Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides

Abstract

The introduction of nonlinear nanophotonic devices to the field of optical frequency comb metrology has enabled new opportunities for low-power and chip-integrated clocks, high-precision frequency synthesis and broad-bandwidth spectroscopy. However, most of these advances remain constrained to the near-infrared region of the spectrum, which has restricted the integration of frequency combs with numerous quantum and atomic systems in the ultraviolet and visible ranges. Here we overcome this shortcoming with the introduction of multisegment nanophotonic thin-film lithium niobate waveguides that combine engineered dispersion and chirped quasi-phase matching for efficient supercontinuum generation via the combination of χ(2) and χ(3) nonlinearities. With only 90 pJ of pulse energy at 1,550 nm, we achieve gap-free frequency comb coverage spanning 330–2,400 nm. The conversion efficiency from the near-infrared pump to the ultraviolet–visible region of 350–550 nm is 17%, and our modelling of optimized poling structures predicts an even higher efficiency. Harmonic generation via the χ(2) nonlinearity in the same waveguide directly yields the carrier-envelope offset frequency and a means to verify the comb coherence at wavelengths as short as 350 nm. Our results provide an integrated photonics approach to create visible and ultraviolet frequency combs that will impact precision spectroscopy, quantum information processing and optical clock applications in this important spectral window.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanophotonic LN waveguides for UV-to-near-infrared frequency comb generation.
Fig. 2: Spectral evolution of broad-bandwidth frequency comb generation.
Fig. 3: Broad-bandwidth coherence and carrier-envelope offset frequency detection.
Fig. 4: UV spectral limits and efficiency.
Fig. 5: Nonlinear spectral evolution in thin-film LN waveguides with χ(3) and χ(2) nonlinearities.

Similar content being viewed by others

Data availability

All data required to reproduce the figures in this paper are available via the University of Colorado CU Scholar at https://scholar.colorado.edu.

Code availability

The simulations were carried out using the open-source code PyNLO42.

References

  1. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

  2. Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Article  Google Scholar 

  3. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  CAS  Google Scholar 

  4. Haffner, H., Roos, C. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  5. Fischer, D. et al. State of the field: extreme precision radial velocities. Publ. Astron. Soc. Pac. 128, 066001 (2016).

  6. Galtier, S., Pivard, C. & Rairoux, P. Towards DCS in the UV spectral range for remote sensing of atmospheric trace gases. Remote Sens. 12, 3444 (2020).

  7. Kandula, D. Z., Gohle, C., Pinkert, T. J., Ubachs, W. & Eikema, K. S. E. Extreme ultraviolet frequency comb metrology. Phys. Rev. Lett. 105, 063001 (2010).

    Article  ADS  PubMed  Google Scholar 

  8. Pupeza, I., Zhang, C., Högner, M. & Ye, J. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photon. 15, 175–186 (2021).

    Article  ADS  CAS  Google Scholar 

  9. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  ADS  PubMed  Google Scholar 

  11. Yang, K. et al. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers. Opt. Express 20, 12899–12905 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lesko, D. M. B. et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photon. 15, 281–286 (2021).

    Article  ADS  CAS  Google Scholar 

  13. Lesko, D. M. B., Chang, K. F. & Diddams, S. A. High-sensitivity frequency comb carrier-envelope-phase metrology in solid state high harmonic generation. Optica 9, 1156–1162 (2022).

    Article  ADS  CAS  Google Scholar 

  14. Iwakuni, K. et al. Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared. Opt. Lett. 41, 3980–3983 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Oh, D. Y. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2017).

    Article  ADS  CAS  Google Scholar 

  16. Herr, S. J. et al. Frequency comb up- and down-conversion in synchronously driven χ(2) optical microresonators. Opt. Lett. 43, 5745–5748 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Rutledge, J. et al. Broadband ultraviolet-visible frequency combs from cascaded high-harmonic generation in quasi-phase-matched waveguides. J. Opt. Soc. Am. B 38, 2252–2260 (2021).

    Article  ADS  Google Scholar 

  18. Reig Escalé, M., Kaufmann, F., Jiang, H., Pohl, D. & Grange, R. Generation of 280 THz-spanning nearultraviolet light in lithium niobate-on-insulator waveguides with sub-100 pJ pulses. APL Photonics 5, 121301 (2020).

  19. Liu, X. et al. Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide. Nat. Commun. 10, 2971 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura, K., Kashiwagi, K., Okubo, S. & Inaba, H. Erbium-doped-fiber-based broad visible range frequency comb with a 30 GHz mode spacing for astronomical applications. Opt. Express 31, 20274–20285 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Mridha, M. K., Novoa, D., Bauerschmidt, S. T., Abdolvand, A. & Russell, P. S. Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber. Opt. Lett. 41, 2811–2814 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Peters, E. et al. A deep-UV optical frequency comb at 205 nm. Opt. Express 17, 9183–9190 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Pinkert, T. J. et al. Widely tunable extreme UV frequency comb generation. Opt. Lett. 36, 2026–2028 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Honardoost, A., Abdelsalam, K. & Fathpour, S. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photonics Rev. 14, 2000088 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Okawachi, Y. et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica 7, 702–707 (2020).

    Article  ADS  CAS  Google Scholar 

  27. Roy, A. et al. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nat. Commun. 14, 6549 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. François, P. L. Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain. J. Opt. Soc. Am. B 8, 276–293 (1991).

    Article  ADS  Google Scholar 

  29. Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004).

    Article  ADS  CAS  Google Scholar 

  30. Sekhar, P., Fredrick, C., Carlson, D. R., Newman, Z. & Diddams, S. A. 20 GHz fiber-integrated femtosecond pulse and supercontinuum generation with a resonant electro-optic frequency comb. APL Photonics 8, 116111 (2023).

    Article  ADS  CAS  Google Scholar 

  31. He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett. 44, 2314–2317 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Hu, C. et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express 29, 5397–5406 (2021).

    Article  ADS  PubMed  Google Scholar 

  33. Jones, D. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Okubo, S., Onae, A., Nakamura, K., Udem, T. & Inaba, H. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica 5, 188–192 (2018).

    Article  ADS  CAS  Google Scholar 

  35. Lind, A. J. et al. Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics. Phys. Rev. Lett. 124, 133904 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hoghooghi, N. et al. Broadband 1-GHz mid-infrared frequency comb. Light Sci. Appl. 11, 264 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carlson, D. R. et al. Ultrafast electro-optic light with subcycle control. Science 361, 1358–1363 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Syuy, A. et al. Optical properties of lithium niobate crystals. Optik 156, 239–246 (2018).

    Article  ADS  CAS  Google Scholar 

  39. Bhatt, R. et al. Studies on nonlinear optical properties of ferroelectric MgO-LiNbO3 single crystals. Ferroelectrics 323, 165–169 (2005).

    Article  ADS  CAS  Google Scholar 

  40. Bhatt, R. et al. Control of intrinsic defects in lithium niobate single crystal for optoelectronic applications. Crystals 7, 23 (2017).

    Article  Google Scholar 

  41. Balac, S. & Mahé, F. Embedded Runge–Kutta scheme for step-size control in the interaction picture method. Comput. Phys. Commun. 184, 1211–1219 (2013).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  42. PyNLO: Python nonlinear optics. GitHub https://github.com/UCBoulder/PyNLO

Download references

Acknowledgements

This work was supported by the National Science Foundation AST 2009982 (P.S. and C.F.), EECS1846273 (L.L., R.S., Q.G. and A.M.) and QLCI award no. OMA-2016244 (S.A.D. and T.-H.W.); the Air Force Office of Scientific Research FA9550-20-1-0040 (L.L., R.S., Q.G. and A.M.); the National Institute of Standards and Technology (NIST) on a Chip program (S.A.D. and T.-H.W.); and the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program RSA 1671354 (P.S. and R.M.B). Device nanofabrication was performed at the Kavli Nanoscience Institute (KNI) at Caltech. We acknowledge helpful comments on the paper from K. Chang and J. Black and valuable input from S. Liefer in the early stages of this project.

Author information

Authors and Affiliations

Authors

Contributions

T.-H.W., C.F. and S.A.D. conceived the waveguide designs. L.L. fabricated the waveguides with assistance from R.S., Q.G. and R.M.B. The experiments were performed by T.-H.W. and P.S. T.-H.W. and C.F. developed and carried out the modelling. T.-H.W. and S.A.D. wrote the paper with input, analysis and discussion of the results from all authors. A.M. and S.A.D. supervised the project.

Corresponding authors

Correspondence to Alireza Marandi or Scott A. Diddams.

Ethics declarations

Competing interests

L.L. and A.M. are involved in developing photonic integrated nonlinear circuits at PINC Technologies Inc. L.L. and A.M. have an equity interest in PINC Technologies Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TH., Ledezma, L., Fredrick, C. et al. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat. Photon. 18, 218–223 (2024). https://doi.org/10.1038/s41566-023-01364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01364-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing