Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A non-unitary metasurface enables continuous control of quantum photon–photon interactions from bosonic to fermionic

Abstract

Photonic quantum information processing, one of the leading platforms for quantum technologies1,2,3,4,5, critically relies on optical quantum interference to produce an indispensable effective photon–photon interaction. However, such an effective interaction is fundamentally limited to bunching6 due to the bosonic nature of photons7 and the restricted phase response from conventional unitary optical elements8,9. Here we propose and experimentally demonstrate a new degree of freedom in the optical quantum interference enabled by a non-unitary metasurface. Due to the unique anisotropic phase response that creates two extreme eigen-operations, we show dynamical and continuous control over the effective interaction of two single photons such that they show bosonic bunching, fermionic antibunching or arbitrarily intermediate behaviour, beyond their intrinsic bosonic nature. This quantum operation opens the door to both fundamental quantum light–matter interaction and innovative photonic quantum devices for quantum communication, quantum simulation and quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction of a new DOF in optical quantum interference by a non-unitary metasurface.
Fig. 2: Experimental realization of the new DOF in the QTPI.
Fig. 3: The generalized QTPI for independent photon polarizations.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  2. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  3. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  4. Walmsley, I. A. Quantum optics: science and technology in a new light. Science 348, 525–530 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  6. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  7. Loudon, R. Fermion and boson beam-splitter statistics. Phys. Rev. A 58, 4904–4909 (1998).

    Article  ADS  Google Scholar 

  8. Zeilinger, A. General properties of lossless beam splitters in interferometry. Am. J. Phys. 49, 882–883 (1981).

    Article  ADS  Google Scholar 

  9. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

  10. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  11. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  12. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  13. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  15. Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427–427 (2012).

    Article  ADS  Google Scholar 

  16. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  18. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  ADS  Google Scholar 

  19. Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    Article  ADS  Google Scholar 

  20. Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).

    Article  ADS  Google Scholar 

  21. Georgi, P. et al. Metasurface interferometry toward quantum sensors. Light Sci. Appl. 8, 70 (2019).

    Article  ADS  Google Scholar 

  22. Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).

    Article  ADS  Google Scholar 

  23. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

  24. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  ADS  Google Scholar 

  25. Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).

    Article  ADS  Google Scholar 

  26. Michler, M., Mattle, K., Weinfurter, H. & Zeilinger, A. Interferometric Bell-state analysis. Phys. Rev. A 53, R1209–R1212 (1996).

    Article  ADS  Google Scholar 

  27. Kwiat, P. G., Steinberg, A. M. & Chiao, R. Y. Observation of a ‘quantum eraser’: a revival of coherence in a two-photon interference experiment. Phys. Rev. A 45, 7729–7739 (1992).

    Article  ADS  Google Scholar 

  28. Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012).

    Article  ADS  Google Scholar 

  29. Matthews, J. C. F. et al. Observing fermionic statistics with photons in arbitrary processes. Sci. Rep. 3, 1539 (2013).

    Article  Google Scholar 

  30. Crespi, A. et al. Suppression law of quantum states in a 3D photonic fast fourier transform chip. Nat. Commun. 7, 10469 (2016).

    Article  ADS  Google Scholar 

  31. Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016).

    Article  ADS  Google Scholar 

  32. Wolterink, T. A. W. et al. Programmable two-photon quantum interference in 103 channels in opaque scattering media. Phys. Rev. A 93, 053817 (2016).

    Article  ADS  Google Scholar 

  33. Vest, B. et al. Anti-coalescence of bosons on a lossy beam splitter. Science 356, 1373–1376 (2017).

    Article  ADS  Google Scholar 

  34. Barnett, S. M., Jeffers, J., Gatti, A. & Loudon, R. Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998).

    Article  ADS  Google Scholar 

  35. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  36. Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

    Article  ADS  Google Scholar 

  37. Okamoto, R. et al. An entanglement filter. Science 323, 483–485 (2009).

    Article  ADS  Google Scholar 

  38. Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    Article  ADS  Google Scholar 

  39. Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  40. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  41. Hess, O. et al. Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012).

    Article  ADS  Google Scholar 

  42. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Whaley and H. Haffner for reading of the manuscript and valuable comments. Q.L. also thanks Coherent for loaning the Genesis CX355-250 laser used in the experiments. This work is supported by the Gordon and Betty Moore Foundation and the King Abdullah University of Science and Technology Office of Sponsored Research (OSR) (award OSR-2016-CRG5-2950-03). We acknowledge the facility support at the Biomolecular Nanotechnology Center/QB3 at UC Berkeley. We also acknowledge the facility support at the Molecular Foundry. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

Q.L., W.B. and X.Z. conceived the idea and initiated the project. Q.L. formulated the theories. Q.L. and W.B. designed the metasurface. Z.N., W.B. and Q.L. fabricated the metasurface with assistance from Y. Xia and Y. Xue. Q.L. designed and built the setup and performed all measurements. Q.L., W.B. and X.Z. analysed the data. Q.L., W.B. and X.Z. wrote the manuscript with assistance from all authors. X.Z., S.Y. and Y.W. supervised the project.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Mark Brongersma, Jianwei Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. S1–S13, Tables S1 and S2 and Notes 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Bao, W., Nie, Z. et al. A non-unitary metasurface enables continuous control of quantum photon–photon interactions from bosonic to fermionic. Nat. Photonics 15, 267–271 (2021). https://doi.org/10.1038/s41566-021-00762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00762-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing