-gated WSe2 homotrilayer van der Waals heterostructure and their optical characteristics under gating at T = 4 K.
Fig. 2: Nonlinearity in hole-doped homotrilayer WSe2 at T = 4 K.
Fig. 3: Electronic band structure of trilayer WSe2.
Fig. 4: Electric-field-dependent exciton energy and nonlinearity in homotrilayer WSe2 at T = 4 K.

Similar content being viewed by others

Data availability

All other data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    Article  ADS  Google Scholar 

  2. Boyd, R. W. Nonlinear Optics (Academic Press, 2003).

  3. Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    Article  ADS  Google Scholar 

  4. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007).

    Article  Google Scholar 

  5. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article  ADS  Google Scholar 

  6. Datta, B. et al. Highly nonlinear dipolar exciton–polaritons in bilayer MoS2. Nat. Commun. 13, 6341 (2022).

    Article  ADS  Google Scholar 

  7. Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).

    Article  Google Scholar 

  8. Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    Article  Google Scholar 

  9. Mak, K. F. & Shan, J. Opportunities and challenges of interlayer exciton control and manipulation. Nat. Nanotechnol. 13, 974–976 (2018).

    Article  ADS  Google Scholar 

  10. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    Article  ADS  Google Scholar 

  11. Wild, D. S., Shahmoon, E., Yelin, S. F. & Lukin, M. D. Quantum nonlinear optics in atomically thin materials. Phys. Rev. Lett. 121, 123606 (2018).

    Article  ADS  Google Scholar 

  12. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    Article  ADS  Google Scholar 

  13. Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13, 906–909 (2018).

    Article  ADS  Google Scholar 

  14. Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).

    Article  ADS  Google Scholar 

  15. Zhang, L. et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402 (2019).

    Article  ADS  Google Scholar 

  16. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  ADS  Google Scholar 

  17. Walther, V., Johne, R. & Pohl, T. Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities. Nat. Commun. 9, 1309 (2018).

    Article  ADS  Google Scholar 

  18. Leisgang, N. et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).

    Article  ADS  Google Scholar 

  19. Louca, C. et al. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nat. Commun. 14, 3818 (2023).

    Article  ADS  Google Scholar 

  20. Wang, Z., Chiu, Y. H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018).

    Article  ADS  Google Scholar 

  21. Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).

    Article  ADS  Google Scholar 

  22. Movva, H. C. P. et al. Tunable Γ-K valley populations in hole-doped trilayer WSe2. Phys. Rev. Lett. 120, 107703 (2018).

    Article  ADS  Google Scholar 

  23. Sidler, M. et al. Fermi polaron–polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    Article  Google Scholar 

  24. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  ADS  Google Scholar 

  25. Wang, Z., Zhao, L., Mak, K. F. & Shan, J. Probing the spin-polarized electronic band structure in monolayer transition metal dichalcogenides by optical spectroscopy. Nano Lett. 17, 740–746 (2017).

    Article  ADS  Google Scholar 

  26. Erkensten, D., Brem, S. & Malic, E. Exciton–exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B 103, 045426 (2021).

    Article  ADS  Google Scholar 

  27. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014).

    Article  Google Scholar 

  28. Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).

    Article  ADS  Google Scholar 

  29. Zhang, Y. et al. Every-other-layer dipolar excitons in a spin–valley locked superlattice. Nat. Nanotechnol. 18, 501–506 (2023).

    Article  ADS  Google Scholar 

  30. Stepanov, P. et al. Exciton–exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light–matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).

    Article  ADS  Google Scholar 

  31. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 37402 (2018).

    Article  ADS  Google Scholar 

  32. Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 90, 075413 (2014).

    Article  ADS  Google Scholar 

  33. Hsu, W.-T. et al. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat. Commun. 6, 8963 (2015).

    Article  ADS  Google Scholar 

  34. Courtade, E. et al. Charged excitons in monolayer WSe2: experiment and theory. Phys. Rev. B 96, 085302 (2017).

    Article  ADS  Google Scholar 

  35. Fey, C., Schmelcher, P., Imamoglu, A. & Schmidt, R. Theory of exciton–electron scattering in atomically thin semiconductors. Phys. Rev. B 101, 195417 (2020).

    Article  ADS  Google Scholar 

  36. Yan, T., Yang, S., Li, D. & Cui, X. Long valley relaxation time of free carriers in monolayer WSe2. Phys. Rev. B 95, 241406 (2017).

    Article  ADS  Google Scholar 

  37. Goryca, M., Wilson, N. P., Dey, P., Xu, X. & Crooker, S. A. Detection of thermodynamic ‘valley noise’ in monolayer semiconductors: access to intrinsic valley relaxation time scales. Sci. Adv. 5, eaau4899 (2019).

    Article  ADS  Google Scholar 

  38. Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

    Article  Google Scholar 

  39. Dery, H. & Song, Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 92, 125431 (2015).

    Article  ADS  Google Scholar 

  40. Robert, C. et al. Spin/valley pumping of resident electrons in WSe2 and WS2 monolayers. Nat. Commun. 12, 5455 (2021).

    Article  ADS  Google Scholar 

  41. Park, H. et al. Dipole ladders with large Hubbard interaction in a moiré exciton lattice. Nat. Phys. 19, 1286–1292 (2023).

    Article  Google Scholar 

  42. Gao, B. et al. Excitonic Mott insulator in a Bose–Fermi–Hubbard system of moiré WS2/WSe2 heterobilayer. Nat. Commun. 15, 2305 (2024).

    Article  Google Scholar 

  43. Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science 380, 860–864 (2023).

    Article  ADS  Google Scholar 

  44. Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

    Article  ADS  Google Scholar 

  45. Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).

    Article  Google Scholar 

  46. Cai, T. et al. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5, 3466–3471 (2018).

    Article  Google Scholar 

  47. Yu, H., Liu, G. B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  ADS  Google Scholar 

  48. Zhou, Y. et al. Controlling excitons in an atomically thin membrane with a mirror. Phys. Rev. Lett. 124, 27401 (2020).

    Article  ADS  Google Scholar 

  49. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  50. Van Stryland, E. W., Wu, Y. Y., Hagan, D. J., Soileau, M. J. & Mansour, K. Optical limiting with semiconductors. J. Opt. Soc. Am. B 5, 1980–1988 (1988).

    Google Scholar 

Download references

Acknowledgements

This research is primarily supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences Early Career Research Program, under award no. DE-SC-0022885. The fabrication of samples is supported by the National Science Foundation CAREER Award under award no. DMR-2145712. This research used Quantum Material Press (QPress) of the Center for Functional Nanomaterials (CFN), which is a US Department of Energy, Office of Science User Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant nos. 20H00354, 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan, for hBN synthesis.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and L.G. conceived the project. L.G. fabricated the samples and performed the experiments. L.Z., R.N., S.P. and H.J. assisted with the sample fabrication. L.Z. and R.N. helped with the optical measurements. M.X., D.S.W., M.H. and Y.Z. contributed to the data analysis and theoretical understanding. T.T. and K.W. provided the hBN samples. L.G. and Y.Z. wrote the paper with extensive input from the other authors.

Corresponding author

Correspondence to You Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Xi Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–13 and Table 1.

Source data

Source Data Fig. 1

Numerical source data for Fig. 1c–e.

Source Data Fig. 2

Numerical source data for Fig. 2a–e.

Source Data Fig. 4

Numerical source data for Fig. 4a–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Zhang, L., Ni, R. et al. Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01434-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing