Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light sheets for continuous-depth holography and three-dimensional volumetric displays

Abstract

Projecting high-quality three-dimensional (3D) scenes via computer-generated holography is a sought-after goal for virtual and augmented reality, human–computer interaction and interactive learning. Three-dimensional objects are usually constructed from a single hologram by cascading a stack of two-dimensional (2D) scenes along the optical path and perpendicular to it. The spatial separation between those scenes, however, is fundamentally constrained by the numerical aperture of the hologram, limiting the axial resolution and depth perception of the generated 3D image. Here we propose a new class of hologram that instead projects a desired scene onto 2D sheets oriented perpendicular to the plane of the display screen, thus enabling continuous reconstruction of the object along the optical path. To achieve this, we decompose the target scene into threads of light—arrays of non-diffracting pencil-like beams whose envelopes can be locally structured along the propagation direction at will. Using a spatial light modulator, we project 2D scenes onto the plane normal to the hologram and by stacking multiple 2D sheets in parallel we construct 3D objects with high fidelity and low crosstalk. Computer-generated holography of this kind opens new routes to realistic 3D holography and can be deployed in wearable smart glasses, portable devices and wide-angle volumetric displays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different approaches to holographic projection.
Fig. 2: Concept of holographic light sheets.
Fig. 3: Generation of 2D holographic light sheets.
Fig. 4: Assembling 2D holographic light sheets to construct volumetric (3D) scenes.

Similar content being viewed by others

Data availability

All key data that support the findings of this study are included in the article and its Supplementary Information. Additional datasets and raw measurements are available from the corresponding authors upon reasonable request.

Code availability

The codes and simulation files that support Figs. 14, Extended Data Figs. 1 and 2 and the data analysis are available from the corresponding authors upon reasonable request.

References

  1. Sheridan, J. T. et al. Roadmap on holography. J. Optics 22, 123002 (2020).

    Article  ADS  Google Scholar 

  2. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  Google Scholar 

  3. Blanche, P.-A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010).

    Article  ADS  Google Scholar 

  4. Heanue, J. F., Bashaw, M. C. & Hesselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749–752 (1994).

    Article  ADS  Google Scholar 

  5. Pégard, N. C. & Fleischer, J. W. Optimizing holographic data storage using a fractional Fourier transform. Opt. Lett. 36, 2551–2553 (2011).

    Article  ADS  Google Scholar 

  6. Schilling, B. W. et al. Three-dimensional holographic fluorescence microscopy. Opt. Lett. 22, 1506–1508 (1997).

    Article  ADS  Google Scholar 

  7. Kim, M. K. Digital Holographic Microscopy 149–190 (Springer, 2011).

  8. Dickey, F. M. Laser Beam Shaping: Theory and Techniques 2nd edn (CRC, 2014).

  9. Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

    Article  ADS  Google Scholar 

  10. Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 1–16 (2017).

  11. Kohler, C., Schwab, X. & Osten, W. Optimally tuned spatial light modulators for digital holography. Appl. Opt. 45, 960–967 (2006).

    Article  ADS  Google Scholar 

  12. Forbes, A., Dudley, A. & McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon. 8, 200–227 (2016).

    Article  Google Scholar 

  13. Ren, Y.-X., Lu, R.-D. & Gong, L. Tailoring light with a digital micromirror device. Ann. Phys. 527, 447–470 (2015).

    Article  MathSciNet  Google Scholar 

  14. Lee, B. et al. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing. Opt. Lett. 45, 2148–2151 (2020).

    Article  ADS  Google Scholar 

  15. Moerner, W. E., Grunnet-Jepsen, A. & Thompson, C. L. Photorefractive polymers. Annu. Rev. Mater. Sci. 27, 585–623 (1997).

    Article  ADS  Google Scholar 

  16. Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

    Article  ADS  Google Scholar 

  17. Genevet, P. & Capasso, F. Holographic optical metasurfaces: a review of current progress. Rep. Progr. Phys. 78, 024401 (2015).

    Article  ADS  Google Scholar 

  18. Huang, L., Zhang, S. & Zentgraf, T. Metasurface holography: from fundamentals to applications:. Nanophotonics 7, 1169–1190 (2018).

    Article  Google Scholar 

  19. Cutting, J. E. & Vishton, P. M. in Perception of Space and Motion (eds Epstein, W. & Rogers, S.) 69–117 (Academic, 1995).

  20. Yatagai, T. Stereoscopic approach to 3-D display using computer-generated holograms. Appl. Opt. 15, 2722–2729 (1976).

    Article  ADS  Google Scholar 

  21. Tajahuerce, E. & Javidi, B. Encrypting three-dimensional information with digital holography. Appl. Opt. 39, 6595–6601 (2000).

    Article  ADS  Google Scholar 

  22. Dorsch, R. G., Lohmann, A. W. & Sinzinger, S. Fresnel ping-pong algorithm for two-plane computer-generated hologram display. Appl. Opt. 33, 869–875 (1994).

    Article  ADS  Google Scholar 

  23. Makowski, M., Sypek, M., Kolodziejczyk, A. & Mikula, G. Three-plane phase-only computer hologram generated with iterative Fresnel algorithm. Opt. Eng. 44, 125805 (2005).

  24. Mishina, T., Okui, M. & Okano, F. Calculation of holograms from elemental images captured by integral photography. Appl. Opt. 45, 4026–4036 (2006).

    Article  ADS  Google Scholar 

  25. Wakunami, K., Yamaguchi, M. & Javidi, B. High-resolution three-dimensional holographic display using dense ray sampling from integral imaging. Opt. Lett. 37, 5103–5105 (2012).

    Article  ADS  Google Scholar 

  26. Yamaguchi, M., Hoshino, H., Honda, T. & Ohyama, N. in Practical Holography VII: Imaging and Materials Vol. 1914 (ed. Benton, S. A.) 25–31 (SPIE, 1993).

  27. Barabas, J., Jolly, S., Smalley, D. E. & Bove Jr, V. M. in Practical Holography XXV: Materials and Applications Vol. 7957 (ed. Bjelkhagen, H. I.) 13–19 (SPIE, 2011).

  28. Zhang, H., Zhao, Y., Cao, L. & Jin, G. Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues. Opt. Express 23, 3901–3913 (2015).

    Article  ADS  Google Scholar 

  29. Padmanaban, N., Peng, Y. & Wetzstein, G. Holographic near-eye displays based on overlap-add stereograms. ACM Trans. Graph. 38, 1–13 (2019).

  30. Chen, J.-S. & Chu, D. P. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt. Express 23, 18143–18155 (2015).

    Article  ADS  Google Scholar 

  31. Zhao, Y., Cao, L., Zhang, H., Kong, D. & Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 23, 25440–25449 (2015).

    Article  ADS  Google Scholar 

  32. Zhang, J., Pégard, N., Zhong, J., Adesnik, H. & Waller, L. 3D computer-generated holography by non-convex optimization. Optica 4, 1306–1313 (2017).

    Article  ADS  Google Scholar 

  33. Wei, Q., Huang, L., Li, X., Liu, J. & Wang, Y. Broadband multiplane holography based on plasmonic metasurface. Adv. Opt. Mater. 5, 1700434 (2017).

    Article  Google Scholar 

  34. Piao, M.-L. et al. Multi-depth three-dimensional image encryption based on the phase retrieval algorithm in the Fresnel and fractional Fourier transform domains. Appl. Opt. 57, 7609–7617 (2018).

    Article  ADS  Google Scholar 

  35. Makey, G. et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photon. 13, 251–256 (2019).

    Article  ADS  Google Scholar 

  36. Zhou, Y. et al. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci. Appl. 8, 80 (2019).

    Article  ADS  Google Scholar 

  37. Zheng, G., Fu, R., Deng, L., Li, G. & Li, Z. On-axis three-dimensional meta-holography enabled with continuous-amplitude modulation of light. Opt. Express 29, 6147–6157 (2021).

    Article  ADS  Google Scholar 

  38. Tay, S. et al. An updatable holographic three-dimensional display. Nature 451, 694–698 (2008).

    Article  ADS  Google Scholar 

  39. Smalley, D. E. et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018).

    Article  ADS  Google Scholar 

  40. Hernandez, O. et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat. Commun. 7, 11928 (2016).

    Article  ADS  Google Scholar 

  41. Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

    Article  ADS  Google Scholar 

  42. Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

    Article  ADS  Google Scholar 

  43. Yu, H., Lee, K., Park, J. & Park, Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photon. 11, 186–192 (2017).

    Article  ADS  Google Scholar 

  44. Makowski, P. L., Kozacki, T., Zdankowski, P. & Zaperty, W. Synthetic aperture Fourier holography for wide-angle holographic display of real scenes. Appl. Opt. 54, 3658–3665 (2015).

    Article  ADS  Google Scholar 

  45. Lucente, M. E. Interactive computation of holograms using a look-up table. J. Electron. Imaging 2, 28–34 (1993).

    Article  ADS  Google Scholar 

  46. Kim, S.-C. & Kim, E.-S. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods. Appl. Opt. 48, 1030–1041 (2009).

    Article  ADS  Google Scholar 

  47. Chen, R. H.-Y. & Wilkinson, T. D. Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display. Appl. Opt. 48, 4246–4255 (2009).

    Article  ADS  Google Scholar 

  48. Ren, H., Shao, W., Li, Y., Salim, F. & Gu, M. Three-dimensional vectorial holography based on machine learning inverse design. Sci. Adv. 6, eaaz4261 (2020).

    Article  ADS  Google Scholar 

  49. Shi, L., Li, B., Kim, C., Kellnhofer, P. & Matusik, W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021).

    Article  ADS  Google Scholar 

  50. Lesem, L. B., Hirsch, P. M. & Jordan, J. A. The kinoform: a new wavefront reconstruction device. IBM J. Res. Dev. 13, 150–155 (1969).

    Article  Google Scholar 

  51. Lee, W. H. Sampled Fourier transform hologram generated by computer. Appl. Opt. 9, 639–643 (1970).

    Article  ADS  Google Scholar 

  52. Haddad, W. S. et al. Fourier-transform holographic microscope. Appl. Opt. 31, 4973–4978 (1992).

    Article  ADS  Google Scholar 

  53. Alexandrov, S. A., Hillman, T. R., Gutzler, T. & Sampson, D. D. Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett. 97, 168102 (2006).

    Article  ADS  Google Scholar 

  54. Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon. 7, 739–745 (2013).

    Article  ADS  Google Scholar 

  55. Plesniak, W., Pappu, R., Underkoffler, J., Lucente, M. & St.-Hilaire, P. in Holographic Imaging (eds Benton, S. A. & Bove, V. M.) Ch. 19 (Wiley, 2008).

  56. Gülses, A. A. & Jenkins, B. K. Cascaded diffractive optical elements for improved multiplane image reconstruction. Appl. Opt. 52, 3608–3616 (2013).

    Article  ADS  Google Scholar 

  57. Jackin, B. J. & Yatagai, T. 360° reconstruction of a 3D object using cylindrical computer generated holography. Appl. Opt. 50, H147–H152 (2011).

    Article  Google Scholar 

  58. Huebschman, M. L., Munjuluri, B. & Garner, H. R. Dynamic holographic 3-D image projection. Opt. Express 11, 437–445 (2003).

    Article  ADS  Google Scholar 

  59. Zabels, R., Osmanis, K., Narels, M., Smukulis, R. & Osmanis, I. in Advances in Display Technologies IX Vol. 10942 (eds Lee, J.-H. et al.) 51–61 (SPIE, 2019).

  60. Zamboni-Rached, M. Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: frozen waves. Opt. Express 12, 4001–4006 (2004).

    Article  ADS  Google Scholar 

  61. McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005).

    Article  ADS  Google Scholar 

  62. Ambrosio, L. A. Millimeter-structured nondiffracting surface beams. J. Opt. Soc. Am. B 36, 638–645 (2019).

    Article  ADS  Google Scholar 

  63. Arrizón, V., Ruiz, U., Carrada, R. & González, L. A. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A 24, 3500–3507 (2007).

    Article  ADS  Google Scholar 

  64. Dorrah, A. H. & Capasso, F. Tunable structured light with flat optics. Science 376, eabi6860 (2022).

    Article  Google Scholar 

  65. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article  ADS  Google Scholar 

  66. Lim, S. W. D., Park, J.-S., Meretska, M. L., Dorrah, A. H. & Capasso, F. Engineering phase and polarization singularity sheets. Nat. Commun. 12, 4190 (2021).

    Article  ADS  Google Scholar 

  67. Park, J., Lee, K. & Park, Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat. Commun. 10, 1304 (2019).

    Article  ADS  Google Scholar 

  68. Dorrah, A. H., Rubin, N. A., Zaidi, A., Tamagnone, M. & Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 15, 287–296 (2021).

    Article  ADS  Google Scholar 

  69. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  ADS  Google Scholar 

  70. Ren, H. et al. Metasurface orbital angular momentum holography. Nat. Commun. 10, 2986 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Zaidi, A. Palmieri and M. Greiner, all of Harvard University, as well as M. Ritsche-Marte of the Medical University of Innsbruck for insightful discussions. A.H.D. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) under award no. PDF-533013-2019. F.C. acknowledges financial support from the Office of Naval Research (ONR) under the MURI programme, grant no. N00014-20-1-2450, and from the Air Force Office of Scientific Research (AFOSR) under grant nos FA9550-21-1-0312 and FA9550-22-1-0243. V.S.d.A. acknowledges financial support from the National Council for Scientific and Technological Development (CNPq) under grant no. 140270/2022-1. M.Z.-R. acknowledges financial support from CNPq under grant no. 306689/2019-7 and from São Paulo Research Foundation (FAPESP) under grant no 2021/15027-8. L.A.A. acknowledges financial support from CNPq under grant no. 309201/2021-7 and from FAPESP under grant nos 2020/05280-5 and 2021/06121-0.

Author information

Authors and Affiliations

Authors

Contributions

A.H.D. designed and built the experiment, created the CGHs with input from P.B. and analysed and processed the data. P.B. performed the measurements and acquired and processed the data. V.S.d.A. and J.O.d.S developed the MATLAB simulations of surface frozen waves. M.Z.-R. conceived the frozen wave theory. L.A.A. developed the mathematical formulation of surface frozen waves. F.C. supervised the project. A.H.D., P.B. and F.C. wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to Ahmed H. Dorrah or Federico Capasso.

Ethics declarations

Competing interests

The authors have filed a provisional patent application based on this work.

Peer review

Peer review information

Nature Photonics thanks Fatih Ilday, YongKeun Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Projecting 2D images with Fresnel holography.

Four digits ‘1 2 3 4’ are axially projected along the propagation direction. The longitudinal separation between the image planes is (a) 5 cm, (b) 2.5 cm, (c) 1 cm, and (d) 0.5 cm. The scale bars in (a-d) are 2 mm, 1.5 mm, 1 mm and 0.8 mm, respectively. While cross-talk can be reduced by placing the images further apart (a), the size of the displayed images vary significantly (becoming larger) at longer propagation distances. This magnification can be mitigated by reducing the separation between the images, however, at the expense of more significant cross-talk (d). Here, ϵ depicts the reconstruction error as detailed in Supplementary Note 4.

Extended Data Fig. 2 Projecting 2D images with holographic light sheets.

Four digits ‘1 2 3 4’ are projected in the lateral direction perpendicular to the display. The lateral separation between the images is (a) 3.042 mm, (b) 1.872 mm, (c) 0.936 mm, and (d) 0.468 mm. The horizontal and vertical scale bars are 10 mm and 0.5 mm, respectively. Here, cross-talk (signified by ϵ) can be reduced by placing the images further apart in the lateral direction without affecting the size of the projected images. Furthermore, given their non-diffracting behavior, our holographic light sheets exhibit a relatively smooth profile (with less grainy features) compared to Fresnel-based multi-plane techniques.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes 1–5 and refs. 1–23.

Animated visualization of volumetric digit (1) projected onto eight holographic sheets and viewed over the full 4π solid angle.

Animated visualization of a hollow sphere composed of eight stacked rings and viewed over the entire 4π solid angle.

Animated visualization of a hollow sphere composed of eight stacked rings while including two planes between the rings, as viewed over the full 4π solid angle.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorrah, A.H., Bordoloi, P., de Angelis, V.S. et al. Light sheets for continuous-depth holography and three-dimensional volumetric displays. Nat. Photon. 17, 427–434 (2023). https://doi.org/10.1038/s41566-023-01188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01188-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing